Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (10): 2066-2076.DOI: 10.3969/j.issn.1004-1524.20240809
• Horticultural Science • Previous Articles Next Articles
XIONG Tao1(
), YAN Miao1, WU Ting1, MA Chao2, YANG Juntao1, HU Guozhi1,*(
)
Received:2024-09-18
Online:2025-10-25
Published:2025-11-13
CLC Number:
XIONG Tao, YAN Miao, WU Ting, MA Chao, YANG Juntao, HU Guozhi. Effects of potassium fulvic acid on soil microecology, root morphology in root zone of melon and fruit quality[J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2066-2076.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240809
| 处理 Treatment | 不同时期追施黄腐酸钾的用量Topdressing potassium fulvic acid quantity at different stages | ||||
|---|---|---|---|---|---|
| 幼苗期 Seedling stage | 伸蔓期 Vine extension stage | 开花期 Flowering stage | 果实膨大期 Fruit expansion stage | 成熟期 Maturity stage | |
| CK | 0 | 0 | 0 | 0 | 0 |
| KT1 | 3.750 | 5.625 | 9.375 | 9.375 | 9.375 |
| KT2 | 7.500 | 11.250 | 18.750 | 18.750 | 18.750 |
| KT3 | 11.250 | 16.875 | 28.125 | 28.125 | 28.125 |
| KT4 | 15.000 | 22.500 | 37.500 | 37.500 | 37.500 |
Table 1 Topdressing potassium fulvic acid quantity of different treatments kg·hm-2
| 处理 Treatment | 不同时期追施黄腐酸钾的用量Topdressing potassium fulvic acid quantity at different stages | ||||
|---|---|---|---|---|---|
| 幼苗期 Seedling stage | 伸蔓期 Vine extension stage | 开花期 Flowering stage | 果实膨大期 Fruit expansion stage | 成熟期 Maturity stage | |
| CK | 0 | 0 | 0 | 0 | 0 |
| KT1 | 3.750 | 5.625 | 9.375 | 9.375 | 9.375 |
| KT2 | 7.500 | 11.250 | 18.750 | 18.750 | 18.750 |
| KT3 | 11.250 | 16.875 | 28.125 | 28.125 | 28.125 |
| KT4 | 15.000 | 22.500 | 37.500 | 37.500 | 37.500 |
| 处理 Treatment | 有机质含量 Organic matter content/% | 碱解氮含量 Alkali-hydrolyzable nitrogen content/ (mg·kg-1) | 有效磷含量 Available phosphorus content/ (mg·kg-1) | 速效钾含量 Available potassium content/ (mg·kg-1) | 阳离子交换量 Cation exchange capacity/ (cmol·kg-1) | pH值 pH value |
|---|---|---|---|---|---|---|
| CK | 19.93±0.40 d | 98.72±1.32 d | 38.28±0.91 d | 298.71±5.72 d | 8.57±0.05 d | 7.74±0.04 a |
| KT1 | 22.90±0.72 c | 102.15±1.11 c | 42.96±1.25 c | 376.05±15.47 c | 9.41±0.06 c | 7.72±0.02 a |
| KT2 | 24.93±0.19 b | 111.91±1.42 b | 44.41±0.50 c | 402.62±18.91 bc | 9.55±0.07 bc | 7.68±0.03 a |
| KT3 | 27.56±1.33 a | 121.45±1.26 a | 51.41±0.61 a | 468.29±26.92 a | 10.09±0.43 a | 7.48±0.06 b |
| KT4 | 26.15±1.05 ab | 113.34±1.44 b | 46.60±0.64 b | 442.02±63.86 ab | 9.83±0.11 ab | 7.55±0.07 b |
Table 2 Effects of different treatments on physical and chemical properties of 0-20 cm soil
| 处理 Treatment | 有机质含量 Organic matter content/% | 碱解氮含量 Alkali-hydrolyzable nitrogen content/ (mg·kg-1) | 有效磷含量 Available phosphorus content/ (mg·kg-1) | 速效钾含量 Available potassium content/ (mg·kg-1) | 阳离子交换量 Cation exchange capacity/ (cmol·kg-1) | pH值 pH value |
|---|---|---|---|---|---|---|
| CK | 19.93±0.40 d | 98.72±1.32 d | 38.28±0.91 d | 298.71±5.72 d | 8.57±0.05 d | 7.74±0.04 a |
| KT1 | 22.90±0.72 c | 102.15±1.11 c | 42.96±1.25 c | 376.05±15.47 c | 9.41±0.06 c | 7.72±0.02 a |
| KT2 | 24.93±0.19 b | 111.91±1.42 b | 44.41±0.50 c | 402.62±18.91 bc | 9.55±0.07 bc | 7.68±0.03 a |
| KT3 | 27.56±1.33 a | 121.45±1.26 a | 51.41±0.61 a | 468.29±26.92 a | 10.09±0.43 a | 7.48±0.06 b |
| KT4 | 26.15±1.05 ab | 113.34±1.44 b | 46.60±0.64 b | 442.02±63.86 ab | 9.83±0.11 ab | 7.55±0.07 b |
| 处理 Treatment | 微生物总数 Microorganisms number/ (10 7 CFU·g-1 ) | 细菌数 Bacterial number/ (10 7 CFU·g-1 ) | 真菌数 Fungus number/ (104 CFU·g-1 ) | 放线菌数 Actinomycetes number/ (106 CFU·g-1 ) | 细菌数/真菌数 Ratio of bacterial number to fungus number/103 |
|---|---|---|---|---|---|
| CK | 2.23±0.10 c | 1.87±0.05 d | 2.33±0.07 d | 3.98±0.10 c | 0.80±0.01 c |
| KT1 | 2.57±0.09 b | 2.08±0.11 c | 2.50±0.08 c | 4.08±0.07 c | 0.83±0.02 c |
| KT2 | 4.01±0.12 a | 3.41±0.07 b | 3.10±0.16 b | 4.99±0.16 b | 1.10±0.06 a |
| KT3 | 4.10±0.08 a | 3.88±0.05 a | 3.49±0.08 a | 5.65±0.12 a | 1.11±0.02 a |
| KT4 | 4.03±0.14 a | 3.52±0.03 b | 3.38±0.06 a | 5.66±0.06 a | 1.04±0.03 b |
Table 3 Effects of potassium fulvic acid application on rhizosphere soil microorganisms of melon
| 处理 Treatment | 微生物总数 Microorganisms number/ (10 7 CFU·g-1 ) | 细菌数 Bacterial number/ (10 7 CFU·g-1 ) | 真菌数 Fungus number/ (104 CFU·g-1 ) | 放线菌数 Actinomycetes number/ (106 CFU·g-1 ) | 细菌数/真菌数 Ratio of bacterial number to fungus number/103 |
|---|---|---|---|---|---|
| CK | 2.23±0.10 c | 1.87±0.05 d | 2.33±0.07 d | 3.98±0.10 c | 0.80±0.01 c |
| KT1 | 2.57±0.09 b | 2.08±0.11 c | 2.50±0.08 c | 4.08±0.07 c | 0.83±0.02 c |
| KT2 | 4.01±0.12 a | 3.41±0.07 b | 3.10±0.16 b | 4.99±0.16 b | 1.10±0.06 a |
| KT3 | 4.10±0.08 a | 3.88±0.05 a | 3.49±0.08 a | 5.65±0.12 a | 1.11±0.02 a |
| KT4 | 4.03±0.14 a | 3.52±0.03 b | 3.38±0.06 a | 5.66±0.06 a | 1.04±0.03 b |
Fig.1 Effects of potassium fulvic acid on soil enzyme activity in melon root zone P1, P2, P3 and P4 represent vine extension stage, flowering stage, fruit expansion stage and maturity stage, respectively. Different lowercase letters above the columns represent statistically significant (p<0.05) differences among treatments during the same growth period.
| 处理 Treatment | 根系长度 Root length/cm | 根系体积 Root volume/cm3 | 根系直径 Root diameter/ mm | 根系表面积 Root surface area/cm2 | 根尖数 Root tip number |
|---|---|---|---|---|---|
| CK | 386.90±14.01 d | 20.10±1.05 c | 1.97±0.29 d | 541.33±13.28 d | 273.23±22.89 d |
| KT1 | 410.34±11.89 c | 24.96±2.82 bc | 2.15±0.09 cd | 669.67±35.53 c | 341.48±24.65 c |
| KT2 | 455.58±12.07 b | 30.82±4.75 ab | 2.39±0.12 bc | 723.33±55.59 c | 424.61±10.80 b |
| KT3 | 527.21±7.92 a | 37.37±5.23 a | 2.75±0.01 a | 977.33±45.74 a | 502.21±22.16 a |
| KT4 | 511.47±4.69 a | 32.42±5.60 ab | 2.64±0.06 ab | 856.67±65.32 b | 457.73±28.13 b |
Table 4 Effect of potassium fulvic acid on root morphology of melon
| 处理 Treatment | 根系长度 Root length/cm | 根系体积 Root volume/cm3 | 根系直径 Root diameter/ mm | 根系表面积 Root surface area/cm2 | 根尖数 Root tip number |
|---|---|---|---|---|---|
| CK | 386.90±14.01 d | 20.10±1.05 c | 1.97±0.29 d | 541.33±13.28 d | 273.23±22.89 d |
| KT1 | 410.34±11.89 c | 24.96±2.82 bc | 2.15±0.09 cd | 669.67±35.53 c | 341.48±24.65 c |
| KT2 | 455.58±12.07 b | 30.82±4.75 ab | 2.39±0.12 bc | 723.33±55.59 c | 424.61±10.80 b |
| KT3 | 527.21±7.92 a | 37.37±5.23 a | 2.75±0.01 a | 977.33±45.74 a | 502.21±22.16 a |
| KT4 | 511.47±4.69 a | 32.42±5.60 ab | 2.64±0.06 ab | 856.67±65.32 b | 457.73±28.13 b |
| 处理 Treatment | L*值 L*value | C*值 C*value | 可溶性固形 物含量 Soluble solids content/% | 可溶性糖 含量 Soluble sugar content/% | 维生素C含量 Vitamin C content/ (mg·kg-1) | 可滴定酸含量 Titratable acidity content/% | 糖酸比 Sugar-acid ratio | 固酸比 Solid-to- acid ratio |
|---|---|---|---|---|---|---|---|---|
| CK | 67.97± 1.45 c | 40.77± 0.78 b | 14.20± 0.30 c | 70.32± 1.90 c | 14.7± 1.2 c | 2.32± 0.03 a | 30.31± 0.61 d | 6.12± 0.19 d |
| KT1 | 70.95± 1.99 bc | 48.47± 6.10 ab | 15.23± 0.45 b | 73.50± 1.64 bc | 17.5± 1.7 c | 2.29± 0.02 a | 32.10± 1.00 cd | 6.65± 0.14 c |
| KT2 | 72.73± 2.30 ab | 50.23± 1.92 ab | 15.90± 0.40 b | 76.53± 1.15 b | 26.1± 3.4 b | 2.26± 0.04 a | 33.82± 0.38 c | 7.03± 0.28 bc |
| KT3 | 75.32± 1.50 a | 52.45± 6.03 a | 16.87± 0.31 a | 81.35± 1.91 a | 36.3± 3.8 a | 2.05± 0.07 c | 39.79± 2.00 a | 8.25± 0.36 a |
| KT4 | 72.27± 2.80 ab | 49.01± 6.77 ab | 15.80± 0.56 b | 81.14± 2.54 a | 36.6± 2.7 a | 2.19± 0.03 b | 37.12± 1.41 b | 7.23± 0.34 b |
Table 5 Comparison of quality indexes of melon under different potassium fulvic acid treatments
| 处理 Treatment | L*值 L*value | C*值 C*value | 可溶性固形 物含量 Soluble solids content/% | 可溶性糖 含量 Soluble sugar content/% | 维生素C含量 Vitamin C content/ (mg·kg-1) | 可滴定酸含量 Titratable acidity content/% | 糖酸比 Sugar-acid ratio | 固酸比 Solid-to- acid ratio |
|---|---|---|---|---|---|---|---|---|
| CK | 67.97± 1.45 c | 40.77± 0.78 b | 14.20± 0.30 c | 70.32± 1.90 c | 14.7± 1.2 c | 2.32± 0.03 a | 30.31± 0.61 d | 6.12± 0.19 d |
| KT1 | 70.95± 1.99 bc | 48.47± 6.10 ab | 15.23± 0.45 b | 73.50± 1.64 bc | 17.5± 1.7 c | 2.29± 0.02 a | 32.10± 1.00 cd | 6.65± 0.14 c |
| KT2 | 72.73± 2.30 ab | 50.23± 1.92 ab | 15.90± 0.40 b | 76.53± 1.15 b | 26.1± 3.4 b | 2.26± 0.04 a | 33.82± 0.38 c | 7.03± 0.28 bc |
| KT3 | 75.32± 1.50 a | 52.45± 6.03 a | 16.87± 0.31 a | 81.35± 1.91 a | 36.3± 3.8 a | 2.05± 0.07 c | 39.79± 2.00 a | 8.25± 0.36 a |
| KT4 | 72.27± 2.80 ab | 49.01± 6.77 ab | 15.80± 0.56 b | 81.14± 2.54 a | 36.6± 2.7 a | 2.19± 0.03 b | 37.12± 1.41 b | 7.23± 0.34 b |
| 指标 Index | 有机质含量 Organic matter content | 碱解氮含量 Alkali- hydrolyzable nitrogen content | 有效磷含量 Available phosphorus content | 速效钾含量 Available potassium content | 阳离子 交换量 Cation exchange capacity | pH值 pH value | 真菌数量 Fungus number | 细菌数量 Bacterial number |
|---|---|---|---|---|---|---|---|---|
| 碱解氮含量 Alkali-hydrolyzable nitrogen content | 0.97** | |||||||
| 有效磷含量 Available phosphorus content | 0.97** | 0.96* | ||||||
| 速效钾含量 Available potassium content | 0.10** | 0.94* | 0.97** | |||||
| 阳离子交换量 Cation exchange capacity | 0.98** | 0.91* | 0.96** | 0.99** | ||||
| pH值pH value | -0.90* | -0.92* | -0.93* | -0.90* | -0.85 | |||
| 真菌数量 Fungus number | 0.97** | 0.97** | 0.91* | 0.94* | 0.90* | -0.92* | ||
| 细菌数量 Bacterial number | 0.95* | 0.97** | 0.89* | 0.91* | 0.88 | -0.87 | 0.98** | |
| 放线菌数量 Actinomycetes number | 0.93* | 0.94* | 0.88 | 0.91* | 0.86 | -0.93* | 0.99** | 0.97** |
Table 6 Correlation analysis of soil microbial quantity and soil nutrients in melon root zone under potassium fulvic acid treatments
| 指标 Index | 有机质含量 Organic matter content | 碱解氮含量 Alkali- hydrolyzable nitrogen content | 有效磷含量 Available phosphorus content | 速效钾含量 Available potassium content | 阳离子 交换量 Cation exchange capacity | pH值 pH value | 真菌数量 Fungus number | 细菌数量 Bacterial number |
|---|---|---|---|---|---|---|---|---|
| 碱解氮含量 Alkali-hydrolyzable nitrogen content | 0.97** | |||||||
| 有效磷含量 Available phosphorus content | 0.97** | 0.96* | ||||||
| 速效钾含量 Available potassium content | 0.10** | 0.94* | 0.97** | |||||
| 阳离子交换量 Cation exchange capacity | 0.98** | 0.91* | 0.96** | 0.99** | ||||
| pH值pH value | -0.90* | -0.92* | -0.93* | -0.90* | -0.85 | |||
| 真菌数量 Fungus number | 0.97** | 0.97** | 0.91* | 0.94* | 0.90* | -0.92* | ||
| 细菌数量 Bacterial number | 0.95* | 0.97** | 0.89* | 0.91* | 0.88 | -0.87 | 0.98** | |
| 放线菌数量 Actinomycetes number | 0.93* | 0.94* | 0.88 | 0.91* | 0.86 | -0.93* | 0.99** | 0.97** |
| [1] | 胡波. 化肥减量条件下配施生物有机肥及氨基酸水溶肥对甜瓜生长及土壤肥力的影响[D]. 南京: 南京农业大学, 2019. |
| HU B. Effects of combined application of bio-organic fertilizer and amino acid water-soluble fertilizer on melon growth and soil fertility under the condition of chemical fertilizer reduction[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese with English abstract) | |
| [2] | 徐小军, 张桂兰, 周亚峰, 等. 甜瓜设施栽培连作土壤的理化性质及生物活性[J]. 果树学报, 2016, 33(9): 1131-1138. |
| XU X J, ZHANG G L, ZHOU Y F, et al. Studies on the physical-chemical and biological properties of soils cropped continuously with melon under protected cultivation condition[J]. Journal of Fruit Science, 2016, 33(9): 1131-1138. (in Chinese with English abstract) | |
| [3] | 郑立伟, 赵阳阳, 王一冰, 等. 不同连作年限甜瓜种植土壤性质和微生物多样性[J]. 微生物学通报, 2022, 49(1): 101-114. |
| ZHENG L W, ZHAO Y Y, WANG Y B, et al. Soil properties and microbial diversity in the muskmelon fields after continuous cropping for different years[J]. Microbiology China, 2022, 49(1): 101-114. (in Chinese with English abstract) | |
| [4] | 杨瑞秀. 甜瓜根系自毒物质在连作障碍中的化感作用及缓解机制研究[D]. 沈阳: 沈阳农业大学, 2014. |
| YANG R X. Allelopathy and mitigation mechanism of autotoxic substances in melon root system in continuous cropping obstacles[D]. Shenyang: Shenyang Agricultural University, 2014. (in Chinese with English abstract) | |
| [5] | 包日在, 孔海民, 李岗, 等. 基施黄腐酸钾对大棚杨梅营养生长及果实品质的影响[J]. 中国南方果树, 2024, 53(3): 171-174. |
| BAO R Z, KONG H M, LI G, et al. Effects of basal application of potassium fulvic acid on the vegetative growth and fruit quality of bayberry in greenhouse[J]. South China Fruits, 2024, 53(3): 171-174. (in Chinese with English abstract) | |
| [6] | 赵永长. 黄腐酸钾对干旱胁迫下烤烟生长的调控效应及机理研究[D]. 北京: 中国农业科学院, 2017. |
| ZHAO Y C. Effect and mechanism of potassium fulvate on growth of flue-cured tobacco under drought stress[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese with English abstract) | |
| [7] | 李瑞波. 生物腐植酸与生态农业[M]. 北京: 化学工业出版社, 2008. |
| [8] | 陈海宁, 高文胜, 郑磊, 等. 硅钙钾镁肥与黄腐酸钾配施对酸化果园土壤化学性质及苹果产量和品质的影响[J]. 中国土壤与肥料, 2023(3): 82-87. |
| CHEN H N, GAO W S, ZHENG L, et al. Effects of silicon-calcium-potassium-magnesium fertilizer combined with fulvic acid potassium on soil chemical properties, yield and quality of fruit in apple orchard with acidified soils[J]. Soil and Fertilizer Sciences in China, 2023(3): 82-87. (in Chinese with English abstract) | |
| [9] | 朱会调, 高登涛, 白茹, 等. 黄腐酸对土壤养分、葡萄品质和产量的影响[J]. 新疆农业科学, 2021, 58(4): 672-681. |
| ZHU H T, GAO D T, BAI R, et al. Effects of fulvic acid on soil nutrients, grape quality and yield[J]. Xinjiang Agricultural Sciences, 2021, 58(4): 672-681. (in Chinese with English abstract) | |
| [10] | 刘佳欢, 王倩, 罗人杰, 等. 黄腐酸肥料对小麦根际土壤微生物多样性和酶活性的影响[J]. 植物营养与肥料学报, 2019, 25(10):1808-1816. |
| LIU J H, WANG Q, LUO R J, et al. Effects of fulvic acid fertilizer on microbial diversity and enzyme activity in wheat rhizosphere soil[J]. Journal of Plant Nutrition and Fertilizer, 2019, 25(10):1808-1816. (in Chinese with English abstract) | |
| [11] | 刘彩娟, 吕春雨, 艾希珍, 等. 黄腐酸对干旱胁迫下黄瓜光合特性及产量和品质的影响[J]. 应用生态学报, 2022, 33(5): 1300-1310. |
| LIU C J, LYU C Y, AI X Z, et al. Effects of fulvic acid on photosynthetic characteristics, yield and quality of cucumber under drought stress[J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1300-1310. (in Chinese with English abstract) | |
| [12] | 段祥坤, 王建玉, 王志鹏. 黄腐酸钾对甜瓜新品系“14-64” 养分吸收、分配和产量的影响[J]. 中国土壤与肥料, 2023(4): 146-154. |
| DUAN X K, WANG J Y, WANG Z P. Effects of potassium fulvic acid application on nutrition absorption, distribution and yield of melon line“14-64”[J]. Soil and Fertilizer Sciences in China, 2023(4): 146-154. (in Chinese with English abstract) | |
| [13] | 孟阿静, 邵华伟, 唐蕾, 等. 施用不同类型黄腐酸对塔里木盆地密植骏枣产量和品质的影响[J]. 西北农业学报, 2022, 31(10): 1357-1364. |
| MENG A J, SHAO H W, TANG L, et al. Effects of different types of fulvic acid on yield and quality of dense planting Ziziphus jujuba Mill in Tarim basin[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(10): 1357-1364. (in Chinese with English abstract) | |
| [14] | 王吉平, 张野, 邓秀泉, 等. 黄腐酸钾对火龙果品质及果园土壤钾素形态的影响[J]. 热带农业科学, 2022, 42(10): 1-5. |
| WANG J P, ZHANG Y, DENG X Q, et al. Effects of potassium fulvic acid on the quality of pitaya fruit and the different forms of potassium in orchard soil[J]. Chinese Journal of Tropical Agriculture, 2022, 42(10): 1-5. (in Chinese with English abstract) | |
| [15] | 禹坷, 王孝林, 张学斌, 等. 植物根系与益生菌相互作用的研究进展[J]. 植物生理学报, 2020, 56(11): 2275-2287. |
| YU K, WANG X L, ZHANG X B, et al. Research progress on interactions between root and beneficial microbes[J]. Plant Physiology Journal, 2020, 56(11): 2275-2287. (in Chinese with English abstract) | |
| [16] | 林先贵. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社, 2010. |
| [17] | 王平, 李凤民, 刘淑英. 长期施肥对土壤生物活性有机碳库的影响[J]. 水土保持学报, 2010, 24(1): 224-228. |
| WANG P, LI F M, LIU S Y. Effects of long-term fertilization on soil biologically active organic carbon pool[J]. Journal of Soil and Water Conservation, 2010, 24(1): 224-228. (in Chinese with English abstract) | |
| [18] | 李邵宇, 孙建, 王毅, 等. 青藏高原不同退化梯度草地土壤酶活性特征[J]. 草业科学, 2020, 37(12): 2389-2402. |
| LI S Y, SUN J, WANG Y, et al. Characteristics of soil enzyme activities in different degraded gradient grasslands on the Tibetan Plateau[J]. Pratacultural Science, 2020, 37(12): 2389-2402. (in Chinese with English abstract) | |
| [19] | 谷明轩, 刘风珍, 孙伟, 等. 黄腐酸通过调控花生根系形态及活力促进幼苗生长[J]. 花生学报, 2023, 52(1): 63-71. |
| GU M X, LIU F Z, SUN W, et al. Fulvic acid promotes seedling growth by regulating root morphology and activity of peanut[J]. Journal of Peanut Science, 2023, 52(1): 63-71. (in Chinese with English abstract) | |
| [20] | 黄小龙, 唐子燕, 刘济明, 等. 米槁根际微生物群落结构及其与土壤养分相关性[J]. 东北林业大学学报, 2023, 51(10): 92-97. |
| HUANG X L, TANG Z Y, LIU J M, et al. Rhizosphere microbial community structure and its relationship with soil nutrients in Cinnamomum migao[J]. Journal of Northeast Forestry University, 2023, 51(10): 92-97. (in Chinese with English abstract) | |
| [21] | 戴雅婷, 闫志坚, 王慧, 等. 油蒿根际土壤微生物数量及其与土壤养分的关系[J]. 中国草地学报, 2012, 34(2): 71-75. |
| DAI Y T, YAN Z J, WANG H, et al. The relationships between the number of microorganisms in rhizospheric soil of Artemisia ordosica and soil nutrients[J]. Chinese Journal of Grassland, 2012, 34(2): 71-75. (in Chinese with English abstract) | |
| [22] | 李娜. 矿源黄腐酸钾对化肥减量大豆生长和根际土壤养分的影响[D]. 大庆: 黑龙江八一农垦大学, 2023. |
| LI N. Effects of mineral potassium fulvate on soybean growth and rhizosphere soil nutrients reduced by chemical fertilizer[D]. Daqing: Heilongjiang Bayi Agricultural University, 2023. (in Chinese with English abstract) | |
| [23] | 杨志桃. 外源腐殖酸对低温胁迫下厚皮甜瓜幼苗生长及生理特性的影响[D]. 保定: 河北农业大学, 2022. |
| YANG Z T. Effects of exogenous humic acid on growth and physiological characteristics of muskmelon seedlings under low temperature stress[D]. Baoding: Hebei Agricultural University, 2022. (in Chinese with English abstract) | |
| [24] | 孙世君, 马博, 王逸轩, 等. 腐殖酸对盐胁迫下温室黄瓜根际土壤养分及微生物群落结构的影响[J]. 北方园艺, 2022(5): 83-90. |
| SUN S J, MA B, WANG Y X, et al. Effects of humic acid on soil nutrients and microbial community structure of greenhouse cucumber rhizosphere under salt stress[J]. Northern Horticulture, 2022(5): 83-90. (in Chinese with English abstract) | |
| [25] | 陈星星, 刘新社, 王盛荣. 腐殖酸对盐胁迫下土壤理化性质、微环境及苦瓜生长的影响[J]. 江苏农业科学, 2023, 51(17): 138-144. |
| CHEN X X, LIU X S, WANG S R. Influences of humic acid on soil physical and chemical properties, microenvironment and balsam pear growth under salt stress[J]. Jiangsu Agricultural Sciences, 2023, 51(17): 138-144. (in Chinese with English abstract) | |
| [26] | 刘宇锋, 罗佳, 苏天明, 等. 外源腐殖酸对栽培基质性状和辣椒生长发育的影响[J]. 江苏农业学报, 2016, 32(3): 647-655. |
| LIU Y F, LUO J, SU T M, et al. Physico-chemical properties of a soilless substrate and growth of pepper influenced by exogenous humic acid[J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(3): 647-655. (in Chinese with English abstract) | |
| [27] | 彭健健, 徐坚, 王晓晓, 等. 杨梅主产区土壤肥力空间异质性及其影响因素: 以浙江仙居和临海为例[J]. 果树学报, 2023, 40(7): 1421-1433. |
| PENG J J, XU J, WANG X X, et al. Spatial variation of soil fertility and its influencing factors in Myrica rubra region: a case study in Xianju County and Linhai City[J]. Journal of Fruit Science, 2023, 40(7): 1421-1433. (in Chinese with English abstract) | |
| [28] | 韩剑宏, 孙一博, 张连科, 等. 生物炭与腐殖酸配施对盐碱土理化性质的影响[J]. 干旱地区农业研究, 2020, 38(6): 121-127. |
| HAN J H, SUN Y B, ZHANG L K, et al. Effect of biochar and humic acid on physical and chemical properties of saline-alkali soil[J]. Agricultural Research in the Arid Areas, 2020, 38(6): 121-127. (in Chinese with English abstract) | |
| [29] | 张丽丽, 李继蕊, 毕焕改, 等. 不同土壤pH和磷水平下黄腐酸对番茄产量和根际土壤微生态的影响[J]. 中国蔬菜, 2021(11): 45-52. |
| ZHANG L L, LI J R, BI H G, et al. Effects of fulvic acid on tomato yield and hizosphere soil microecology under different soil pH and phosphorus levels[J]. China Vegetables, 2021(11): 45-52. (in Chinese with English abstract) | |
| [30] | 智明, 黄占斌, 单瑞娟. 腐殖酸对土壤改良作用探讨[J]. 环境与可持续发展, 2013, 38(3):109-111. |
| ZHI M, HUANG Z B, SHAN R J. Study on the effect of humic acid on soil improvement[J]. Environment and Sustainable Development, 2013, 38(3):109-111. (in Chinese) | |
| [31] | ZHANG Q, ZHOU W, LIANG G, et al. Distribution of soil nutrients, extracellular enzyme activities and microbial communities acrossparticle size fractions in a long-term fertilizer experiment[J]. Applied Soil Ecology, 2015, 94:59-71. |
| [32] | 孙希武, 彭福田, 肖元松, 等. 硅钙钾镁肥配施黄腐酸钾对土壤酶活性及桃幼树生长的影响[J]. 核农学报, 2020, 34(4): 870-877. |
| SUN X W, PENG F T, XIAO Y S, et al. Effects of silicon, calcium, potassium and magnesium fertilizer combined with fulvic acid potassium on soil enzyme activity and the growth of young peach trees[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(4): 870-877. (in Chinese with English abstract) | |
| [33] | 王鹏, 牟溥, 李云斌. 植物根系养分捕获塑性与根竞争[J]. 植物生态学报, 2012, 36(11): 1184-1196. |
| WANG P, MOU P, LI Y B. Review of root nutrient foraging plasticity and root competition of plants[J]. Chinese Journal of Plant Ecology, 2012, 36(11): 1184-1196. (in Chinese with English abstract) | |
| [34] | 李亚杰, 罗磊, 姚彦红, 等. 黄腐酸菌肥与常规肥料配比对西北旱作区马铃薯根系形态及土壤酶活性的影响[J]. 腐植酸, 2020(1): 93. |
| LI Y J, LUO L, YAO Y H, et al. Effects of the proportion of fulvic acid bacterial fertilizer and conventional fertilizer on potato root morphology and soil enzyme activity in northwest dry farming area[J]. Humic Acid, 2020(1): 93. (in Chinese) | |
| [35] | 周丽平, 袁亮, 赵秉强, 等. 腐殖酸单侧刺激对玉米根系生长的影响[J]. 中国农业科学, 2022, 55(2): 339-349. |
| ZHOU L P, YUAN L, ZHAO B Q, et al. Effects of single-sided application of humic acid on maize root growth[J]. Scientia Agricultura Sinica, 2022, 55(2): 339-349. (in Chinese with English abstract) | |
| [36] | CANELLAS L P, OLIVARES F L. Production of border cells and colonization of maize root tips by Herbaspirillum seropedicae are modulated by humic acid[J]. Plant and Soil, 2017, 417(1): 403-413. |
| [37] | CANELLAS L P, PICCOLO A, DOBBSS L B, et al. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid[J]. Chemosphere, 2010, 78(4): 457-466. |
| [38] | 吴芳纯. 1-氨基环丙烷-1-羧酸、黄腐酸对巴氏杜氏藻类胡萝卜素成分积累的影响[D]. 广州: 华南理工大学, 2021. |
| WU F C. Effects of 1-aminocyclopropane-1-carboxylic acid and fulvic acid on the accumulation of carotene in Dunaliella pasteurella[D]. Guangzhou: South China University of Technology, 2021. (in Chinese with English abstract) |
| [1] | LI Yujing, HUANG Qianru, ZHANG Aidong, WU Xuexia, ZHU Dongxing, XIAO Kai. Function of the SmMYB13 gene in drought stress response in eggplant (Solanum melongena L.) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1666-1679. |
| [2] | HE Shixiong, YANG Lei, QI Anmin, CHENG Ji, WANG Min, LI Yingkui, HONG Lin. Effects of interstock on leaf photosynthetic characteristics, physicochemical properties and fruit quality of three mandarin hybrids [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1680-1693. |
| [3] | ZHANG Shunchang, XU Jigen, FU Chengyue, PU Zhanxu, HU Lipeng, WU Hao, LI Junbing, XIN Liang, LEI Yuanjun. Effect of amino acid calcium spraying on peel cracking and quality of citrus hybrid Hongmeiren [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1706-1715. |
| [4] | WANG Chengyang, LIU Jieya, WU Minyi, XIE Boyi, HONG Decheng, LENG Feng, WU Guoquan. Effect of calcium treatment on the fruit quality of Reliance grape under waterlogging [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1451-1458. |
| [5] | XIANG Ying, CONG Jianmin, PAN Danhong, TAO Yonggang. Comprehensive evaluation of the growth process of different tomato varieties under spring organic greenhouse planting [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1252-1261. |
| [6] | WANG Li, CHEN Liming, WANG Pengfei, ZHANG Bin, MU Xiaopeng. Effects of organic fertilizer combined with bacterial fertilizer on fruit quality and soil properties of Cerasus humilis [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 820-830. |
| [7] | SUN Li, ZHANG Shuwen, YU Zheping, ZHENG Xiliang, LIANG Senmiao, REN Haiying, QI Xingjiang. Effects of potassium humate on soil improvement, tree growth and fruiting of Chinese bayberry (Myrica rubra) [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1878-1886. |
| [8] | ZHU Yan, DING Lan, CHEN Yiqian, HUANG Xiujing, JIANG Weiwei, CHEN Donghong. Identification and functional analysis of CLE gene family in Dendrobium officinale Kimura et Migo [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1583-1590. |
| [9] | ZHU Xuehui, XIE Hui, HAN Shouan, WANG Min, BAI Shijian, MA Yunlong, WANG Yanmeng, MAI Sile, PAN Mingqi, ZHANG Wen. Effect of two plant growth regulators on the fruit quality of ‘Centennial Seedless’ grapes [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1309-1319. |
| [10] | CHU Tianfen, LEI Ling, LI Qinfeng, WU Ping, HONG Wenjie, ZHENG Weiran. Quality safety risk assessment of watermelon industry in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1153-1160. |
| [11] | WANG Ying, WANG Jian, FENG Zishan, WANG Baogen, WU Xinyi, LU Zhongfu, SUN Yuyan, DONG Wenqi, LI Guojing, WU Xiaohua. Factor analysis and comprehensive evaluation of the fruit quality of bottle gourd (Lagenaria siceraria) [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 334-343. |
| [12] | LUO Shasha, WANG Ruyue, ZHEN Ziyi, WU Jialong, XU Yeyong, Bahetiyaer KERIM, SUN Yali, HU Haifang. Effect of irrigation time and amount on cracking rate and quality of apricot plum fruit [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 365-372. |
| [13] | MA Ling, ZHANG Zhenwu, FANG Yingzi, WU Huixin, XING Chenghua. Effects of nitrogen reduction and biochar application on growth and development of Citurs reticulata Blanco cv. ‘Ponkan’ and soil properties [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2739-2747. |
| [14] | SHOU Weisong, WANG Duo, SHEN Jia, XU Xinyang, ZHANG Yuejian, HE Yanjun. Identification and expression analysis of sucrose transporter SUT family in watermelon in fruit development and stress responses [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 94-102. |
| [15] | YUE Zongwei, LI Jiaxiao, SUN Xiangyang, LIU Guoliang, LI Suyan, WANG Chenchen, ZHA Guichao, WEI Ningxian. Effects of chemical fertilizer combined with organic fertilizer on soil properties, cherry fruit quality and yield [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2192-2201. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||