Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (3): 590-597.DOI: 10.3969/j.issn.1004-1524.2023.03.12
• Horticultural Science • Previous Articles Next Articles
CUI Junjie(), LYU Zhen, YANG Tianwen, WANG Jing, HONG Yu, CAO Yi*(
)
Received:
2022-05-05
Online:
2023-03-25
Published:
2023-04-07
CLC Number:
CUI Junjie, LYU Zhen, YANG Tianwen, WANG Jing, HONG Yu, CAO Yi. Construction of high-density bin marker genetic map and QTL mapping for fruit length in Luffa spp.[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 590-597.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.03.12
材料 Sample | 平均值 Mean/cm | 标准差 Standard deviation | 标准误 Standard error of the mean | 正态分布W检验(P) Normal distribution W test (P) | 偏度 Skewness | 峰度 Kurtosis |
---|---|---|---|---|---|---|
盛优长丝瓜Shengyou | 62.70 | 5.06 | 1.69 | 0.20 | -0.44 | -0.09 |
苹果丝瓜Pingguo | 13.63 | 0.76 | 0.25 | 0.98 | -0.06 | -1.88 |
F1 | 41.04 | 2.06 | 0.69 | 0.59 | -0.39 | -0.95 |
BC1 | 19.76 | 5.65 | 0.75 | 0.02 | 0.83 | -0.13 |
Table 1 Distribution of fruit length for the parents and population of Luffa spp.
材料 Sample | 平均值 Mean/cm | 标准差 Standard deviation | 标准误 Standard error of the mean | 正态分布W检验(P) Normal distribution W test (P) | 偏度 Skewness | 峰度 Kurtosis |
---|---|---|---|---|---|---|
盛优长丝瓜Shengyou | 62.70 | 5.06 | 1.69 | 0.20 | -0.44 | -0.09 |
苹果丝瓜Pingguo | 13.63 | 0.76 | 0.25 | 0.98 | -0.06 | -1.88 |
F1 | 41.04 | 2.06 | 0.69 | 0.59 | -0.39 | -0.95 |
BC1 | 19.76 | 5.65 | 0.75 | 0.02 | 0.83 | -0.13 |
Fig.1 Distribution of fruit length of Luffa spp. in BC1 population P1 and P2 represented Luffa acutangula ‘shengyou’ and Luffa cylindrica ‘pingguo’, respectively.
Fig.2 Map of 9 494 bin markers in Luffa spp. Scaffold 1-Scaffold13 represented 13 chromosomes of Luffa, b represented ‘Pingguo’ genotype, h represented heterozygous genotype, and u represented unknown genotype.
连锁群 Linkage groups | 标记数量 Number of markers | 连锁群长度 Linkage group length/cM | 平均遗传距离 Average distance/cM | 覆盖基因组大小 Genome coverage/Mb | 重组率(cM/Mb) Recombination rate (cM/Mb) |
---|---|---|---|---|---|
Scaf 1 | 948 | 318.34 | 0.34 | 56.71 | 5.61 |
Scaf 2 | 1 365 | 310.58 | 0.23 | 51.04 | 6.08 |
Scaf 3 | 1 097 | 283.53 | 0.26 | 49.46 | 5.73 |
Scaf 4 | 417 | 98.44 | 0.24 | 48.32 | 2.04 |
Scaf 5 | 700 | 258.13 | 0.37 | 48.36 | 5.34 |
Scaf 6 | 509 | 333.61 | 0.66 | 48.61 | 6.86 |
Scaf 7 | 1 035 | 248.23 | 0.24 | 48.37 | 5.13 |
Scaf 8 | 771 | 291.90 | 0.38 | 45.43 | 6.43 |
Scaf 9 | 127 | 35.70 | 0.28 | 4.81 | 7.42 |
Scaf 10-1 | 130 | 25.98 | 0.20 | 4.62 | 5.62 |
Scaf 10-2 | 153 | 21.25 | 0.14 | 4.11 | 5.17 |
Scaf 11 | 729 | 275.49 | 0.38 | 44.99 | 6.12 |
Scaf 12 | 538 | 242.54 | 0.45 | 41.69 | 5.82 |
Scaf 13 | 780 | 212.85 | 0.27 | 41.82 | 5.09 |
总数Total | 9 299 | 2 956.57 | 0.32 | 538.33 | 5.49 |
Table 2 Distribution of bin markers on the linkage map of Luffa spp.
连锁群 Linkage groups | 标记数量 Number of markers | 连锁群长度 Linkage group length/cM | 平均遗传距离 Average distance/cM | 覆盖基因组大小 Genome coverage/Mb | 重组率(cM/Mb) Recombination rate (cM/Mb) |
---|---|---|---|---|---|
Scaf 1 | 948 | 318.34 | 0.34 | 56.71 | 5.61 |
Scaf 2 | 1 365 | 310.58 | 0.23 | 51.04 | 6.08 |
Scaf 3 | 1 097 | 283.53 | 0.26 | 49.46 | 5.73 |
Scaf 4 | 417 | 98.44 | 0.24 | 48.32 | 2.04 |
Scaf 5 | 700 | 258.13 | 0.37 | 48.36 | 5.34 |
Scaf 6 | 509 | 333.61 | 0.66 | 48.61 | 6.86 |
Scaf 7 | 1 035 | 248.23 | 0.24 | 48.37 | 5.13 |
Scaf 8 | 771 | 291.90 | 0.38 | 45.43 | 6.43 |
Scaf 9 | 127 | 35.70 | 0.28 | 4.81 | 7.42 |
Scaf 10-1 | 130 | 25.98 | 0.20 | 4.62 | 5.62 |
Scaf 10-2 | 153 | 21.25 | 0.14 | 4.11 | 5.17 |
Scaf 11 | 729 | 275.49 | 0.38 | 44.99 | 6.12 |
Scaf 12 | 538 | 242.54 | 0.45 | 41.69 | 5.82 |
Scaf 13 | 780 | 212.85 | 0.27 | 41.82 | 5.09 |
总数Total | 9 299 | 2 956.57 | 0.32 | 538.33 | 5.49 |
[1] | 李佳欣, 冯玉. 丝瓜不同部位药理作用研究进展[J]. 食品工业科技, 2021, 42(10): 355-361. |
LI J X, FENG Y. Research progress on pharmacological action of different parts of Luffa cylindrica(L.) Roem.[J]. Science and Technology of Food Industry, 2021, 42(10): 355-361. (in Chinese with English abstract) | |
[2] |
FILIPOWICZ N, SCHAEFER H, RENNER S S. Revisiting Luffa(Cucurbitaceae) 25 years after C. heiser: species boundaries and application of names tested with plastid and nuclear DNA sequences[J]. Systematic Botany, 2014, 39(1): 205-215.
DOI URL |
[3] |
PRAKASH K, PANDEY A, RADHAMANI J, et al. Morphological variability in cultivated and wild species of Luffa(Cucurbitaceae) from India[J]. Genetic Resources and Crop Evolution, 2013, 60(8): 2319-2329.
DOI URL |
[4] | 周庆友. 丝瓜主要农艺性状的遗传分析及种皮颜色基因定位[D]. 南昌: 江西农业大学, 2013. |
ZHOU Q Y. Genetic analysis of main agronomic traits and gene localization of seed coat color in Luffa spp[D]. Nanchang: Jiangxi Agricultural University, 2013. (in Chinese with English abstract) | |
[5] |
CUI J J, CHENG J W, WANG G P, et al. QTL analysis of three flower-related traits based on an interspecific genetic map of Luffa[J]. Euphytica, 2015, 202(1): 45-54.
DOI URL |
[6] |
WU H B, HE X L, GONG H, et al. Genetic linkage map construction and QTL analysis of two interspecific reproductive isolation traits in sponge gourd[J]. Frontiers in Plant Science, 2016, 7: 980.
DOI PMID |
[7] | 吴宗斌. 丝瓜果实苦味分子标记研究[D]. 广州: 华南农业大学, 2017. |
WU Z B. Development of molecular markers for fruit bitter in Luffa[D]. Guangzhou: South China Agricultural University, 2017. (in Chinese with English abstract) | |
[8] | 秦永强. 丝瓜果实苦味基因的定位研究[D]. 广州: 华南农业大学, 2018. |
QIN Y Q. Mapping genes for fruit bitterness in Luffa[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese with English abstract) | |
[9] |
LOU L N, SU X J, LIU X H, et al. Construction of a high-density genetic linkage map and identification of gene controlling resistance to cucumber mosaic virus in Luffa cylindrica(L.) Roem. based on specific length amplified fragment sequencing[J]. Molecular Biology Reports, 2020, 47(8): 5831-5841.
DOI |
[10] |
WU H B, ZHAO G J, GONG H, et al. A high-quality sponge gourd (Luffa cylindrica) genome[J]. Horticulture Research, 2020, 7: 128.
DOI |
[11] |
POOTAKHAM W, SONTHIROD C, NAKTANG C, et al. De novo assemblies of Luffa acutangula and Luffa cylindrica genomes reveal an expansion associated with substantial accumulation of transposable elements[J]. Molecular Ecology Resources, 2021, 21(1): 212-225.
DOI URL |
[12] |
ZHANG T, REN X Y, ZHANG Z, et al. Long-read sequencing and de novo assembly of the Luffa cylindrica(L.) Roem. genome[J]. Molecular Ecology Resources, 2020, 20(2): 511-519.
DOI URL |
[13] | 高军, 徐海, 苏小俊, 等. 普通丝瓜果长遗传规律分析[J]. 江苏农业科学, 2007, 35(5): 123-125. |
GAO J, XU H, SU X J, et al. Analysis of genetic law of common silk melon and fruit length[J]. Jiangsu Agricultural Sciences, 2007, 35(5): 123-125. (in Chinese) | |
[14] | 崔竣杰, 程蛟文, 谭澍, 等. 丝瓜果长及果柄长的遗传规律分析[J]. 广东农业科学, 2014, 41(8): 52-56. |
CUI J J, CHENG J W, TAN S, et al. Genetic analysis of fruit length and fruit stalk length in Luffa[J]. Guangdong Agricultural Sciences, 2014, 41(8): 52-56. (in Chinese with English abstract) | |
[15] |
MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Research, 1980, 8(19): 4321-4326.
DOI PMID |
[16] |
HUANG X H, FENG Q, QIAN Q, et al. High-throughput genotyping by whole-genome resequencing[J]. Genome Research, 2009, 19(6): 1068-1076.
DOI PMID |
[17] |
MCCOUCH S R. Gene nomenclature system for rice[J]. Rice, 2008, 1(1): 72-84.
DOI URL |
[18] | 崔竣杰, 宋建文, 汪国平, 等. 丝瓜种质资源亲缘关系的SRAP分析[J]. 植物遗传资源学报, 2012, 13(6): 1061-1066. |
CUI J J, SONG J W, WANG G P, et al. Genetic diversity analysis of germplasm resources of towel gourd based on SRAP markers[J]. Journal of Plant Genetic Resources, 2012, 13(6): 1061-1066. (in Chinese with English abstract) | |
[19] | 朱海生, 叶新如, 陈敏氡, 等. 丝瓜种质资源的SRAP分析[J]. 分子植物育种, 2016, 14(8): 2217-2223. |
ZHU H S, YE X R, CHEN M D, et al. Analysis of genetic diversity in loofah by SRAP markers[J]. Molecular Plant Breeding, 2016, 14(8): 2217-2223. (in Chinese with English abstract) | |
[20] |
XIE W B, FENG Q, YU H H, et al. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(23): 10578-10583.
DOI PMID |
[21] |
赵凌, 张勇, 魏晓东, 等. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836.
DOI |
ZHAO L, ZHANG Y, WEI X D, et al. Mapping of QTLs for chlorophyll content in flag leaves of rice on high-density Bin map[J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836. (in Chinese with English abstract)
DOI |
|
[22] | 赖国荣, 张静, 刘函, 等. 基于GBS构建玉米高密度遗传图谱及营养品质性状QTL定位[J]. 农业生物技术学报, 2017, 25(9): 1400-1410. |
LAI G R, ZHANG J, LIU H, et al. Construction of high density genetic map via GBS technology and QTL mapping for nutritional quality traits in maize (Zea mays)[J]. Journal of Agricultural Biotechnology, 2017, 25(9): 1400-1410. (in Chinese with English abstract) | |
[23] |
曹永策, 李曙光, 张新草, 等. 夏大豆重组自交系群体遗传图谱构建及开花期QTL分析[J]. 中国农业科学, 2020, 53(4): 683-694.
DOI |
CAO Y C, LI S G, ZHANG X C, et al. Construction of genetic map and mapping QTL for flowering time in a summer planting soybean recombinant inbred line population[J]. Scientia Agricultura Sinica, 2020, 53(4): 683-694. (in Chinese with English abstract)
DOI |
|
[24] |
ZHOU Q, MIAO H, LI S, et al. A sequencing-based linkage map of cucumber[J]. Molecular Plant, 2015, 8(6): 961-963.
DOI PMID |
[25] |
ZHAO J Y, JIANG L, CHE G, et al. A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber[J]. The Plant Cell, 2019, 31(6): 1289-1307.
DOI URL |
[26] |
PAN Y P, LIANG X J, GAO M L, et al. Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog[J]. Theoretical and Applied Genetics, 2017, 130(3): 573-586.
DOI |
[27] |
XIN T X, ZHANG Z, LI S, et al. Genetic regulation of ethylene dosage for cucumber fruit elongation[J]. The Plant Cell, 2019, 31(5): 1063-1076.
DOI PMID |
[28] |
DOU J L, ZHAO S J, LU X Q, et al. Genetic mapping reveals a candidate gene (ClFS 1) for fruit shape in watermelon (Citrullus lanatus L.)[J]. Theoretical and Applied Genetics, 2018, 131(4): 947-958.
DOI URL |
[29] |
FERNANDEZ-SILVA I, MORENO E, ESSAFI A, et al. Shaping melons: agronomic and genetic characterization of QTLs that modify melon fruit morphology[J]. Theoretical and Applied Genetics, 2010, 121(5): 931-940.
DOI URL |
[30] |
范文林, 王贤磊, 李群, 等. 甜瓜果长基因fl与性别表达基因a的遗传分析及定位[J]. 新疆农业科学, 2018, 55(10): 1765-1774.
DOI |
FAN W L, WANG X L, LI Q, et al. Genetic analysis and primary localization of fruit length gene fl and sex expression gene a in melon (Cucumis melo L.)[J]. Xinjiang Agricultural Sciences, 2018, 55(10): 1765-1774. (in Chinese with English abstract) |
[1] | ZHANG Kexin, DAI Dongyang, WANG Haonan, YU Mingyue, SHENG Yunyan. Genetic and QTL analysis of seed traits in melon (Cucumis melon L.) [J]. , 2018, 30(9): 1496-1503. |
[2] | HUANG Ji-xiang;WANG Yi-long;NI Xi-yuan;REN Li-ping;CAO Ming-fu;ZHAO Jian-yi;*. Genetic analysis of ten agronomic traits using doubled haploid population in Brassica napus L. [J]. , 2009, 21(05): 0-423. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||