Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (12): 2739-2747.DOI: 10.3969/j.issn.1004-1524.20231406
• Horticultural Science • Previous Articles Next Articles
MA Ling1(), ZHANG Zhenwu1, FANG Yingzi1, WU Huixin1, XING Chenghua1,2,*(
)
Received:
2023-12-15
Online:
2024-12-25
Published:
2024-12-27
CLC Number:
MA Ling, ZHANG Zhenwu, FANG Yingzi, WU Huixin, XING Chenghua. Effects of nitrogen reduction and biochar application on growth and development of Citurs reticulata Blanco cv. ‘Ponkan’ and soil properties[J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2739-2747.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20231406
处理 Treatment | pH | 总孔隙度 Total porosity/% | 有机质含量 Organic matter content/ (g·kg-1) | 碱解氮含量 Alkali-hydrolyzable nitrogen content/ (mg·kg-1) | 有效磷含量 Available phosphate content/ (mg·kg-1) | 速效钾含量 Avallable K content/ (mg·kg-1) |
---|---|---|---|---|---|---|
N100 | 4.88±0.23 b | 44.21±1.99 b | 10.29±0.51 b | 127.46±6.70 a | 37.18±2.55 b | 178.34±8.65 b |
N80 | 4.91±0.22 ab | 44.18±2.01 b | 10.26±0.51 b | 114.21±6.00 ab | 37.09±2.54 b | 176.52±8.56 b |
N60 | 4.93±0.26 ab | 44.16±1.98 ab | 10.23±0.51 b | 109.36±5.75 b | 37.21±2.49 b | 179.11±8.69 b |
N60+BC10 | 5.32±0.38 ab | 47.62±0.07 ab | 16.83±0.86 a | 116.38±6.12 ab | 58.76±17.58 ab | 208.39±10.12 a |
N60+BC20 | 5.46±0.30 ab | 47.86±0.04 ab | 17.94±0.88 a | 121.41±6.38 ab | 62.37±8.88 a | 217.93±10.61 a |
N60+BC30 | 5.67±0.31 a | 48.05±0.05 a | 18.31±0.90 a | 130.63±6.51 a | 71.87±6.88 a | 223.38±10.84 a |
Table 1 Effects of different treatments on the physiochemical properties of Ponkan soil
处理 Treatment | pH | 总孔隙度 Total porosity/% | 有机质含量 Organic matter content/ (g·kg-1) | 碱解氮含量 Alkali-hydrolyzable nitrogen content/ (mg·kg-1) | 有效磷含量 Available phosphate content/ (mg·kg-1) | 速效钾含量 Avallable K content/ (mg·kg-1) |
---|---|---|---|---|---|---|
N100 | 4.88±0.23 b | 44.21±1.99 b | 10.29±0.51 b | 127.46±6.70 a | 37.18±2.55 b | 178.34±8.65 b |
N80 | 4.91±0.22 ab | 44.18±2.01 b | 10.26±0.51 b | 114.21±6.00 ab | 37.09±2.54 b | 176.52±8.56 b |
N60 | 4.93±0.26 ab | 44.16±1.98 ab | 10.23±0.51 b | 109.36±5.75 b | 37.21±2.49 b | 179.11±8.69 b |
N60+BC10 | 5.32±0.38 ab | 47.62±0.07 ab | 16.83±0.86 a | 116.38±6.12 ab | 58.76±17.58 ab | 208.39±10.12 a |
N60+BC20 | 5.46±0.30 ab | 47.86±0.04 ab | 17.94±0.88 a | 121.41±6.38 ab | 62.37±8.88 a | 217.93±10.61 a |
N60+BC30 | 5.67±0.31 a | 48.05±0.05 a | 18.31±0.90 a | 130.63±6.51 a | 71.87±6.88 a | 223.38±10.84 a |
Fig.1 Effect of different treatments on soil enzyme activity N100, Conventional nitrogen application (0.910 kg N); N80, nitrogen reduction of 20% (0.728 kg N); N60, Nitrogen reduction of 40% (0.546 kg N); N60+BC10, Nitrogen reduction of 40%+biochar 10 g (0.546 kg N+10 g BC); N60+BC20, Nitrogen reduction of 40%+biochar 20 g (0.546 kg N+20 g BC); N60+BC30, Nitrogen reduction of 40%+biochar 30 g (0.546 kg N+30 g BC), the amount of fertilizer applied per plant. Data marked without the same lowercase letter in each column indicated significant differences at P<0.05. The same as below.
处理 Treatment | 总根长 Root length/cm | 根表面积 Root surface area/cm2 | 根总体积 Root volume/cm3 | 平均直径 Root diameter/mm | 单株根尖数 Root tip number per tree |
---|---|---|---|---|---|
N100 | 1 816.16±96.19 ab | 1 026.71±59.32 bc | 10.11±0.64 bc | 0.71±0.04 ab | 1 956.77±127.66 abc |
N80 | 1 698.52±86.57 ab | 908.59±51.24 cd | 9.06±0.60 c | 0.64±0.04 b | 1 821.34±97.90 bc |
N60 | 1 376.74±249.97 b | 798.58±76.54 d | 8.51±0.67 c | 0.61±0.08 b | 1 770.25±118.42 c |
N60+BC10 | 2 011.39±172.54 a | 1 123.17±67.18 ab | 11.71±0.59 ab | 0.69±0.07 ab | 2 135.66±120.03 ab |
N60+BC20 | 2 023.74±275.73 a | 1 218.23±81.25 a | 12.37±0.75 a | 0.82±0.09 a | 2 241.07±128.21 a |
N60+BC30 | 2 018.11±176.41 a | 1 213.15±77.77 ab | 12.26±0.74 a | 0.73±0.06 ab | 2 234.76±120.78 a |
Table 2 Morphological characteristics of the root system in the different treatments
处理 Treatment | 总根长 Root length/cm | 根表面积 Root surface area/cm2 | 根总体积 Root volume/cm3 | 平均直径 Root diameter/mm | 单株根尖数 Root tip number per tree |
---|---|---|---|---|---|
N100 | 1 816.16±96.19 ab | 1 026.71±59.32 bc | 10.11±0.64 bc | 0.71±0.04 ab | 1 956.77±127.66 abc |
N80 | 1 698.52±86.57 ab | 908.59±51.24 cd | 9.06±0.60 c | 0.64±0.04 b | 1 821.34±97.90 bc |
N60 | 1 376.74±249.97 b | 798.58±76.54 d | 8.51±0.67 c | 0.61±0.08 b | 1 770.25±118.42 c |
N60+BC10 | 2 011.39±172.54 a | 1 123.17±67.18 ab | 11.71±0.59 ab | 0.69±0.07 ab | 2 135.66±120.03 ab |
N60+BC20 | 2 023.74±275.73 a | 1 218.23±81.25 a | 12.37±0.75 a | 0.82±0.09 a | 2 241.07±128.21 a |
N60+BC30 | 2 018.11±176.41 a | 1 213.15±77.77 ab | 12.26±0.74 a | 0.73±0.06 ab | 2 234.76±120.78 a |
处理 Treatment | 可溶性固形物含量 Soluble solids content/% | 可滴定酸含量 Titratable acid content/% | 固酸比 Solid-acid ratio | 维生素C含量 Vitamin C content/ (mg·L-1) | 单果重 Single fruit weight/g |
---|---|---|---|---|---|
N100 | 10.21±0.26 ab | 0.46±0.03 ab | 22.23±1.10 a | 329.66±16.34 ab | 79.65±12.26 bc |
N80 | 10.03±0.29 ab | 0.48±0.07 ab | 21.12±2.34 ab | 321.09±15.92 ab | 62.47±11.69 bc |
N60 | 9.51±0.17 b | 0.53±0.02 a | 17.96±0.63 b | 313.37±15.54 b | 46.13±21.10 c |
N60+BC10 | 10.25±0.51 ab | 0.43±0.03 ab | 23.88±1.59 a | 339.74±16.84 a | 92.36±12.71 ab |
N60+BC20 | 10.39±0.12 a | 0.42±0.03 b | 24.79±1.39 a | 338.96±16.80 a | 103.25±5.26 a |
N60+BC30 | 10.31±0.21 a | 0.44±0.03 ab | 23.46±0.99 a | 337.48±16.73 a | 104.29±5.28 a |
Table 3 Effect of different treatments on the quality and single fruit weight of Ponkan fruit
处理 Treatment | 可溶性固形物含量 Soluble solids content/% | 可滴定酸含量 Titratable acid content/% | 固酸比 Solid-acid ratio | 维生素C含量 Vitamin C content/ (mg·L-1) | 单果重 Single fruit weight/g |
---|---|---|---|---|---|
N100 | 10.21±0.26 ab | 0.46±0.03 ab | 22.23±1.10 a | 329.66±16.34 ab | 79.65±12.26 bc |
N80 | 10.03±0.29 ab | 0.48±0.07 ab | 21.12±2.34 ab | 321.09±15.92 ab | 62.47±11.69 bc |
N60 | 9.51±0.17 b | 0.53±0.02 a | 17.96±0.63 b | 313.37±15.54 b | 46.13±21.10 c |
N60+BC10 | 10.25±0.51 ab | 0.43±0.03 ab | 23.88±1.59 a | 339.74±16.84 a | 92.36±12.71 ab |
N60+BC20 | 10.39±0.12 a | 0.42±0.03 b | 24.79±1.39 a | 338.96±16.80 a | 103.25±5.26 a |
N60+BC30 | 10.31±0.21 a | 0.44±0.03 ab | 23.46±0.99 a | 337.48±16.73 a | 104.29±5.28 a |
主成分 Principal component | 特征值 Eigenvalue | 方差贡献率 Variance contribution rate/% | 累计方差贡献率 Accumulated variance contribution rate/% |
---|---|---|---|
1 | 19.569 | 85.081 | 85.081 |
2 | 2.429 | 10.561 | 95.642 |
Table 4 Initial eigenvalues and contributions of principal components
主成分 Principal component | 特征值 Eigenvalue | 方差贡献率 Variance contribution rate/% | 累计方差贡献率 Accumulated variance contribution rate/% |
---|---|---|---|
1 | 19.569 | 85.081 | 85.081 |
2 | 2.429 | 10.561 | 95.642 |
主成分 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Principal component | ||||||||||||
1 | 0.203 | 0.224 | 0.212 | 0.141 | 0.208 | 0.210 | 0.209 | 0.135 | 0.217 | 0.219 | 0.222 | 0.213 |
2 | 0.272 | 0.002 | 0.213 | -0.400 | 0.246 | 0.232 | 0.209 | 0.463 | 0.167 | -0.099 | -0.047 | 0.172 |
F | 0.211 | 0.200 | 0.212 | 0.081 | 0.213 | 0.213 | 0.209 | 0.172 | 0.212 | 0.184 | 0.193 | 0.209 |
主成分 | X13 | X14 | X15 | X16 | X17 | X18 | X19 | X20 | X21 | X22 | X23 | |
Principal component | ||||||||||||
1 | 0.207 | 0.215 | 0.225 | 0.225 | 0.195 | 0.225 | 0.213 | 0.201 | -0.211 | 0.211 | 0.224 | |
2 | -0.248 | -0.138 | -0.054 | 0.024 | -0.165 | 0.036 | -0.171 | -0.263 | 0.175 | -0.179 | -0.069 | |
F | 0.157 | 0.176 | 0.194 | 0.203 | 0.155 | 0.204 | 0.171 | 0.149 | -0.169 | 0.168 | 0.192 |
Table 5 Principal component coefficient
主成分 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Principal component | ||||||||||||
1 | 0.203 | 0.224 | 0.212 | 0.141 | 0.208 | 0.210 | 0.209 | 0.135 | 0.217 | 0.219 | 0.222 | 0.213 |
2 | 0.272 | 0.002 | 0.213 | -0.400 | 0.246 | 0.232 | 0.209 | 0.463 | 0.167 | -0.099 | -0.047 | 0.172 |
F | 0.211 | 0.200 | 0.212 | 0.081 | 0.213 | 0.213 | 0.209 | 0.172 | 0.212 | 0.184 | 0.193 | 0.209 |
主成分 | X13 | X14 | X15 | X16 | X17 | X18 | X19 | X20 | X21 | X22 | X23 | |
Principal component | ||||||||||||
1 | 0.207 | 0.215 | 0.225 | 0.225 | 0.195 | 0.225 | 0.213 | 0.201 | -0.211 | 0.211 | 0.224 | |
2 | -0.248 | -0.138 | -0.054 | 0.024 | -0.165 | 0.036 | -0.171 | -0.263 | 0.175 | -0.179 | -0.069 | |
F | 0.157 | 0.176 | 0.194 | 0.203 | 0.155 | 0.204 | 0.171 | 0.149 | -0.169 | 0.168 | 0.192 |
处理 Treatment | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 综合得分 Composite score | 排名 Ranking |
---|---|---|---|---|
N100 | -1.267 | -2.664 | -1.359 | 4 |
N80 | -3.769 | -0.437 | -3.253 | 5 |
N60 | -6.117 | 1.721 | -5.023 | 6 |
N60+BC10 | 2.268 | 0.301 | 1.961 | 3 |
N60+BC20 | 4.424 | -0.243 | 3.738 | 2 |
N60+BC30 | 4.461 | 1.322 | 3.935 | 1 |
Table 6 Principal component scores and composite scores of different treatments
处理 Treatment | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 综合得分 Composite score | 排名 Ranking |
---|---|---|---|---|
N100 | -1.267 | -2.664 | -1.359 | 4 |
N80 | -3.769 | -0.437 | -3.253 | 5 |
N60 | -6.117 | 1.721 | -5.023 | 6 |
N60+BC10 | 2.268 | 0.301 | 1.961 | 3 |
N60+BC20 | 4.424 | -0.243 | 3.738 | 2 |
N60+BC30 | 4.461 | 1.322 | 3.935 | 1 |
[1] | 郑纯纯, 李俊. 中国对RCEP柑橘出口波动的成因研究:基于CMS模型的分析[J]. 中国果树, 2023(12):82-893. |
ZHENG C C, LI J. Study on the cause of the fluctuation of China’s citrus export to RCEP:analysis based on CMS mode[J]. China Fruits, 2023(12):82-89. (in Chinese with English abstract) | |
[2] | 邓秀新. 中国柑橘育种60年回顾与展望[J]. 园艺学报, 2022, 49(10):2063-2074. |
DENG X X. A review and perspective for Citrus breeding in China during the last six decades[J]. Acta Horticulturae Sinica, 2022, 49(10):2063-2074. (in Chinese) | |
[3] | 钟冰, 陈远喜. 施氮量对柑橘产量·品质·经济效益的影响[J]. 安徽农业科学, 2016, 44(36):74-76. |
ZHONG B, CHEN Y X. Effects of nitrogen application on yield, quality and economic performance of Citrus fruits[J]. Journal of Anhui Agricultural Sciences, 2016, 44(36):74-76. (in Chinese) | |
[4] | 李旭. 减氮施肥对柑橘树体氮素含量、果实品质产量和氮肥利用的影响[D]. 武汉: 华中农业大学, 2020. |
LI X. Effects of nitrogen reduction and fertilization on nitrogen content, fruit quality and yield and nitrogen utilization of citrus trees[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese with English abstract) | |
[5] | CHAGAS J K M, FIGUEIREDO C C, RAMOS M L G. Biochar increases soil carbon pools:evidence from a global meta-analysis[J]. Journal of Environmental Management, 2022, 305:114403. |
[6] | NAIR V D, NAIR P K R, DARI B, et al. Biochar in the agroecosystem-climate-change-sustainability nexus[J]. Frontiers in Plant Science, 2017, 8:2051. |
[7] | HAN J L, ZHANG A F, KANG Y H, et al. Biochar promotes soil organic carbon sequestration and reduces net global warming potential in apple orchard:a two-year study in the Loess Plateau of China[J]. The Science of the Total Environment, 2022, 803:150035. |
[8] | 孙海军, 吴思, 萧洪东, 等. 化肥氮素减施条件下生物炭施用对冬瓜产量和品质及土壤氮素淋失的影响[J]. 土壤通报, 2023, 54(3):673-681. |
SUN H J, WU S, XIAO H D, et al. Effect of biochar application on yield and quality of white gourd and soil nitrogen leaching with fertilizer nitrogen reduction[J]. Chinese Journal of Soil Science, 2023, 54 (03):673-681. (in Chinese with English abstract) | |
[9] | 李虎, 朱士江, 徐文, 等. 灌水量和生物炭施加量对柑橘品质及水分利用效率的影响[J]. 节水灌溉, 2023, 31(3):84-90. |
LI H, ZHU S J, XU W, et al. Effects of irrigation amount and biochar application on the quality and WUE of navel orange[J]. Water Saving Irrigation, 2023, 31(3):84-90. (in Chinese with English abstract) | |
[10] | 范龙. 生物炭施用对双季稻产量形成及氮素利用的影响[D]. 长沙: 湖南农业大学, 2018. |
FAN L. Effects of biochar application on yield formation and nitrogen utilization of double cropping rice[D]. Changsha: Hunan Agricultural University, 2018. (in Chinese with English abstract) | |
[11] | 史可. 重铬酸钾外加热法在施用生物炭土壤有机质含量测定中的应用改进[D]. 泰安: 山东农业大学, 2022. |
SHI K. Application improvement of potassium dichromate external heating method in determination of organic matter content in soil with biochar application[D]. Tai’an: Shandong Agricultural University, 2022. (in Chinese with English abstract) | |
[12] | 毛雪梅. 土壤中有效氮、磷、钾测定方法相关性研究[J]. 世界有色金属, 2020(4):160-161. |
MAO X M. Correlation study on determination methods of available nitrogen, phosphorus and potassium in soil[J]. World Nonferrous Metals, 2020(4):160-161. (in Chinese) | |
[13] | 郑坚, 陈秋夏, 金川, 等. 不同TTC法测定枫香等阔叶树容器苗根系活力探讨[J]. 浙江农业科学, 2008, 49(1):39-42. |
ZHENG J, CHEN Q X, JIN C, et al. Discussion on determination of root activity of container seedlings of broad-leaved trees such as Liquidambar formosana by different TTC methods[J]. Journal of Zhejiang Agricultural Sciences, 2008, 49(1):39-42. (in Chinese) | |
[14] | 温明霞, 王鹏, 吴韶辉, 等. 不同时期喷硒对‘本地早’柑橘养分吸收和果实品质的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1):29-35. |
WEN M X, WANG P, WU S H, et al. Effects of spraying selenium at different stages on nutrient absorption and fruit quality of ‘Bendizao’ citrus[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2022, 48(1):29-35. (in Chinese) | |
[15] | 徐聪, 张辉, 唐忠厚, 等. 减量氮肥配施有机肥及硝化抑制剂对土壤pH值、甘薯产量及构成的影响[J]. 江苏师范大学学报(自然科学版), 2021, 39 (2):26-30. |
XU C, ZHANG H, TANG Z H, et al. lmpacts of reduced nitrogen application combined with organic fertilizer and nitrification inhibitor on soil pH, sweetpotato tuber yield and its components[J]. Journal of Jiangsu Normal University (Natural Science Edition), 2021, 39 (2):26-30. (in Chinese with English abstract) | |
[16] | 李怡博, 翟春贺, 苏梦迪, 等. 微生物肥与高碳基肥配施对植烟土壤微生物数量和土壤肥力的影响[J]. 烟草科技, 2021, 54(4):23-32. |
LI Y B, ZHAI C H, SU M D, et al. Effects of combined application of microbial fertilizers and high-carbon base fertilizers on soil microbial population and fertility of tobacco growing soil[J]. Tobacco Science & Technology, 2021, 54(4):23-32. (in Chinese) | |
[17] | 高敬尧, 王宏燕, 许毛毛, 等. 生物炭施入对农田土壤及作物生长影响的研究进展[J]. 江苏农业科学, 2016, 44(10):10-15. |
GAO J Y, WANG H Y, XU M M, et al. Research progress on the effect of biochar application on farmland soil and crop growth[J]. Jiangsu Agricultural Sciences, 2016, 44(10):10-15. (in Chinese) | |
[18] | 周桂玉, 窦森, 刘世杰. 生物质炭结构性质及其对土壤有效养分和腐殖质组成的影响[J]. 农业环境科学学报, 2011, 30(10):2075-2080. |
ZHOU G Y, DOU S, LIU S J. The structural characteristics of biochar and its effects on soil available nutrients and humus composition[J]. Journal of Agro-Environment Science, 2011, 30(10):2075-2080. (in Chinese with English abstract) | |
[19] | 乔光, 田田, 洪怡, 等. 生物炭对玛瑙红樱桃生长、果实品质及土壤矿质元素的影响[J]. 江苏农业学报, 2017, 33(4):904-908. |
QIAO G, TIAN T, HONG Y, et al. Effects of biochar on growth and fruit quality of Prunus pseudocerasu Manaohong and mineral element contents in soil[J]. Jiangsu Journal of Agricultural Sciences, 2017, 33(4):904-908. (in Chinese with English abstract) | |
[20] | 陈瑞州, 李静, 范家慧, 等. 不同施肥配比对芒果园土壤养分、微生物数量和酶活性的影响[J]. 热带作物学报, 2018, 39(6):1055-1060. |
CHEN R Z, LI J, FAN J H, et al. Effects of different fertilizer ratio on soil nutrient, microbial quantity and enzyme activity in mango garden[J]. Chinese Journal of Tropical Crops, 2018, 39(6):1055-1060. (in Chinese with English abstract) | |
[21] | 周咏春, 郭思伯, 李丹阳, 等. 新鲜和老化生物炭对土壤氮淋失及油菜氮吸收的影响[J]. 环境科学研究, 2023, 36(3):581-589. |
ZHOU Y C, GUO S B, LI D Y, et al. Effects of fresh and aged biochar on soil nitrogen leaching and nitrogen uptake of rapeseed[J]. Research of Environmental Sciences, 2023, 36(3):581-589. (in Chinese with English abstract) | |
[22] | 李博文, 刘洋, 李宗霖, 等. 生物炭对土壤酶活性影响的机理研究进展[J]. 材料导报, 2022, 36(7):163-168. |
LI B W, LIU Y, LI Z L, et al. Research progress on the mechanism of biochar’s impact on soil enzyme[J]. Materials Review, 2022, 36(7):163-168. (in Chinese with English abstract) | |
[23] | 阮泽斌, 王兰鸽, 蓝王凯宁, 等. 氮肥减量配施生物炭对水稻氮素吸收和土壤理化性质的影响[J]. 浙江农业学报, 2023, 35(2):394-402. |
RUAN Z B, WANG L G, LAN W K N, et al. Effects of nitrogen reduction and biochar on nitrogen uptake by rice and soil physiochemical properties[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2):394-402. (in Chinese with English abstract) | |
[24] | 李喜凤, 杨小妮, 罗艳君, 等. 生物炭及有机肥对苹果园土壤有机碳组分及果树生长的影响[J]. 西北农业学报, 2017, 26(4):617-624. |
LI X F, YANG X N, LUO Y J, et al. Effect of combination of biochar and organic fertilizers on soil organic carbon fractions, growth and yield of apple orchard[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2017, 26(4):617-624. (in Chinese with English abstract) | |
[25] | 郭昌勋. 生物炭对枳幼苗生长和南丰蜜橘果实品质的影响[D]. 武汉: 华中农业大学, 2016. |
GUO C X. Effects of biochar on growth of Poncirus trifoliata seedlings and fruit quality of Nanfeng tangerine[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese with English abstract) | |
[26] | 秦亚旭, 王冲, 郑朝霞, 等. 生物炭基肥对苹果产量品质及土壤肥力的影响[J]. 北方园艺, 2020(18):18-24. |
QIN Y X, WANG C, ZHENG C X, et al. Effects of biochar-based fertilizer on yield and quality of apple and soil fertility[J]. Northern Horticulture, 2020(18):18-24. (in Chinese) | |
[27] | 刘国玲, 王宏伟, 蒋健, 等. 生物炭对郑单958生理生化指标及产量的影响[J]. 玉米科学, 2016, 24(4):105-109. |
LIU G L, WANG H W, JIANG J, et al. Effects of biochar on physiology and biochemistry & yield in Zhengdan958[J]. Journal of Maize Sciences, 2016, 24(4):105-109. (in Chinese with English abstract) | |
[28] | 王璞. 土壤中添加生物质炭对土壤及番茄生长指标影响的研究[D]. 太谷: 山西农业大学, 2015. |
WANG P. Effects of adding biomass charcoal to soil on growth indexes of soil and tomato[D]. Taigu: Shanxi Agricultural University, 2015. (in Chinese with English abstract) | |
[29] | 樊树雷, 李忠元, 徐沁怡, 等. 生物炭、EM菌有机肥和化肥混施对桃园土壤肥力、树体生长及果实品质的影响[J]. 中国土壤与肥料, 2022(11):77-82. |
FAN S L, LI Z Y, XU Q Y, et al. Effects of mixed application of biochar EM bacteria organic fertilizer and chemical fertilizer on soil fertility, tree growth and fruit quality in peach orchard[J]. Soil and Fertilizer Sciences in China, 2022(11):77-82. (in Chinese with English abstract) | |
[30] | 陈德秀, 王连春, 普应斌, 等. 有机肥和生物炭施用对猕猴桃果实品质的影响[J]. 北方园艺, 2022(2):18-26. |
CHEN D X, WANG L C, PU Y B, et al. Effects of organic fertilizer and biochar application on fruit quality of kiwifruit[J]. Northern Horticulture, 2022(2):18-26. (in Chinese with English abstract) | |
[31] | 聂萍, 袁希元, 赵方奎, 等. 生物炭基质对无土栽培草莓生长及果实品质的影响[J]. 安徽农学通报, 2020, 26(22):57-59. |
NIE P, YUAN X Y, ZHAO F K, et al. Effect of biochar substrate on growth and fruit quality of strawberry in soilless culture[J]. Anhui Agricultural Science Bulletin, 2020, 26(22):57-59. (in Chinese with English abstract) |
[1] | WU Jialong, CHI Ming, GAO Yan, WANG Xiang, SHEN Haiou. Effects of biochar application on soil physiochemical indicators at sloping farmland in black soil region [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2060-2069. |
[2] | SUN Li, ZHANG Shuwen, YU Zheping, ZHENG Xiliang, LIANG Senmiao, REN Haiying, QI Xingjiang. Effects of potassium humate on soil improvement, tree growth and fruiting of Chinese bayberry (Myrica rubra) [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1878-1886. |
[3] | FU Zhiqiang, LIU Zhen, MA Chunhua, WEN Mengling, XI Ruchun. Effects of biochar and biochar-based fertilizers on soil quality and plant growth [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1634-1645. |
[4] | ZHU Xuehui, XIE Hui, HAN Shouan, WANG Min, BAI Shijian, MA Yunlong, WANG Yanmeng, MAI Sile, PAN Mingqi, ZHANG Wen. Effect of two plant growth regulators on the fruit quality of ‘Centennial Seedless’ grapes [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1309-1319. |
[5] | YU Chao, WANG Yinyu, LIU Qizhen, WANG Yun, SHEN Hong, FENG Ying. Effects of application of biochar from different raw materials combined with inorganic amendments on cadmium accumulation in pakchoi shoots and soil cadmium inactivation [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 613-621. |
[6] | WANG Ying, WANG Jian, FENG Zishan, WANG Baogen, WU Xinyi, LU Zhongfu, SUN Yuyan, DONG Wenqi, LI Guojing, WU Xiaohua. Factor analysis and comprehensive evaluation of the fruit quality of bottle gourd (Lagenaria siceraria) [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 334-343. |
[7] | LUO Shasha, WANG Ruyue, ZHEN Ziyi, WU Jialong, XU Yeyong, Bahetiyaer KERIM, SUN Yali, HU Haifang. Effect of irrigation time and amount on cracking rate and quality of apricot plum fruit [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 365-372. |
[8] | WU Yuke, WANG Feng, WANG Yifan, WU Xueping, ZHU Weiqin. Parameters optimization for vermicomposting of cow dung and changes of properties of composting residues [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2308-2315. |
[9] | YUE Zongwei, LI Jiaxiao, SUN Xiangyang, LIU Guoliang, LI Suyan, WANG Chenchen, ZHA Guichao, WEI Ningxian. Effects of chemical fertilizer combined with organic fertilizer on soil properties, cherry fruit quality and yield [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2192-2201. |
[10] | HAN Jing, ZHU Yiting, ZHENG Chi, MA Lihong, ZHANG Yanan, ZENG Qiuyan, LIU Shuliang, CHEN Shujuan. Activation of soybean shell biochar and its adsorption performance for carbaryl [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2202-2211. |
[11] | XU Yang, REN Yilin, WANG Haojie, HUANG Qiuhang, XING Boyuan, CAO Hongliang. Comprehensive evaluation of rape straw biochar as slow-release carrier under different preparation conditions [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 893-902. |
[12] | RUAN Zebin, WANG Lange, LAN Wangkaining, XU Yan, CHEN Junhui, LIU Dan. Effects of nitrogen reduction and biochar on nitrogen uptake by rice and soil physiochemical properties [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 394-402. |
[13] | WANG Weiwei, MEI Yi, WU Yongcheng, WAN Hongjian, CHEN Changjun, ZHENG Qingsong, ZHENG Jiaqiu. Effects of corncob biochar application on soil characteristics and pepper growth under continuous cropping [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 156-163. |
[14] | ZHAO Yuhong, HE Wen, LI Gen, WANG Qiang, XIE Rui, WANG Yan, CHEN Qing, WANG Xiaorong. Fruit quality of Citrus maxima (Burm.) Merrill and its bud mutants varieties in Sichuan area [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 995-1004. |
[15] | CUI Wenfang, CHEN Jing, LU Fukuan, QIN Li, QIN Dezhi, WANG Liping, GAO Julin. Effects of biochar application combined with nitrogen reduction on yield and nitrogen use efficiency of maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 248-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||