Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (1): 191-201.DOI: 10.3969/j.issn.1004-1524.2023.01.21
• Biosystems Engineering • Previous Articles Next Articles
ZHANG Yifan(), HE Ruiyin(
), DUAN Qingfei, XU Yong
Received:
2021-09-24
Online:
2023-01-25
Published:
2023-02-21
CLC Number:
ZHANG Yifan, HE Ruiyin, DUAN Qingfei, XU Yong. Numerical analysis of flow characteristics and structural optimization of bellows based on CFD-DEM[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 191-201.
水平 Level | 因素Factor | ||
---|---|---|---|
波长 Wavelength | 波纹间距 Ripple spacing | 幅宽 Width of cloth | |
1 | 0 | 0 | 2 |
2 | 5 | 5 | 4 |
3 | 10 | 10 | 6 |
4 | 15 | 15 | 8 |
5 | 20 | 20 | 10 |
Table 1 Single factor test factor level table mm
水平 Level | 因素Factor | ||
---|---|---|---|
波长 Wavelength | 波纹间距 Ripple spacing | 幅宽 Width of cloth | |
1 | 0 | 0 | 2 |
2 | 5 | 5 | 4 |
3 | 10 | 10 | 6 |
4 | 15 | 15 | 8 |
5 | 20 | 20 | 10 |
编码 Code | 影响因素 Influence factor | 水平Level | ||
---|---|---|---|---|
-1 | 0 | +1 | ||
A | 幅宽Width of cloth/mm | 6 | 8 | 10 |
B | 波纹间距Ripple spacing/mm | 0 | 10 | 20 |
C | 波长Wavelength/mm | 10 | 15 | 20 |
Table 2 Factors and levels of experiment based on BDD method
编码 Code | 影响因素 Influence factor | 水平Level | ||
---|---|---|---|---|
-1 | 0 | +1 | ||
A | 幅宽Width of cloth/mm | 6 | 8 | 10 |
B | 波纹间距Ripple spacing/mm | 0 | 10 | 20 |
C | 波长Wavelength/mm | 10 | 15 | 20 |
序号 Serial number | 编码 Code | 变异系数 Coefficient of variation/% | ||
---|---|---|---|---|
A | B | C | ||
1 | 0 | 0 | 0 | 7.65 |
2 | 1 | -1 | 0 | 11.60 |
3 | 0 | 0 | 0 | 8.84 |
4 | 1 | 0 | -1 | 15.30 |
5 | 1 | 0 | 1 | 8.70 |
6 | 1 | 1 | 0 | 9.76 |
7 | -1 | -1 | 0 | 11.45 |
8 | -1 | 0 | -1 | 15.24 |
9 | 0 | 0 | 0 | 8.61 |
10 | -1 | 1 | 0 | 15.5 |
11 | 0 | 0 | 0 | 7.45 |
12 | 0 | -1 | 1 | 12.54 |
13 | 0 | 1 | 1 | 11.50 |
14 | 0 | 0 | 0 | 8.43 |
15 | 0 | 1 | -1 | 17.89 |
16 | 0 | -1 | -1 | 11.61 |
17 | -1 | 0 | 1 | 15.45 |
Table 3 Orthogonal test table based on BDD method
序号 Serial number | 编码 Code | 变异系数 Coefficient of variation/% | ||
---|---|---|---|---|
A | B | C | ||
1 | 0 | 0 | 0 | 7.65 |
2 | 1 | -1 | 0 | 11.60 |
3 | 0 | 0 | 0 | 8.84 |
4 | 1 | 0 | -1 | 15.30 |
5 | 1 | 0 | 1 | 8.70 |
6 | 1 | 1 | 0 | 9.76 |
7 | -1 | -1 | 0 | 11.45 |
8 | -1 | 0 | -1 | 15.24 |
9 | 0 | 0 | 0 | 8.61 |
10 | -1 | 1 | 0 | 15.5 |
11 | 0 | 0 | 0 | 7.45 |
12 | 0 | -1 | 1 | 12.54 |
13 | 0 | 1 | 1 | 11.50 |
14 | 0 | 0 | 0 | 8.43 |
15 | 0 | 1 | -1 | 17.89 |
16 | 0 | -1 | -1 | 11.61 |
17 | -1 | 0 | 1 | 15.45 |
Fig.7 Residual analysis of BDD method a, Normal distribution probability of internal biochemical residuals; b, Residual error and predictive value of external biochemistry; c, Predicted values and actual values.
方差来源 Variance source | 平方和 Sum of squares | 自由度 Freedom | 均方差 Mean variance | F值 F value | P值 P value | 显著性 Significance |
---|---|---|---|---|---|---|
模型Model | 165.77 | 9 | 18.42 | 44.42 | <0.000 1 | 极显著Significant |
A | 18.85 | 1 | 18.85 | 45.46 | 0.000 3 | |
B | 6.94 | 1 | 6.94 | 16.73 | 0.004 6 | |
C | 17.55 | 1 | 17.55 | 42.33 | 0.000 3 | |
AB | 8.67 | 1 | 8.67 | 20.92 | 0.002 6 | |
AC | 11.59 | 1 | 11.59 | 27.96 | 0.001 1 | |
BC | 13.40 | 1 | 13.40 | 32.31 | 0.000 7 | |
A2 | 18.30 | 1 | 18.30 | 44.12 | 0.000 3 | |
B2 | 13.60 | 1 | 13.60 | 32.79 | 0.000 7 | |
C2 | 48.44 | 1 | 48.44 | 116.84 | <0.000 1 | |
残差Residual | 2.90 | 7 | 0.41 | |||
失拟项Lack of fit | 1.41 | 3 | 0.47 | 1.25 | 0.401 7 | 不显著 |
纯误差 | 1.50 | 4 | 0.37 | Not significant | ||
总和 | 168.67 | 16 |
Table 4 Analysis of variance results
方差来源 Variance source | 平方和 Sum of squares | 自由度 Freedom | 均方差 Mean variance | F值 F value | P值 P value | 显著性 Significance |
---|---|---|---|---|---|---|
模型Model | 165.77 | 9 | 18.42 | 44.42 | <0.000 1 | 极显著Significant |
A | 18.85 | 1 | 18.85 | 45.46 | 0.000 3 | |
B | 6.94 | 1 | 6.94 | 16.73 | 0.004 6 | |
C | 17.55 | 1 | 17.55 | 42.33 | 0.000 3 | |
AB | 8.67 | 1 | 8.67 | 20.92 | 0.002 6 | |
AC | 11.59 | 1 | 11.59 | 27.96 | 0.001 1 | |
BC | 13.40 | 1 | 13.40 | 32.31 | 0.000 7 | |
A2 | 18.30 | 1 | 18.30 | 44.12 | 0.000 3 | |
B2 | 13.60 | 1 | 13.60 | 32.79 | 0.000 7 | |
C2 | 48.44 | 1 | 48.44 | 116.84 | <0.000 1 | |
残差Residual | 2.90 | 7 | 0.41 | |||
失拟项Lack of fit | 1.41 | 3 | 0.47 | 1.25 | 0.401 7 | 不显著 |
纯误差 | 1.50 | 4 | 0.37 | Not significant | ||
总和 | 168.67 | 16 |
Fig.8 response surface analysis results of BDD method a, Interaction between wavelength and ripple spacing on coefficient of variation; b, Interaction between ripple spacing and width of cloth on coefficient of variation; c, Interaction of wavelength and width of cloth on coefficient of variation.
Fig.9 Pneumatic fertilizer discharge test bench 1, Fertilizer discharge pipe; 2, Distributor; 3, Bellows; 4, Elbow; 5, Jet feeder; 6, Fertilizer discharge control box; 7, Fan governor; 8, Fertilizer discharge motor; 9, Fan; 10, Fertilizer discharge device; 11, Fertilizer box.
Fig.10 Comparison between simulated value and actual value of urea granules a, Comparison between simulation values and actual values of different widths; b, Comparison between simulated values and actual values of different wavelengths; c, Comparison between simulation value and actual value of different ripple spacing.
Fig.11 Comparison of bench test results of urea granules and compound fertilizer granules a, Comparison of urea and compound fertilizer with different widths; b, Comparison of urea and compound fertilizer with different wavelengths; c, Comparison of urea and compound fertilizer with different ripple spacing.
试验编号 Test number | 排肥均匀性变异系数 Coefficient of variation of fertilizer uniformity | 仿真试验预测值 Simulation estimate | 相对误差 Relative error | 相对误差均值 Relative error mean |
---|---|---|---|---|
1 | 7.89 | 7.5 | 5.2 | 5.84 |
2 | 7.68 | 2.4 | ||
3 | 7.74 | 3.2 | ||
4 | 8.22 | 9.6 | ||
5 | 8.16 | 8.8 |
Table 5 Bench experiment results %
试验编号 Test number | 排肥均匀性变异系数 Coefficient of variation of fertilizer uniformity | 仿真试验预测值 Simulation estimate | 相对误差 Relative error | 相对误差均值 Relative error mean |
---|---|---|---|---|
1 | 7.89 | 7.5 | 5.2 | 5.84 |
2 | 7.68 | 2.4 | ||
3 | 7.74 | 3.2 | ||
4 | 8.22 | 9.6 | ||
5 | 8.16 | 8.8 |
[1] | 朱兆良, 金继运. 保障我国粮食安全的肥料问题[J]. 植物营养与肥料学报, 2013, 19(2): 259-273. |
ZHU Z L, JIN J Y. Fertilizer use and food security in China[J]. Plant Nutrition and Fertilizer Science, 2013, 19(2): 259-273. (in Chinese with English abstract) | |
[2] | 马鹏, 杨志远, 李娜, 等. 油菜-水稻轮作模式下油菜季氮肥投入与水稻季氮肥运筹对杂交籼稻光合生产力及产量的影响[J]. 华南农业大学学报, 2020, 41(3): 23-30. |
MA P, YANG Z Y, LI N, et al. Effects of nitrogen fertilizer application in rape season and nitrogen fertilizer management in rice season on photosynthetic productvity and yield of hybrid japonica rice under rape-rice rotation mode[J]. Journal of South China Agricultural University, 2020, 41(3): 23-30. (in Chinese with English abstract) | |
[3] | 王宇峰, 孟会生, 李廷亮, 等. 培肥措施对复垦土壤微生物碳氮代谢功能多样性的影响[J]. 农业工程学报, 2020, 36(24): 81-90. |
WANG Y F, MENG H S, LI T L, et al. Effects of fertilization regime on the functional diversity of microbial carbon and nitrogen metabolism in reclaimed soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(24): 81-90. (in Chinese with English abstract) | |
[4] | 曾靖, 常春华, 王雅鹏. 基于粮食安全的我国化肥投入研究[J]. 农业经济问题, 2010, 31(5): 66-70,111. |
ZENG J, CHANG C H, WANG Y P. Study on the fertilizer inputs based on China s food security[J]. Issues in Agricultural Economy, 2010, 31(5): 66-70,111. (in Chinese) | |
[5] | 向涛, 綦勇. 粮食安全与农业面源污染: 以农地禀赋对化肥投入强度的影响为例[J]. 财经研究, 2015, 41(7): 132-144. |
XIANG T, QI Y. Food security and agricultural non-point source pollution: taking the impact of agricultural land endowments on fertilizer use intensity as an example[J]. Journal of Finance and Economics, 2015, 41(7): 132-144. (in Chinese with English abstract) | |
[6] | 王朝辉. 我国小麦施肥问题与化肥减施[J]. 中国农业科学, 2020, 53(23): 4813-4815. |
WANG Z H. Problems in fertilization and fertilizer reduction in wheat production of China[J]. Scientia Agricultura Sinica, 2020, 53(23): 4813-4815. (in Chinese with English abstract) | |
[7] | 林挺锐, 孙郑, 卢日辉, 等. 新型植物源有机药肥对水稻的肥效及防虫效果[J]. 华南农业大学学报, 2021, 42(2): 58-64. |
LIN T R, SUN Z, LU R H, et al. Effects of new organic fertilizers with botanical pesticide components on rice growth and insecticidal efficiency[J]. Journal of South China Agricultural University, 2021, 42(2): 58-64. (in Chinese with English abstract) | |
[8] | 施印炎, 陈满, 汪小旵, 等. 稻麦精准追肥机执行机构的设计与试验[J]. 华南农业大学学报, 2015, 36(6): 119-124. |
SHI Y Y, CHEN M, WANG X C, et al. Design and experiment of precision fertilizer applicator actuator of rice and wheat[J]. Journal of South China Agricultural University, 2015, 36(6): 119-124. (in Chinese with English abstract) | |
[9] | 杨盼盼, 蒋慧敏, 蒲强, 等. 与化肥配施的菌肥用量对土壤肥力特性的影响[J]. 华南农业大学学报, 2017, 38(3): 26-31. |
YANG P P, JIANG H M, PU Q, et al. Effects of application dosages of bacterial manure with chemical fertilizer on soil fertility[J]. Journal of South China Agricultural University, 2017, 38(3): 26-31. (in Chinese with English abstract) | |
[10] | 何亚凯, 杨学军, 翟长远, 等. 集排风送式玉米分层追肥机设计与试验[J]. 农业机械学报, 2020, 51(11): 54-63. |
HE Y K, YANG X J, ZHAI C Y, et al. Design and experiment of air-assisted layered fertilization machine of centralized distributing for corn[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 54-63. (in Chinese with English abstract) | |
[11] | 左兴健, 武广伟, 付卫强, 等. 风送式水稻侧深精准施肥装置的设计与试验[J]. 农业工程学报, 2016, 32(3): 14-21. |
ZUO X J, WU G W, FU W Q, et al. Design and experiment on air-blast rice side deep precision fertilization device[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 14-21. (in Chinese with English abstract) | |
[12] | 杨庆璐, 李子涵, 李洪文, 等. 基于CFD-DEM的集排式分肥装置颗粒运动数值分析[J]. 农业机械学报, 2019, 50(8): 81-89. |
YANG Q L, LI Z H, LI H W, et al. Numerical analysis of particle motion in pneumatic centralized fertilizer distribution device based on CFD-DEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 81-89. (in Chinese with English abstract) | |
[13] | 张晓辉, 王永振, 仉利, 等. 小麦气力集排器排种分配系统设计与试验[J]. 农业机械学报, 2018, 49(3): 59-67. |
ZHANG X H, WANG Y Z, ZHANG L, et al. Design and experiment of wheat pneumatic centralized seeding distributing system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 59-67. (in Chinese with English abstract) | |
[14] | 戴亿政, 罗锡文, 王在满, 等. 气力集排式水稻分种器设计与试验[J]. 农业工程学报, 2016, 32(24): 36-42. |
DAI Y Z, LUO X W, WANG Z M, et al. Design and experiment of rice pneumatic centralized seed distributor[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(24): 36-42. (in Chinese with English abstract) | |
[15] | 李中华, 王德成, 刘贵林, 等. 气流分配式排种器CFD模拟与改进[J]. 农业机械学报, 2009, 40(3): 64-68. |
LI Z H, WANG D C, LIU G L, et al. CFD simulation and improvement of air-stream distributive metering device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(3): 64-68. (in Chinese with English abstract) | |
[16] | 常金丽. 机械定量气流式集中排种系统的研究及其排种特性试验分析[D]. 泰安: 山东农业大学, 2007. |
CHANG J L. Research and experimental analysis of centralized pneumatic seeding system[D]. Tai’an: Shandong Agricultural University, 2007. (in Chinese with English abstract) | |
[17] | 王大成, 陈朗, 罗小平. 影响波纹换热管换热性能因素的数值模拟研究[J]. 低温与超导, 2012, 40(7): 54-58. |
WANG D C, CHEN L, LUO X P. Numerical simulation research on the factors influencing the heat exchange performance of corrugated tubes[J]. Cryogenics & Superconductivity, 2012, 40(7): 54-58. (in Chinese with English abstract) | |
[18] | 王晓静, 李文艳, 孙启蒙. 基于FLUENT的内插扭带波纹管内流场分析[J]. 高校化学工程学报, 2016, 30(2): 286-291. |
WANG X J, LI W Y, SUN Q M. Flow field analysis of bellows with twist tape inserts using FLUENT[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(2): 286-291. (in Chinese with English abstract) | |
[19] | 张亮, 原亚东, 孙志强, 等. 波纹管对管壳式换热器内流体传热及流动特性的影响[J]. 热能动力工程, 2019, 34(4): 73-78. |
ZHANG L, YUAN Y D, SUN Z Q, et al. Effects of corrugated tube on heat transfer and flow characteristics of fluid in shell heat exchanger[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(4): 73-78. (in Chinese with English abstract) | |
[20] | 刘伟, 杨洲, 段洁利, 等. 蓄冷式冷藏箱降温过程的数值模拟及试验验证[J]. 华南农业大学学报, 2019, 40(4): 119-125. |
LIU W, YANG Z, DUAN J L, et al. Numerical simulation and experimental verification of cooling process in cool storage refrigerator[J]. Journal of South China Agricultural University, 2019, 40(4): 119-125. (in Chinese with English abstract) | |
[21] | 杨庆璐, 王庆杰, 李洪文, 等. 气力集排式排肥系统结构优化与试验[J]. 农业工程学报, 2020, 36(13): 1-10. |
YANG Q L, WANG Q J, LI H W, et al. Structural optimization and experiment of pneumatic centralized fertilizer system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 1-10. (in Chinese with English abstract) | |
[22] | 周韦. 基于散粒体动力学的水田侧深施肥装置的分析方法和试验[D]. 哈尔滨: 东北农业大学, 2015. |
ZHOU W. The experiment and analysis of paddy field deep fertilizing device based on discrete element method[D]. Harbin: Northeast Agricultural University, 2015. (in Chinese with English abstract) | |
[23] | 邹翌, 郝向泽, 何瑞银. 基于EDEM-fluent耦合的气流分配式排种器数值模拟与试验[J]. 华南农业大学学报, 2017, 38(4): 110-116. |
ZOU Y, HAO X Z, HE R Y. Numerical simulation and experiment of air distribution seed-metering device based on coupled EDEM-Fluent[J]. Journal of South China Agricultural University, 2017, 38(4): 110-116. (in Chinese with English abstract) | |
[24] | 高观保. 风送式水稻侧深施肥装置关键部件设计与试验[D]. 哈尔滨: 东北农业大学, 2019. |
GAO G B. Design and experiment of key parts of side-depth fertilizer device with pneumatic conveying for paddy[D]. Harbin: Northeast Agricultural University, 2019. (in Chinese with English abstract) | |
[25] | 刘涛, 何瑞银, 陆静, 等. 基于EDEM的窝眼轮式油菜排种器排种性能仿真与试验[J]. 华南农业大学学报, 2016, 37(3): 126-132. |
LIU T, HE R Y, LU J, et al. Simulation and verification on seeding performance of nest hole wheel seed-metering device based on EDEM[J]. Journal of South China Agricultural University, 2016, 37(3): 126-132. (in Chinese with English abstract) | |
[26] | 郭晓冬. 水稻侧深施肥机气力系统研究及整机设计[D]. 杭州: 浙江理工大学, 2020. |
GUO X D. Analysis of pneumatic conveying system of ferlizer applicator on the side of rice[D]. Hangzhou: Zhejiang Sci-Tech University, 2020. (in Chinese with English abstract) | |
[27] | 李立伟, 武广伟, 付卫强, 等. 水田风送施肥参数检测试验台设计与试验[J]. 农业机械学报, 2020, 51(S1): 186-194. |
LI L W, WU G W, FU W Q, et al. Design and verification of test bed for testing parameters of wind assisted fertilization in paddy field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 186-194. (in Chinese with English abstract) |
[1] | LYU Jing, WU Zhiyong, GUO Xiaonong, FENG Yulan, LU Jianxiong, CHAI Weiwei. Optimization of fermented quinoa straw with lactic acid bacteria by response surface methodology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1866-1876. |
[2] | PENG Caiwang, ZHOU Ting, SUN Songlin, XIE Yelin, WEI Yuan. Calibration of parameters of black soldier fly in discrete method simulation based on response angle of particle heap [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 814-823. |
[3] | QIN Wei, YU Yingjie, LAI Qinghui, ZHAN Caixue, YUAN Haikuo, ZHANG Haijun. Parameter optimization experiment of seedling guiding tube transplanting machine of Panax notoginseng seedling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 614-625. |
[4] | YANG Yeshuang, ZHANG Yingping, CHEN Yifan, ZHANG Jin, LI Huanhuan, CHEN Lihong, TANG Honggang, GAO Bin. Optimization of formulation of reconstituted liquid egg by response surface methodology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 153-162. |
[5] | YUAN Yuejin, HONG Chen, XU Yingying, WANG Dong, ZHANG Man, JING Xuesong. Optimization of carrot vacuum pulsating steam blanching process under combined drying method [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 163-172. |
[6] | JIA Yangyang, NIE Zongning, LUO Xingyu, YANG Kaihui, HE Chunlei. Study on processing technology of exogenous polyphenol oxidase assisted fermentation of Tibetan tea [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1720-1729. |
[7] | JIANG Xingcan, LI Bing, YANG Min, ZHANG Jiyu. Optimization of preparation technology and stability evaluation of sarafloxacin/β-cyclodextrin inclusion complex by response surface method [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 404-412. |
[8] | YANG Ying, SHI Yingchun, XING Jianrong, LIU Zhe, ZHENG Meiyu, LU Shengmin. Optimization of “terpenoids removing and aroma enhancing” process for grapefruit essential oil [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2128-2136. |
[9] | LI Qisi, WANG Yaling, DENG Yuhua, LIAO Jianmeng, YE Lin, WU Lili, ZHENG Jiachun, LUO Xingyan, DENG Qi, SUN Lijun. Optimization of ultrasonic extraction technology of Shisandra lignans and its anti-oxidant and anti-fungi potentials [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2145-2154. |
[10] | KE Yiqiang, GUO Penghui, MA Hongxin, YANG Xuhua, GAO Dandan, LIU Xiangjun, MA Zhongren, DING Gongtao. Rapid propagation system establishment of Lanzhou lily [J]. , 2020, 32(6): 1000-1008. |
[11] | LI Weining, BAI Xuanbing, LI Bing. Optimization of structural parameters of drum type tea re-dryer [J]. , 2020, 32(2): 348-358. |
[12] | YANG Zhi, LI Wenyi, GAO Yuntao, XIONG Huabin, CHEN Yijian, YANG Huijuan. Optimization of extraction process of total flavonoids from Acerola cherry by response surface methodology and their antioxidant activities [J]. , 2020, 32(10): 1866-1872. |
[13] | GAO Dandan, CHENG Hao, MA Zhongren, TIAN Xiaojing, LI Mingsheng, CHEN Shi'en, CHANG Kunpeng, LIU Gendi, NAZARIYAH Yahaya. Modification of antioxidant peptide from loach protein by Plastein reaction [J]. , 2018, 30(8): 1312-1320. |
[14] | JIANG Linjuan, ZOU Xue, HUANG Xueli, NI Su, LI Liqin, YANG Shimin. Optimization of efficient regeneration system in stem of potato using response surface methodology [J]. , 2018, 30(6): 918-925. |
[15] | WEN Huiping, XIAO Jianzhong, LEI Weimin, JI Jiana. Optimization of extraction process of total flavonoids from Chimonanthus salicifolius S.Y.H by HPLC combined with response surface methodology and its antibacterial activity [J]. , 2018, 30(2): 298-306. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 546
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 303
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||