Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (1): 215-225.DOI: 10.3969/j.issn.1004-1524.2023.01.23
• Biosystems Engineering • Previous Articles Next Articles
LI Bin1(), LIU Dongyang1, SHI Guolong1, MU Jingsheng2, XU Haoran1, GU Lichuan1, JIAO Jun1,*(
)
Received:
2021-06-29
Online:
2023-01-25
Published:
2023-02-21
CLC Number:
LI Bin, LIU Dongyang, SHI Guolong, MU Jingsheng, XU Haoran, GU Lichuan, JIAO Jun. Pig posture detection based on improved YOLOv4 model[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 215-225.
类型 Type | 滤波器 Filters | Exp size | SE | 激活函数 Activation function | 步长 Stride | 输出 Output |
---|---|---|---|---|---|---|
Conv2D | 16 | — | 否No | HS | 2 | 208×208 |
Bneck,3×3 | 16 | 16 | 否No | HS | 1 | 208×208 |
Bneck,3×3 | 24 | 64 | 否No | RE | 2 | 104×104 |
Bneck,3×3 | 24 | 72 | 否No | HS | 1 | 104×104 |
Bneck,5×5 | 40 | 72 | 是Yes | RE | 2 | 52×52 |
Bneck,5×5 | 40 | 120 | 是Yes | RE | 1 | 52×52 |
Bneck,5×5 | 40 | 120 | 是Yes | RE | 1 | 52×52 |
Bneck,3×3 | 80 | 240 | 否No | HS | 2 | 26×26 |
Bneck,3×3 | 80 | 200 | 否No | HS | 1 | 26×26 |
Bneck,3×3 | 80 | 184 | 否No | HS | 1 | 26×26 |
Bneck,3×3 | 80 | 184 | 是Yes | HS | 1 | 26×26 |
Bneck,3×3 | 112 | 480 | 是Yes | HS | 1 | 26×26 |
Bneck,3×3 | 112 | 672 | 是Yes | HS | 1 | 26×26 |
Bneck,5×5 | 160 | 672 | 是Yes | HS | 2 | 13×13 |
Bneck,5×5 | 160 | 960 | 是Yes | HS | 1 | 13×13 |
Bneck,5×5 | 160 | 960 | 否No | HS | 1 | 13×13 |
Table 1 Structure of MobileNetV3 network
类型 Type | 滤波器 Filters | Exp size | SE | 激活函数 Activation function | 步长 Stride | 输出 Output |
---|---|---|---|---|---|---|
Conv2D | 16 | — | 否No | HS | 2 | 208×208 |
Bneck,3×3 | 16 | 16 | 否No | HS | 1 | 208×208 |
Bneck,3×3 | 24 | 64 | 否No | RE | 2 | 104×104 |
Bneck,3×3 | 24 | 72 | 否No | HS | 1 | 104×104 |
Bneck,5×5 | 40 | 72 | 是Yes | RE | 2 | 52×52 |
Bneck,5×5 | 40 | 120 | 是Yes | RE | 1 | 52×52 |
Bneck,5×5 | 40 | 120 | 是Yes | RE | 1 | 52×52 |
Bneck,3×3 | 80 | 240 | 否No | HS | 2 | 26×26 |
Bneck,3×3 | 80 | 200 | 否No | HS | 1 | 26×26 |
Bneck,3×3 | 80 | 184 | 否No | HS | 1 | 26×26 |
Bneck,3×3 | 80 | 184 | 是Yes | HS | 1 | 26×26 |
Bneck,3×3 | 112 | 480 | 是Yes | HS | 1 | 26×26 |
Bneck,3×3 | 112 | 672 | 是Yes | HS | 1 | 26×26 |
Bneck,5×5 | 160 | 672 | 是Yes | HS | 2 | 13×13 |
Bneck,5×5 | 160 | 960 | 是Yes | HS | 1 | 13×13 |
Bneck,5×5 | 160 | 960 | 否No | HS | 1 | 13×13 |
模型 Model | 不同IoU阈值下的mAP mAP under different IoU thresholds | |||
---|---|---|---|---|
0.5 | 0.6 | 0.7 | 0.75 | |
YOLOv4 | 69.66 | 66.71 | 58.34 | 52.94 |
Mini_YOLOv4 | 73.67 | 73.67 | 73.00 | 71.35 |
Table 2 Mean average precision (mAP) of different models under different IoU thresholds %
模型 Model | 不同IoU阈值下的mAP mAP under different IoU thresholds | |||
---|---|---|---|---|
0.5 | 0.6 | 0.7 | 0.75 | |
YOLOv4 | 69.66 | 66.71 | 58.34 | 52.94 |
Mini_YOLOv4 | 73.67 | 73.67 | 73.00 | 71.35 |
模型 Model | 不同姿态下的检测精度Precision under different postures/% | 检测速度 Speed/(frame·s-1) | ||||
---|---|---|---|---|---|---|
站立Stand | 趴卧Lie | 坐立Sit | 腹卧Ventral | 侧卧Lateral | ||
YOLOv4 | 66.17 | 69.25 | 71.15 | 64.82 | 76.89 | 33.98 |
Mini_YOLOv4 | 68.59 | 70.87 | 74.10 | 71.27 | 83.51 | 65.62 |
Table 3 Detection accuracy and speed of different models
模型 Model | 不同姿态下的检测精度Precision under different postures/% | 检测速度 Speed/(frame·s-1) | ||||
---|---|---|---|---|---|---|
站立Stand | 趴卧Lie | 坐立Sit | 腹卧Ventral | 侧卧Lateral | ||
YOLOv4 | 66.17 | 69.25 | 71.15 | 64.82 | 76.89 | 33.98 |
Mini_YOLOv4 | 68.59 | 70.87 | 74.10 | 71.27 | 83.51 | 65.62 |
模型 Model | 不同姿态下的召回率Recall under different postures/% | 不同姿态下的F1值F1 under different postures/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
站立 Stand | 趴卧 Lie | 坐立 Sit | 腹卧 Ventral | 侧卧 Lateral | 站立 Stand | 趴卧 Lie | 坐立 Sit | 腹卧 Ventral | 侧卧 Lateral | |
YOLOv4 | 66.67 | 70.26 | 73.78 | 71.22 | 84.54 | 0.78 | 0.78 | 0.79 | 0.75 | 0.78 |
Mini_YOLOv4 | 69.57 | 71.28 | 74.22 | 72.20 | 83.51 | 0.80 | 0.81 | 0.85 | 0.82 | 0.91 |
Table 4 Recall and F1 values of different models
模型 Model | 不同姿态下的召回率Recall under different postures/% | 不同姿态下的F1值F1 under different postures/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
站立 Stand | 趴卧 Lie | 坐立 Sit | 腹卧 Ventral | 侧卧 Lateral | 站立 Stand | 趴卧 Lie | 坐立 Sit | 腹卧 Ventral | 侧卧 Lateral | |
YOLOv4 | 66.67 | 70.26 | 73.78 | 71.22 | 84.54 | 0.78 | 0.78 | 0.79 | 0.75 | 0.78 |
Mini_YOLOv4 | 69.57 | 71.28 | 74.22 | 72.20 | 83.51 | 0.80 | 0.81 | 0.85 | 0.82 | 0.91 |
[1] | 党亚男, 王芳, 田建艳, 等. 面向猪的姿态识别的特征优选方法研究[J]. 江苏农业科学, 2016, 44(3): 448-451. |
DANG Y N, WANG F, TIAN J Y, et al. Research on feature optimization method for pig pose recognition[J]. Jiangsu Agricultural Sciences, 2016, 44(3): 448-451. (in Chinese) | |
[2] | 杨秋妹, 肖德琴, 张根兴. 猪只饮水行为机器视觉自动识别[J]. 农业机械学报, 2018, 49(6): 232-238. |
YANG Q M, XIAO D Q, ZHANG G X. Automatic pig drinking behavior recognition with machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 232-238. (in Chinese with English abstract) | |
[3] | 嵇杨培, 杨颖, 刘刚. 基于可见光光谱和YOLOv2的生猪饮食行为识别[J]. 光谱学与光谱分析, 2020, 40(5): 1588-1594. |
JI Y P, YANG Y, LIU G. Recognition of pig eating and drinking behavior based on visible spectrum and YOLOv2[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1588-1594. (in Chinese with English abstract) | |
[4] |
TRAULSEN I, SCHEEL C, AUER W, et al. Using acceleration data to automatically detect the onset of farrowing in sows[J]. Sensors (Basel, Switzerland), 2018, 18(1): 170.
DOI URL |
[5] | 王凯, 刘春红, 段青玲. 基于MFO-LSTM的母猪发情行为识别[J]. 农业工程学报, 2020, 36(14): 211-219. |
WANG K, LIU C H, DUAN Q L. Identification of sow oestrus behavior based on MFO-LSTM[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(14): 211-219. (in Chinese with English abstract) | |
[6] | 何屿彤, 李斌, 张锋, 等. 基于改进YOLOv3的猪脸识别[J]. 中国农业大学学报, 2021, 26(3): 53-62. |
HE Y T, LI B, ZHANG F, et al. Pig face recognition based on improved YOLOv3[J]. Journal of China Agricultural University, 2021, 26(3): 53-62. (in Chinese with English abstract) | |
[7] | 焦俊, 王文周, 侯金波, 等. 基于改进残差网络的黑毛猪肉新鲜度识别方法[J]. 农业机械学报, 2019, 50(8): 364-371. |
JIAO J, WANG W Z, HOU J B, et al. Freshness identification of iberico pork based on improved residual network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 364-371. (in Chinese with English abstract) | |
[8] | 邱洪涛, 孙裴, 侯金波, 等. 基于Caffe的猪肉新鲜度分级的设计与实现[J]. 江苏农业学报, 2019, 35(2): 461-468. |
QIU H T, SUN P, HOU J B, et al. Design and implementation of pork freshness grading based on Caffe[J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(2): 461-468. (in Chinese with English abstract) | |
[9] |
MARSOT M, MEI J Q, SHAN X C, et al. An adaptive pig face recognition approach using convolutional neural networks[J]. Computers and Electronics in Agriculture, 2020, 173: 105386.
DOI URL |
[10] | 甘海明, 薛月菊, 李诗梅, 等. 基于时空信息融合的母猪哺乳行为识别[J]. 农业机械学报, 2020, 51(S1): 357-363. |
GAN H M, XUE Y J, LI S M, et al. Automatic sow nursing behaviour recognition based on spatio-temporal information fusion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 357-363. (in Chinese with English abstract) | |
[11] | 燕红文, 刘振宇, 崔清亮, 等. 基于改进Tiny-YOLO模型的群养生猪脸部姿态检测[J]. 农业工程学报, 2019, 35(18): 169-179. |
YAN H W, LIU Z Y, CUI Q L, et al. Detection of facial gestures of group pigs based on improved Tiny-YOLO[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18): 169-179. (in Chinese with English abstract) | |
[12] |
PSOTA E T, MITTEK M, PÉREZ L C, et al. Multi-pig part detection and association with a fully-convolutional network[J]. Sensors (Basel, Switzerland), 2019, 19(4): 852.
DOI URL |
[13] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition.Columbus, OH, USA: IEEE, 2014: 580-587. |
[14] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[15] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[J]. Lecture Notes in Computer Science, 2016, 9905: 21-37. |
[16] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 779-788. |
[17] | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 6517-6525. |
[18] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2021-06-29]. https://arxiv.org/abs/1804.02767 |
[19] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2021-06-29]. https://arxiv.org/abs/2004.10934 |
[20] | HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). October 27-November 2, 2019. Seoul:IEEE, 2019: 1314-1324. |
[21] | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 1800-1807. |
[22] | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 2818-2826. |
[23] | WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, WA, USA: IEEE, 2020: 1571-1580. |
[24] | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 8759-8768. |
[25] | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17) [2021-06-29]. https://arxiv.org/abs/1704.04861 |
[26] | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 4510-4520. |
[27] | TAN M X, CHEN B, PANG R M, et al. MnasNet: platform-aware neural architecture search for mobile[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019: 2815-2823. |
[28] | 薛月菊, 朱勋沐, 郑婵, 等. 基于改进Faster R-CNN识别深度视频图像哺乳母猪姿态[J]. 农业工程学报, 2018, 34(9): 189-196. |
XUE Y J, ZHU X M, ZHENG C, et al. Lactating sow postures recognition from depth image of videos based on improved Faster R-CNN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 189-196. (in Chinese with English abstract) |
[1] | YAN Ning, ZHANG Han, DONG Hongtu, KANG Kai, LUO Bin. Wheat variety recognition method based on same position segmentation of transmitted light and reflected light images [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 590-598. |
[2] | LIN Xiaoteng, SUN Qian, ZHENG Shuhe. Design and experiment of energy-saving lighting system for plant factory based on OpenCV [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 626-635. |
[3] | XIAO Zhiyun, WANG Yining. Hyperspectral retrieval for chlorophyll contents of Syringa oblata leaves based on RF-VR [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2164-2173. |
[4] | ZHONG Weizhen, LIU Xinlei, YANG Kunlong, LI Fengguo. Research on multi-target leaf segmentation and recognition algorithm under complex background based on Mask-RCNN [J]. , 2020, 32(11): 2059-2066. |
[5] | YAN Jianwei, SU Xiaodong, ZHAO Yuan, LIU Jinping. Wheat germ sheath recognition based on image features [J]. , 2019, 31(2): 326-332. |
[6] | ZHANG Mandun, SHAN Xinyuan, YU Yang, MI Na, YAN Gang, GUO Yingchun. Research of individual dairy cattle recognition based on wavelet transform and improved KPCA [J]. , 2017, 29(12): 2000-2008. |
[7] | BI Liheng. Plant species recognition based on leaf image algorithm [J]. , 2017, 29(12): 2142-2148. |
[8] | ZHANG Shanwen, HUANG Wenzhun, YOU Zhuhong. Recognition method of winter jujube diseases based on internet of things and deep convolutional neural network [J]. , 2017, 29(11): 1868-1874. |
[9] | LI Qi, HU Yicong, WU Fuchuang. Environment control system of seedling box based on image processing [J]. , 2017, 29(11): 1912-1919. |
[10] | XIA Yongquan, WANG Bing, ZHI Jun, HUANG Haipeng, SUN Jingru. Automatic extraction of plant diseases based on EM and K-means hybrid clustering [J]. , 2017, 29(8): 1384-1391. |
[11] | WU Qinggang, ZHANG Weiguo, CHANG Huawen, JIN Baohua, LIU Zhaoxia. Location of occluded apples based on gradient Hough transform [J]. , 2017, 29(6): 1009-1016. |
[12] | ZHANG Shanwen, KONG Weiwei, WANG Zhen. Plant classification method based on dictionary learning with sparse representation [J]. , 2017, 29(2): 338-344. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 630
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 425
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||