Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (11): 2611-2620.DOI: 10.3969/j.issn.1004-1524.20221626
• Horticultural Science • Previous Articles Next Articles
LIN Xianyu1(), LI Ziqian1, BAI Song1, LUO Jun1, QU Yan1,2,*(
)
Received:
2022-12-16
Online:
2023-11-25
Published:
2023-12-04
CLC Number:
LIN Xianyu, LI Ziqian, BAI Song, LUO Jun, QU Yan. Changes of antioxidant enzyme activity and differential expression of key genes in Camellia reticulata during drought-rehydration process[J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2611-2620.
Fig.1 Changes of POD and SOD activity in Camellia reticulata leaves The capital letters on the bars indicate significant differences at the 0.05 level among different treatment groups at the same time point (P<0.05). The lowercase letters on the bars indicate significant differences at the 0.05 level at different time points in the same treatment group (P<0.05). The same as below.
基因ID及编号 Gene ID and number | 相关性 Correlation | 基因ID及编号 Gene ID and number | 相关性 Correlation |
---|---|---|---|
Cluster-23907.121858 CrPOD1 | -0.714** | Cluster-23907.193947 CrPOD27 | -0.778** |
Cluster-23907.205799 CrPOD2 | -0.834** | Cluster-23907.191538 CrPOD28 | 0.850** |
Cluster-23907.131313 CrPOD3 | -0.705* | Cluster-23907.186821 CrPOD29 | 0.816** |
Cluster-23907.133854 CrPOD4 | -0.799** | Cluster-23907.130118 CrPOD30 | 0.676* |
Cluster-23907.133898 CrPOD5 | -0.800** | Cluster-23907.135693 CrPOD31 | 0.769** |
Cluster-23907.215532 CrPOD6 | -0.689* | Cluster-23907.226143 CrPOD32 | 0.605* |
Cluster-23907.216128 CrPOD7 | -0.629* | Cluster-23907.135700 CrPOD33 | 0.621* |
Cluster-23907.136199 CrPOD8 | -0.749** | Cluster-23907.229292 CrPOD34 | 0.843** |
Cluster-23907.136924 CrPOD9 | -0.839** | Cluster-23907.172436 CrPOD35 | 0.765** |
Cluster-23907.141902 CrPOD10 | -0.606* | Cluster-23907.247053 CrPOD36 | 0.639* |
Cluster-23907.144090 CrPOD11 | -0.687* | Cluster-23907.26403 CrPOD37 | 0.805** |
Cluster-23907.145111 CrPOD12 | -0.805** | Cluster-23907.177551 CrPOD38 | 0.746** |
Cluster-23907.149843 CrPOD13 | 0.686* | Cluster-23907.86700 CrPOD39 | 0.688* |
Cluster-23907.157313 CrPOD14 | -0.887** | Cluster-23907.89908 CrPOD40 | 0.675* |
Cluster-23907.159841 CrPOD15 | -0.683* | Cluster-23907.97564 CrPOD41 | 0.738** |
Cluster-23907.162853 CrPOD16 | -0.848** | Cluster-23907.185111 CrPOD42 | 0.626* |
Cluster-23907.169530 CrPOD17 | -0.814** | Cluster-23907.154253 CrSOD1 | -0.918** |
Cluster-23907.169635 CrPOD18 | -0.888** | Cluster-23907.154259 CrSOD2 | -0.631* |
Cluster-23907.169636 CrPOD19 | -0.686* | Cluster-23907.154756 CrSOD3 | -0.837** |
Cluster-23907.227562 CrPOD20 | -0.874** | Cluster-23907.156212 CrSOD4 | -0.762** |
Cluster-23907.233931 CrPOD21 | -0.768** | Cluster-23907.158564 CrSOD5 | -0.864** |
Cluster-23907.177905 CrPOD22 | -0.665* | Cluster-23907.170549 CrSOD6 | -0.847** |
Cluster-23907.179414 CrPOD23 | -0.785** | Cluster-23907.183528 CrSOD7 | -0.789** |
Cluster-23907.180565 CrPOD24 | -0.732** | Cluster-23907.187659 CrSOD8 | -0.843** |
Cluster-23907.183161 CrPOD25 | -0.695* | Cluster-23907.204201 CrSOD9 | -0.808** |
Cluster-23907.80759 CrPOD26 | -0.706* | Cluster-23907.210282 CrSOD10 | -0.742** |
Table 1 Correlation analysis of POD and SOD activity and their key genes expression
基因ID及编号 Gene ID and number | 相关性 Correlation | 基因ID及编号 Gene ID and number | 相关性 Correlation |
---|---|---|---|
Cluster-23907.121858 CrPOD1 | -0.714** | Cluster-23907.193947 CrPOD27 | -0.778** |
Cluster-23907.205799 CrPOD2 | -0.834** | Cluster-23907.191538 CrPOD28 | 0.850** |
Cluster-23907.131313 CrPOD3 | -0.705* | Cluster-23907.186821 CrPOD29 | 0.816** |
Cluster-23907.133854 CrPOD4 | -0.799** | Cluster-23907.130118 CrPOD30 | 0.676* |
Cluster-23907.133898 CrPOD5 | -0.800** | Cluster-23907.135693 CrPOD31 | 0.769** |
Cluster-23907.215532 CrPOD6 | -0.689* | Cluster-23907.226143 CrPOD32 | 0.605* |
Cluster-23907.216128 CrPOD7 | -0.629* | Cluster-23907.135700 CrPOD33 | 0.621* |
Cluster-23907.136199 CrPOD8 | -0.749** | Cluster-23907.229292 CrPOD34 | 0.843** |
Cluster-23907.136924 CrPOD9 | -0.839** | Cluster-23907.172436 CrPOD35 | 0.765** |
Cluster-23907.141902 CrPOD10 | -0.606* | Cluster-23907.247053 CrPOD36 | 0.639* |
Cluster-23907.144090 CrPOD11 | -0.687* | Cluster-23907.26403 CrPOD37 | 0.805** |
Cluster-23907.145111 CrPOD12 | -0.805** | Cluster-23907.177551 CrPOD38 | 0.746** |
Cluster-23907.149843 CrPOD13 | 0.686* | Cluster-23907.86700 CrPOD39 | 0.688* |
Cluster-23907.157313 CrPOD14 | -0.887** | Cluster-23907.89908 CrPOD40 | 0.675* |
Cluster-23907.159841 CrPOD15 | -0.683* | Cluster-23907.97564 CrPOD41 | 0.738** |
Cluster-23907.162853 CrPOD16 | -0.848** | Cluster-23907.185111 CrPOD42 | 0.626* |
Cluster-23907.169530 CrPOD17 | -0.814** | Cluster-23907.154253 CrSOD1 | -0.918** |
Cluster-23907.169635 CrPOD18 | -0.888** | Cluster-23907.154259 CrSOD2 | -0.631* |
Cluster-23907.169636 CrPOD19 | -0.686* | Cluster-23907.154756 CrSOD3 | -0.837** |
Cluster-23907.227562 CrPOD20 | -0.874** | Cluster-23907.156212 CrSOD4 | -0.762** |
Cluster-23907.233931 CrPOD21 | -0.768** | Cluster-23907.158564 CrSOD5 | -0.864** |
Cluster-23907.177905 CrPOD22 | -0.665* | Cluster-23907.170549 CrSOD6 | -0.847** |
Cluster-23907.179414 CrPOD23 | -0.785** | Cluster-23907.183528 CrSOD7 | -0.789** |
Cluster-23907.180565 CrPOD24 | -0.732** | Cluster-23907.187659 CrSOD8 | -0.843** |
Cluster-23907.183161 CrPOD25 | -0.695* | Cluster-23907.204201 CrSOD9 | -0.808** |
Cluster-23907.80759 CrPOD26 | -0.706* | Cluster-23907.210282 CrSOD10 | -0.742** |
基因ID Gene ID | 引物序列 Primer sequence(5'-3') |
---|---|
Cluster-23907.105087 | F:GGTGAGAAGCGACCAATGGA |
R:TGGGTGGCTTGTGTTCCATT | |
Cluster-23907.21994 | F:CGGGAAGCTGAGATGGAAGG |
R:ATCAAATCCCCGACGTTGGT | |
Cluster-23907.22854 | F:TCTCCTTGGTGTAGCTCCGA |
R:ACATTCATTCCGCCTCAGCA | |
Cluster-23907.128010 | F:GCTTGAACGAGCCTTTCACC |
R:TCACGAAGTTTGCGGAGGAA | |
Cluster-23907.131185 | F:CCATCAACTCTGGCGTCACT |
R:TTCAGAGCCTTGCCGAGAAG | |
Cluster-23907.35810 | F:CGTTCTCTCCGTTGCCTTCT |
R:CTCCGAGAGTGTTCCAGAGC | |
Cluster-23907.43736 | F:GCCGGAGTTTCCTTTGAGGA |
R:AGAGAACCAGCTTCGTTGGG | |
Cluster-23907.45879 | F:TGGCGTGGAAGTTCATCCTC |
R:ACCGAATTTCTCCTGCCCTG | |
Cluster-23907.42603 | F:GGGAACAATGAGGGCTCACA |
R:GAGGTGCCAGAGGATGATGG |
Table 2 qRT-PCR primer sequences
基因ID Gene ID | 引物序列 Primer sequence(5'-3') |
---|---|
Cluster-23907.105087 | F:GGTGAGAAGCGACCAATGGA |
R:TGGGTGGCTTGTGTTCCATT | |
Cluster-23907.21994 | F:CGGGAAGCTGAGATGGAAGG |
R:ATCAAATCCCCGACGTTGGT | |
Cluster-23907.22854 | F:TCTCCTTGGTGTAGCTCCGA |
R:ACATTCATTCCGCCTCAGCA | |
Cluster-23907.128010 | F:GCTTGAACGAGCCTTTCACC |
R:TCACGAAGTTTGCGGAGGAA | |
Cluster-23907.131185 | F:CCATCAACTCTGGCGTCACT |
R:TTCAGAGCCTTGCCGAGAAG | |
Cluster-23907.35810 | F:CGTTCTCTCCGTTGCCTTCT |
R:CTCCGAGAGTGTTCCAGAGC | |
Cluster-23907.43736 | F:GCCGGAGTTTCCTTTGAGGA |
R:AGAGAACCAGCTTCGTTGGG | |
Cluster-23907.45879 | F:TGGCGTGGAAGTTCATCCTC |
R:ACCGAATTTCTCCTGCCCTG | |
Cluster-23907.42603 | F:GGGAACAATGAGGGCTCACA |
R:GAGGTGCCAGAGGATGATGG |
[1] | 金钱荣, 龚彩艳, 金鸿龚. 云南山茶的园林美学价值研究[J]. 内蒙古林业调查设计, 2010, 33(2): 3-4, 7. |
JIN Q R, GONG C Y, JIN H G. Study on the landscape aesthetic value of Camellia yunnanensis[J]. Inner Mongolia Forestry Investigation and Design, 2010, 33(2): 3-4, 7. (in Chinese) | |
[2] | 陈蕴. 云南山茶花栽培技术[J]. 中国园艺文摘, 2017, 33(6): 167-168. |
CHEN Y. Cultivation techniques of camellia in Yunnan[J]. Chinese Horticulture Abstracts, 2017, 33(6): 167-168. (in Chinese) | |
[3] | 杨桂英, 王兵益, 何瀚, 等. 从叶片解剖结构探讨云南山茶不同倍性的耐旱潜力[J]. 西南农业学报, 2015, 28(6): 2714-2719. |
YANG G Y, WANG B Y, HE H, et al. Drought resistance potential of different ploidy of Camellia reticulata from leaf anatomic traits view[J]. Southwest China Journal of Agricultural Sciences, 2015, 28(6): 2714-2719. (in Chinese with English abstract) | |
[4] | 赖金莉, 李欣欣, 薛磊, 等. 植物抗旱性研究进展[J]. 江苏农业科学, 2018, 46(17): 23-27. |
LAI J L, LI X X, XUE L, et al. Research progress on drought resistance of plants[J]. Jiangsu Agricultural Sciences, 2018, 46(17): 23-27. (in Chinese) | |
[5] | 姜宗庆, 李成忠, 余乐, 等. 干旱胁迫对薄壳山核桃叶片丙二醛含量和3种抗氧化酶活性的影响[J]. 上海农业学报, 2019, 35(1): 7-10. |
JIANG Z Q, LI C Z, YU L, et al. Effects of drought stress on MDA content and 3 antioxidant enzymes activities in leaves of Carya illinoensis[J]. Acta Agriculturae Shanghai, 2019, 35(1): 7-10. (in Chinese with English abstract) | |
[6] | 林宇丰, 李魏, 戴良英. 抗氧化酶在植物抗旱过程中的功能研究进展[J]. 作物研究, 2015, 29(3): 326-330. |
LIN Y F, LI W, DAI L Y. Research progress of antioxidant enzymes functioning in plant drought resistant process[J]. Crop Research, 2015, 29(3): 326-330. (in Chinese with English abstract) | |
[7] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. |
[8] | 赵世杰, 许长成, 邹琦, 等. 植物组织中丙二醛测定方法的改进[J]. 植物生理学通讯, 1994, 30(3): 207-210. |
ZHAO S J, XU C C, ZOU Q, et al. Improvement of determination method of malondialdehyde in plant tissues[J]. Plant Physiology Communications, 1994, 30(3): 207-210. (in Chinese) | |
[9] | 崔慧萍, 周薇, 郭长虹. 植物过氧化物酶体在活性氧信号网络中的作用[J]. 中国生物化学与分子生物学报, 2017, 33(3): 220-226. |
CUI H P, ZHOU W, GUO C H. The role of plant peroxisomes in ROS signalling network[J]. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(3): 220-226. (in Chinese with English abstract) | |
[10] | 连玲, 许惠滨, 何炜, 等. PEG模拟干旱胁迫对水稻抗氧化酶基因表达的影响[J]. 福建农业学报, 2019, 34(3): 255-263. |
LIAN L, XU H B, HE W, et al. Expression of antioxidant enzyme genes in rice under PEG-simulated drought-stress[J]. Fujian Journal of Agricultural Sciences, 2019, 34(3): 255-263. (in Chinese with English abstract) | |
[11] | 陈爱萍, 隋晓青, 王玉祥, 等. 干旱胁迫及复水对伊犁绢蒿幼苗生长及生理特性的影响[J]. 草地学报, 2020, 28(5): 1216-1225. |
CHEN A P, SUI X Q, WANG Y X, et al. Effects of drought and re-watering on growth and physiological characteristics of Seriphidium transiliense seedlings[J]. Acta Agrestia Sinica, 2020, 28(5): 1216-1225. (in Chinese with English abstract) | |
[12] | 崔婷茹, 于慧敏, 李会彬, 等. 干旱胁迫及复水对狼尾草幼苗生理特性的影响[J]. 草业科学, 2017, 34(4): 788-793. |
CUI T R, YU H M, LI H B, et al. Effect of drought stress and rewatering on physiological characteristics of Pennisetum alopecuroides seedlings[J]. Pratacultural Science, 2017, 34(4): 788-793. (in Chinese with English abstract) | |
[13] | 孙继亮, 李六林, 陶书田, 等. 干旱胁迫和复水对梨幼树生理特性的影响[J]. 应用与环境生物学报, 2012, 18(2): 218-223. |
SUN J L, LI L L, TAO S T, et al. Effects of drought stress and rewatering on physiological characteristics of pear seedling[J]. Chinese Journal of Applied and Environmental Biology, 2012, 18(2): 218-223. (in Chinese with English abstract) | |
[14] | 弓萌萌, 张瑞禹, 刘洋, 等. 干旱胁迫对红树莓幼苗生长及根系酶活性变化的影响[J]. 经济林研究, 2022, 40(2): 232-240. |
GONG M M, ZHANG R Y, LIU Y, et al. Effects of drought stress on growth and root antioxidant enzymes activities in red raspberry seedlings[J]. Non-Wood Forest Research, 2022, 40(2): 232-240. (in Chinese with English abstract) | |
[15] | 安钰, 张清云, 李生兵, 等. 干旱胁迫及复水对甘草叶片抗氧化酶活性和光合特性的影响[J]. 宁夏农林科技, 2021, 62(7): 1-5. |
AN Y, ZHANG Q Y, LI S B, et al. Effects of drought stress and rehydration on antioxidant enzyme activity and photosynthetic characteristic of Glycyrrhiza uralensis fisch[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2021, 62(7): 1-5. (in Chinese with English abstract) | |
[16] | 赵英, 吴敏, 邓平, 等. 干旱与复水对2种蟛蜞菊生长及生理生化特性的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(4): 113-122. |
ZHAO Y, WU M, DENG P, et al. Effects of drought and rewatering on growth and physiology characteristics of Wedelia chinensis and Wedelia trilobata[J]. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(4): 113-122. (in Chinese with English abstract) | |
[17] | 何凤, 吕庚鑫, 孟益德, 等. 干旱胁迫及复水对杜仲苗激素含量的影响[J]. 植物生理学报, 2021, 57(12): 2279-2290. |
HE F, LYU G X, MENG Y D, et al. Effects of drought stress and rehydration on hormone contents of Eucommia ulmoides seedling[J]. Plant Physiology Journal, 2021, 57(12): 2279-2290. (in Chinese with English abstract) | |
[18] | XU L X, HAN L B, HUANG B R. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science, 2011, 136(4): 247-255. |
[19] | 曾令霜, 李培英, 孙宗玖, 等. 两类新疆狗牙根抗旱基因型抗氧化酶保护系统及其基因表达差异分析[J]. 草业学报, 2022, 31(7): 122-132. |
ZENG L S, LI P Y, SUN Z J, et al. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance[J]. Acta Prataculturae Sinica, 2022, 31(7): 122-132. (in Chinese with English abstract) | |
[20] | 高娅楠, 韩烈保, 许立新. 乙烯利对干旱胁迫下草地早熟禾抗氧化酶基因表达的影响[J]. 草地学报, 2021, 29(10): 2200-2213. |
GAO Y N, HAN L B, XU L X. Effects of ethephon on the antioxidant enzyme genes expression of Poa pratensis under drought stress[J]. Acta Agrestia Sinica, 2021, 29(10): 2200-2213. (in Chinese with English abstract) | |
[21] | 陈果, 曲衍杰, 任桓质, 等. VpSBP3基因负向调控转基因拟南芥盐胁迫抗性[J]. 青岛农业大学学报(自然科学版), 2021, 38(1): 7-14. |
CHEN G, QU Y J, REN H Z, et al. VpSBP3 gene negatively regulates salt stress resistance in transgenic Arabidopsis thaliana[J]. Journal of Qingdao Agricultural University (Natural Science), 2021, 38(1): 7-14. (in Chinese with English abstract) | |
[22] | 尚军, 吴旺泽, 马永贵. 植物苯丙烷代谢途径[J]. 中国生物化学与分子生物学报, 2022, 38(11): 1467-1476. |
SHANG J, WU W Z, MA Y G. Phenylpropanoid metabolism pathway in plants[J]. Chinese Journal of Biochemistry and Molecular Biology, 2022, 38(11): 1467-1476. (in Chinese with English abstract) | |
[23] | DIZHBITE T, TELYSHEVA G, JURKJANE V, et al. Characterization of the radical scavenging activity of lignins: natural antioxidants[J]. Bioresource Technology, 2004, 95(3): 309-317. |
[1] | WU Jiao, GONG Chengyu, CHEN Chaoqun, CHEN Hongxu, LIU Junhong, TANG Wenjing, CHU Yuanqi, YANG Wenlong, ZHANG Yao, GONG Ronggao. Ecological response of organic acid metabolism of Huangguogan fruits at different altitudes [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 853-861. |
[2] | LI Hongyi, ZHOU Runsheng, LIANG Xiaoling, ZHANG Chuyue, LYU Qixin, YANG Changhua, ZHANG Mao. Effect of dietary calcium and phosphorus level on Magang geese growth performance and liver gene expression [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2533-2542. |
[3] | KONG Fanwang, ZHANG Zhigang, LI Wei, CHEN Yufeng, WANG Changjiang, ZHENG Yaqin, XU Meng. Identification of 4CL gene family in peach and its expression analysis in fruit coloration during development stage and chilling injury during post-harvest low temperature storage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2600-2610. |
[4] | FAN Liying, FAN Tingting, TONG Zongjun, LIANG Liyun, ZHAO Zhiyong, CHEN Hui, ZHOU Changyan, ZHAO Xiaoyan. Effects on accumulation of cadmium and antioxidant system of different Morchella spp. under cadmium stress [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2321-2331. |
[5] | WEI Xiya, LIANG Lamei, LIN Xinqi, QIN Zhongwei, LI Yingzhi. Effects of melatonin seed priming on growth and physiological characteristics of Capsicum annuum under drought stress [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2378-2388. |
[6] | FANG Mingya, YU Hongwei, WU Yaxian, HAN Wenyan, LI Xin, LIU Haihe. Effects of exogenous epigallocatechin gallate on resistance of melon seedlings to powdery mildew [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 138-145. |
[7] | XIONG Xingwei, WANG Yiqin, TIAN Huaizhi, ZHANG Suqin, GENG Guangdong. Molecular mechanisms of chlorophyll-reduced cotyledon based on transcriptome sequencing in pumpkin [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 90-102. |
[8] | YAN Mei, YAO Yandong, MOU Kaiping, DAN Yuanyuan, LI Weitai, LIAO Weibiao. Involvement of abscisic acid in hydrogen gas-enhanced drought resistance by improving antioxidant enzyme activity and gene expression in tomato seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1901-1910. |
[9] | DING Dongxia, LI Nenghui, LI Jing, TANG Chaonan, WANG Cheng, NIU Tianhang, YANG Yan, YANG Haitao, XIE Jianming. Effects of exogenous melatonin on chlorophyll fluorescence and antioxidant system of pepper (Capsicum annuum L.) under low temperature and low light stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1935-1944. |
[10] | DONG Yuanyuan, XU Heng, ZHANG Hua, ZHANG Heng, WANG Fulin, GU Nana, ZHU Ying. Dynamic profile of genes related to seed dormancy under high humidity condition during late stage of rice grain filling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1103-1113. |
[11] | LI Yuting, LI Sha, CAO Jie, LI Jiaoyang, ZHANG Liang, XU Xiaofeng. Effects of microplastics on growth and antioxidant system of ectomycorrhizal fungi [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1049-1060. |
[12] | YU Yanling, LUO Honglin, LUO Hui, FENG Pengfei, PAN Chuanyan, SONG Manling, XIAO Rui, ZHANG Yongde. Genome-wide identification and expression of MRF gene family in embryonic development of Trachinotus ovatus [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 695-705. |
[13] | LIU Tongjin, XU Mingjie, WANG Jinglei, LIU Liangfeng, CUI Qunxiang, BAO Chonglai, WANG Changyi. Genome-wide identification and expression analysis of ALMT gene family in radish [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 746-755. |
[14] | FAN Youcun, ZHANG Hongyan, YANG Xusheng, HAN Qian, LIU Yujiao, WU Xuexia. Cloning, bioinformatics analysis and gene expression pattern of VfHKT1; 1 in Vicia faba L. [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 756-765. |
[15] | WANG Qiankun, ZHANG Xiaohui, PANG Youzhi, QI Yanxia, LEI Ying, BAI Junyan, HU Yunqi, ZHAO Yiwei, YUAN Zhiwen, WANG Tao. Screening of genes related to auto-sexing on feather color based on RNA-seq technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 498-506. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 485
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 168
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||