Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (11): 2600-2610.DOI: 10.3969/j.issn.1004-1524.20221604
• Horticultural Science • Previous Articles Next Articles
KONG Fanwang1,2(), ZHANG Zhigang2, LI Wei2, CHEN Yufeng2, WANG Changjiang2, ZHENG Yaqin1, XU Meng1,*(
)
Received:
2022-11-11
Online:
2023-11-25
Published:
2023-12-04
CLC Number:
KONG Fanwang, ZHANG Zhigang, LI Wei, CHEN Yufeng, WANG Changjiang, ZHENG Yaqin, XU Meng. Identification of 4CL gene family in peach and its expression analysis in fruit coloration during development stage and chilling injury during post-harvest low temperature storage[J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2600-2610.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221604
基因 Gene | 正向引物 Forward primer (5'→3') | 反向引物 Reverse primer (3'→5') |
---|---|---|
Pp4CL8 Pp4CL10 Pp4CL14 EF2 | CCCACATACCCAATTGCCCA AAAGAGCGGCTACTGTCCAC TGGAATCTCTACATGCTCCTCAG AGCAGGCTCTTGGTGGTATCT | TGAGGGCAGGTTTGTTTGAGT GGAGGGAGAGAGCGAAATGG GGTGAGGTTAGCGTGAAGATGA GATTCAATGACGGGGAGGTAG |
Table 1 Primer sequences for quantitative real-time PCR analysis
基因 Gene | 正向引物 Forward primer (5'→3') | 反向引物 Reverse primer (3'→5') |
---|---|---|
Pp4CL8 Pp4CL10 Pp4CL14 EF2 | CCCACATACCCAATTGCCCA AAAGAGCGGCTACTGTCCAC TGGAATCTCTACATGCTCCTCAG AGCAGGCTCTTGGTGGTATCT | TGAGGGCAGGTTTGTTTGAGT GGAGGGAGAGAGCGAAATGG GGTGAGGTTAGCGTGAAGATGA GATTCAATGACGGGGAGGTAG |
Fig.1 Chromosome distribution of 4CL gene family members in peach The distribution of the peach 4CL gene on the chromosome is highlighted in red font, tandem repeat genes are highlighted in gray, and segment duplication is connected in orange straight lines.
基因名称 Gene name | 登录号 GenBank | 氨基酸数目 Amino acid | 等电点 Isoelectric point | 分子量 Molecular weight/u | 不稳定系数 Instability index |
---|---|---|---|---|---|
Pp4CL1 | XM_007222180.2 | 544 | 5.83 | 59 937.30 | 30.32 |
Pp4CL2 | XM_007215457.2 | 551 | 5.84 | 59 981.39 | 37.07 |
Pp4CL3 | XM_020570163.1 | 567 | 8.9 | 62 153.90 | 41.82 |
Pp4CL4 | XM_020567696.1 | 572 | 6.32 | 62 409.91 | 38.71 |
Pp4CL5 | XM_007219446.2 | 457 | 5.56 | 49 467.21 | 31.17 |
Pp4CL6 | XM_007225695.2 | 548 | 6.06 | 59 512.92 | 36.62 |
Pp4CL7 | XM_007203554.2 | 543 | 8.44 | 59 630.94 | 41.21 |
Pp4CL8 | XM_007208395.2 | 542 | 8.63 | 59 168.68 | 37.81 |
Pp4CL9 | XM_007222403.2 | 569 | 8.95 | 61 299.59 | 33.63 |
Pp4CL10 | XM_007209025.2 | 557 | 7.26 | 61 211.61 | 53.40 |
Pp4CL11 | XM_020569127.1 | 591 | 8.47 | 63 537.10 | 43.54 |
Pp4CL12 | XM_007219420.2 | 569 | 5.73 | 61 733.01 | 42.35 |
Pp4CL13 | XM_007209024.2 | 558 | 6.26 | 61 052.43 | 49.46 |
Pp4CL14 | XM_020566011.1 | 635 | 6.56 | 69 746.76 | 36.41 |
Pp4CL15 | XM_007221216.2 | 748 | 8.29 | 83 920.25 | 44.22 |
Pp4CL16 | XM_020554905.1 | 748 | 8.29 | 83 920.25 | 44.22 |
Pp4CL17 | XM_020554134.1 | 566 | 8.11 | 63 179.53 | 37.96 |
Pp4CL18 | XM_020561814.1 | 555 | 7.23 | 60 667.33 | 38.26 |
Pp4CL19 | XM_020564772.1 | 165 | 6.51 | 18 632.33 | 44.38 |
Pp4CL20 | XM_007200387.2 | 218 | 6.6 | 25 006.86 | 38.89 |
Pp4CL21 | XM_020570041.1 | 218 | 6.6 | 25 006.86 | 38.89 |
Table 2 Physical and chemical properties of 4CL gene family proteins in peach
基因名称 Gene name | 登录号 GenBank | 氨基酸数目 Amino acid | 等电点 Isoelectric point | 分子量 Molecular weight/u | 不稳定系数 Instability index |
---|---|---|---|---|---|
Pp4CL1 | XM_007222180.2 | 544 | 5.83 | 59 937.30 | 30.32 |
Pp4CL2 | XM_007215457.2 | 551 | 5.84 | 59 981.39 | 37.07 |
Pp4CL3 | XM_020570163.1 | 567 | 8.9 | 62 153.90 | 41.82 |
Pp4CL4 | XM_020567696.1 | 572 | 6.32 | 62 409.91 | 38.71 |
Pp4CL5 | XM_007219446.2 | 457 | 5.56 | 49 467.21 | 31.17 |
Pp4CL6 | XM_007225695.2 | 548 | 6.06 | 59 512.92 | 36.62 |
Pp4CL7 | XM_007203554.2 | 543 | 8.44 | 59 630.94 | 41.21 |
Pp4CL8 | XM_007208395.2 | 542 | 8.63 | 59 168.68 | 37.81 |
Pp4CL9 | XM_007222403.2 | 569 | 8.95 | 61 299.59 | 33.63 |
Pp4CL10 | XM_007209025.2 | 557 | 7.26 | 61 211.61 | 53.40 |
Pp4CL11 | XM_020569127.1 | 591 | 8.47 | 63 537.10 | 43.54 |
Pp4CL12 | XM_007219420.2 | 569 | 5.73 | 61 733.01 | 42.35 |
Pp4CL13 | XM_007209024.2 | 558 | 6.26 | 61 052.43 | 49.46 |
Pp4CL14 | XM_020566011.1 | 635 | 6.56 | 69 746.76 | 36.41 |
Pp4CL15 | XM_007221216.2 | 748 | 8.29 | 83 920.25 | 44.22 |
Pp4CL16 | XM_020554905.1 | 748 | 8.29 | 83 920.25 | 44.22 |
Pp4CL17 | XM_020554134.1 | 566 | 8.11 | 63 179.53 | 37.96 |
Pp4CL18 | XM_020561814.1 | 555 | 7.23 | 60 667.33 | 38.26 |
Pp4CL19 | XM_020564772.1 | 165 | 6.51 | 18 632.33 | 44.38 |
Pp4CL20 | XM_007200387.2 | 218 | 6.6 | 25 006.86 | 38.89 |
Pp4CL21 | XM_020570041.1 | 218 | 6.6 | 25 006.86 | 38.89 |
[1] | LAVHALE S G, KALUNKE R M, GIRI A P. Structural, functional and evolutionary diversity of 4-coumarate-CoA ligase in plants[J]. Planta, 2018, 248(5): 1063-1078. |
[2] | SCHNEIDER K, HÖVEL K, WITZEL K, et al. The substrate specificity-determining amino acid code of 4-coumarate: CoA ligase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8601-8606. |
[3] | LOZOYA E, HOFFMANN H, DOUGLAS C, et al. Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate: CoA ligase genes in parsley[J]. European Journal of Biochemistry, 1988, 176(3): 661-667. |
[4] | DOUGLAS C, HOFFMANN H, SCHULZ W, et al. Structure and elicitor or UV-light-stimulated expression of two 4-coumarate: CoA ligase genes in parsley[J]. The EMBO Journal, 1987, 6(5): 1189-1195. |
[5] | LI Y, KIM J I, PYSH L, et al. Four isoforms of Arabidopsis 4-coumarate: CoA ligase have overlapping yet distinct roles in phenylpropanoid metabolism[J]. Plant Physiology, 2015, 169(4): 2409-2421 |
[6] | WANG Y Y, GUO L H, ZHAO Y J, et al. Systematic analysis and expression profiles of the 4-coumarate: CoA ligase (4CL) gene family in pomegranate (Punica granatum L.)[J]. International Journal of Molecular Sciences, 2022, 23(7): 3509. |
[7] | XU B, ESCAMILLA-TREVIÑO L L, SATHITSUKSANOH N, et al. Silencing of 4-coumarate: coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production[J]. The New Phytologist, 2011, 192(3): 611-625. |
[8] | FARCUH M, TAJIMA H, LERNO L A, et al. Changes in ethylene and sugar metabolism regulate flavonoid composition in climacteric and non-climacteric plums during postharvest storage[J]. Food Chemistry Molecular Sciences, 2022, 4: 100075. |
[9] | WANG B, SUN W, LI Q S, et al. Genome-wide identification of phenolic acid biosynthetic genes in Salvia miltiorrhiza[J]. Planta, 2015, 241(3): 711-725. |
[10] | VOELKER S L, LACHENBRUCH B, MEINZER F C, et al. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar[J]. Plant Physiology, 2010, 154(2): 874-886. |
[11] | WANG H Z, XUE Y X, CHEN Y J, et al. Lignin modification improves the biofuel production potential in transgenic Populus tomentosa[J]. Industrial Crops and Products, 2012, 37(1): 170-177. |
[12] | SHI R, SUN Y H, LI Q Z, et al. Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes[J]. Plant and Cell Physiology, 2010, 51(1): 144-163. |
[13] | 杨克彬, 单雪萌, 史晶晶, 等. 毛竹4-香豆酸辅酶A连接酶基因家族鉴定及表达分析[J]. 核农学报, 2021, 35(1): 72-82. |
YANG K B, SHAN X M, SHI J J, et al. Identification and expression analysis of 4CL gene family in Phyllostachys edulis[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(1): 72-82. (in Chinese with English abstract) | |
[14] | 曹运鹏, 方志, 李姝妹, 等. 砀山酥梨4CL基因家族的全基因组鉴定与分析[J]. 遗传, 2015, 37(7): 711-719. |
CAO Y P, FANG Z, LI S M, et al. Genome-wide identification and analyses of 4CL gene families in Pyrus bretschneideri Rehd[J]. Hereditas, 2015, 37(7): 711-719. (in Chinese with English abstract) | |
[15] | WANG K, YIN X R, ZHANG B, et al. Transcriptomic and metabolic analyses provide new insights into chilling injury in peach fruit[J]. Plant, Cell & Environment, 2017, 40(8): 1531-1551. |
[16] | XU Q, YIN X R, ZENG J K, et al. Activator-and repressor-type MYB transcription factors are involved in chilling injury induced flesh lignification in loquat via their interactions with the phenylpropanoid pathway[J]. Journal of Experimental Botany, 2014, 65(15): 4349-4359. |
[17] | LUO Z S, XU X L, YAN B F. Accumulation of lignin and involvement of enzymes in bamboo shoot during storage[J]. European Food Research and Technology, 2008, 226(4): 635-640. |
[18] | 周慧娟, 苏明申, 叶正文, 等. 桃果实采后生理生化及冷害研究进展[J]. 果树学报, 2017, 34(9): 1204-1212. |
ZHOU H J, SU M S, YE Z W, et al. Advances in the research into physiological and biochemical characteristics and chilling injury of peach fruits after harvest[J]. Journal of Fruit Science, 2017, 34(9): 1204-1212. (in Chinese with English abstract) | |
[19] | CHEN Z Z, CHEN Y C, CHOU Y H, et al. cDNA cloning and molecular characterization of 4-coumarate:coenzyme A ligase in Eucalyptus camaldulensis[J]. Taiwan Journal of Forest Science, 2006, 21(1): 87-100. |
[20] | NEGISHI N, NANTO K, HAYASHI K, et al. Transcript abundances of LIM transcription factor, 4CL, CAld5H and CesAs affect wood properties in Eucalyptus globulus[J]. Silvae Genetica, 2011, 60: 288-296. |
[21] | BRANDI F, BAR E, MOURGUES F, et al. Study of ‘Redhaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism[J]. BMC Plant Biology, 2011, 11: 24. |
[22] | FALCHI R, VENDRAMIN E, ZANON L, et al. Three distinct mutational mechanisms acting on a single gene underpin the origin of yellow flesh in peach[J]. The Plant Journal, 2013, 76(2): 175-187. |
[23] | JIAO Y, MA R, SHEN Z, et al. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica(L.) Batsch) cultivars during fruit development[J]. Journal of Zhejiang University. Science. B, 2014, 15(9): 809-819. |
[24] | YAN J A, CAI Z X, SHEN Z J, et al. Proanthocyanidin monomers and cyanidin 3-O-glucoside accumulation in blood-flesh peach (Prunus persica (L.) Batsch) fruit[J]. Archives of Biological Sciences, 2017, 69(4): 611-617. |
[25] | 赵秀林, 臧程, 田义超, 等. 桃果实中花青素的研究进展[J]. 安徽农业科学, 2012, 40(10): 5735-5736, 5750. |
ZHAO X L, ZANG C, TIAN Y C, et al. Research progress of anthocyanin in peach fruit[J]. Journal of Anhui Agricultural Sciences, 2012, 40(10): 5735-5736, 5750. (in Chinese with English abstract) | |
[26] | YING H, SHI J, ZHANG S S, et al. Transcriptomic and metabolomic profiling provide novel insights into fruit development and flesh coloration in Prunus mira Koehne, a special wild peach species[J]. BMC Plant Biology, 2019, 19(1): 463. |
[27] | CAO K, DING T Y, MAO D M, et al. Transcriptome analysis reveals novel genes involved in anthocyanin biosynthesis in the flesh of peach[J]. Plant Physiology and Biochemistry, 2018, 123: 94-102. |
[28] | SHEN Z J, CONFOLENT C, LAMBERT P, et al. Characterization and genetic mapping of a new blood-flesh trait controlled by the single dominant locus DBF in peach[J]. Tree Genetics & Genomes, 2013, 9(6): 1435-1446. |
[29] | 王震光, 余义和, 郭大龙. 活性氧调控果实发育成熟的研究进展[J]. 浙江农业学报, 2020, 32(11): 2103-2110. |
WANG Z G, YU Y H, GUO D L. Advances in ROS promoting fruit development and ripening[J]. Acta Agriculturae Zhejiangensis, 2020, 32(11): 2103-2110. (in Chinese with English abstract) | |
[30] | YU J, CANG J, LU Q W, et al. ABA enhanced cold tolerance of wheat ‘dn1’ via increasing ROS scavenging system[J]. Plant Signaling & Behavior, 2020, 15(8): 1780403. |
[31] | ALI KHAN R, KHAN M R, SAHREEN S, et al. Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens[J]. Chemistry Central Journal, 2012, 6(1): 43. |
[32] | 李煦, 白雪晴, 刘长霞, 等. 天然花青素的抗氧化机制及功能活性研究进展[J]. 食品安全质量检测学报, 2021, 12(20): 8163-8171. |
LI X, BAI X Q, LIU C X, et al. Research progress on antioxidant mechanism and functional activity of natural anthocyanin[J]. Journal of Food Safety & Quality, 2021, 12(20): 8163-8171. (in Chinese with English abstract) | |
[33] | SUN H Y, LI Y, FENG S Q, et al. Analysis of five rice 4-coumarate: coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice[J]. Biochemical and Biophysical Research Communications, 2013, 430(3): 1151-1156. |
[34] | SUN S C, XIONG X P, ZHANG X L, et al. Correction to: characterization of the Gh4CL gene family reveals a role of Gh4CL7 in drought tolerance[J]. BMC Plant Biology, 2021, 21(1): 65. |
[35] | ZHANG C H, MA T, LUO W C, et al. Identification of 4CL genes in desert poplars and their changes in expression in response to salt stress[J]. Genes, 2015, 6(3): 901-917. |
[36] | JIN P, SUN C C, ZHENG Y H, et al. Effects of methyl jasmonate in combination with low temperature conditioning on chilling injury and active oxygen metabolism in loquat fruits[J]. Acta Horticulturae Sinica, 2012, 39(3): 461-468. |
[37] | 李永晖, 李捷, 冯丽丹, 等. 不同植物免疫诱抗剂对枸杞鲜果产量、抗病性和贮藏能力的差异比较[J]. 浙江农业学报, 2023, 35(1): 164-174. |
LI Y H, LI J, FENG L D, et al. Comparison of fruit yield, disease resistance and storage ability of Lycium bararum sprayed with different plant immune inducers[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 164-174. (in Chinese with English abstract) | |
[38] | CHEN M S, GUO H M, CHEN S Q, et al. Methyl jasmonate promotes phospholipid remodeling and jasmonic acid signaling to alleviate chilling injury in peach fruit[J]. Journal of Agricultural and Food Chemistry, 2019, 67(35): 9958-9966. |
[1] | ZHANG Xiaobin, ZHU Yihang, ZHAO Yiying, CHEN Miaojin, SUN Qinan, XIE Baoliang, FENG Shaoran, GU Qing. Optimization of nondestructive testing method for soluble solid content of peach based on visible/near infrared spectroscopy [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1617-1625. |
[2] | WU Jiao, GONG Chengyu, CHEN Chaoqun, CHEN Hongxu, LIU Junhong, TANG Wenjing, CHU Yuanqi, YANG Wenlong, ZHANG Yao, GONG Ronggao. Ecological response of organic acid metabolism of Huangguogan fruits at different altitudes [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 853-861. |
[3] | LI Hongyi, ZHOU Runsheng, LIANG Xiaoling, ZHANG Chuyue, LYU Qixin, YANG Changhua, ZHANG Mao. Effect of dietary calcium and phosphorus level on Magang geese growth performance and liver gene expression [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2533-2542. |
[4] | LIN Xianyu, LI Ziqian, BAI Song, LUO Jun, QU Yan. Changes of antioxidant enzyme activity and differential expression of key genes in Camellia reticulata during drought-rehydration process [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2611-2620. |
[5] | SUN Fengting, XU Zhenlan, ZHU Zuoyi, ZHANG Chunrong, TANG Tao, ZHAO Xueping, SHENG Qing, WANG Qiang. Determination of flavonoids in Dendrobium officinale Kimura et Migo and study on its bioavailability [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2710-2719. |
[6] | LIU Guige, QIAO Yongjin, CHEN Bingjie, WANG Xiao, ZHANG Yi, ZHONG Yaoguang. Effect of drying methods on quality of yellow peach powder [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2456-2464. |
[7] | XIONG Xingwei, WANG Yiqin, TIAN Huaizhi, ZHANG Suqin, GENG Guangdong. Molecular mechanisms of chlorophyll-reduced cotyledon based on transcriptome sequencing in pumpkin [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 90-102. |
[8] | YAN Mei, YAO Yandong, MOU Kaiping, DAN Yuanyuan, LI Weitai, LIAO Weibiao. Involvement of abscisic acid in hydrogen gas-enhanced drought resistance by improving antioxidant enzyme activity and gene expression in tomato seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1901-1910. |
[9] | GU Xianbin, LU Linghong, SONG Genhua, XIAO Jinping, ZHANG Huiqin. Regulation effect of melatonin pretreatment on waterlogging tolerance in peach seedling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1911-1924. |
[10] | DONG Yuanyuan, XU Heng, ZHANG Hua, ZHANG Heng, WANG Fulin, GU Nana, ZHU Ying. Dynamic profile of genes related to seed dormancy under high humidity condition during late stage of rice grain filling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1103-1113. |
[11] | YU Yanling, LUO Honglin, LUO Hui, FENG Pengfei, PAN Chuanyan, SONG Manling, XIAO Rui, ZHANG Yongde. Genome-wide identification and expression of MRF gene family in embryonic development of Trachinotus ovatus [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 695-705. |
[12] | LIU Tongjin, XU Mingjie, WANG Jinglei, LIU Liangfeng, CUI Qunxiang, BAO Chonglai, WANG Changyi. Genome-wide identification and expression analysis of ALMT gene family in radish [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 746-755. |
[13] | FAN Youcun, ZHANG Hongyan, YANG Xusheng, HAN Qian, LIU Yujiao, WU Xuexia. Cloning, bioinformatics analysis and gene expression pattern of VfHKT1; 1 in Vicia faba L. [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 756-765. |
[14] | LI Xiaolan, ZHANG Rui, HAO Lanlan, WANG Hong. Bioinformatics analysis of peach NAC gene family and its expression characteristics in response to low temperature stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 766-780. |
[15] | WANG Qiankun, ZHANG Xiaohui, PANG Youzhi, QI Yanxia, LEI Ying, BAI Junyan, HU Yunqi, ZHAO Yiwei, YUAN Zhiwen, WANG Tao. Screening of genes related to auto-sexing on feather color based on RNA-seq technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 498-506. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||