Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (2): 237-246.DOI: 10.3969/j.issn.1004-1524.20230123
• Crop Science • Previous Articles Next Articles
ZHANG Bin1(), YUAN Zhihui1, PENG Lujun2, ZHOU Xiangping3, ZHOU Deying3, WANG Xichun3,*(
)
Received:
2023-02-09
Online:
2024-02-25
Published:
2024-03-05
CLC Number:
ZHANG Bin, YUAN Zhihui, PENG Lujun, ZHOU Xiangping, ZHOU Deying, WANG Xichun. Fermented rice husk affects the growth and development of tobacco seedlings by enhancing nitrogen metabolism pathway[J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 237-246.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230123
处理 Treatment | 体积分数Volume fraction | |||||
---|---|---|---|---|---|---|
发酵稻壳 Fermented rice husk | 炭化稻壳 Carbonized rice husk | 草炭 Turf | 珍珠岩 Perlite | 蛭石 Vermiculite | 牛粪 Cow dung | |
FRH1 | 40 | 0 | 27.5 | 20 | 7.5 | 5 |
FRH2 | 30 | 10 | 27.5 | 20 | 7.5 | 5 |
FRH3 | 20 | 20 | 27.5 | 20 | 7.5 | 5 |
FRH4 | 10 | 30 | 27.5 | 20 | 7.5 | 5 |
FRH5 | 5 | 35 | 27.5 | 20 | 7.5 | 5 |
CRH | 0 | 40 | 27.5 | 20 | 7.5 | 5 |
Table 1 Composition of substrates %
处理 Treatment | 体积分数Volume fraction | |||||
---|---|---|---|---|---|---|
发酵稻壳 Fermented rice husk | 炭化稻壳 Carbonized rice husk | 草炭 Turf | 珍珠岩 Perlite | 蛭石 Vermiculite | 牛粪 Cow dung | |
FRH1 | 40 | 0 | 27.5 | 20 | 7.5 | 5 |
FRH2 | 30 | 10 | 27.5 | 20 | 7.5 | 5 |
FRH3 | 20 | 20 | 27.5 | 20 | 7.5 | 5 |
FRH4 | 10 | 30 | 27.5 | 20 | 7.5 | 5 |
FRH5 | 5 | 35 | 27.5 | 20 | 7.5 | 5 |
CRH | 0 | 40 | 27.5 | 20 | 7.5 | 5 |
基因ID Gene ID | 正向引物序列(5'→3') Forward primer sequence (5'→3') | 反向引物序列(5'→3') Reverse primer sequence(5'→3') |
---|---|---|
newGene_21354 | ATTGCCGTGGCCTTCCCTT | AGCTGCCAATGGGACCTTC |
newGene_24233 | ATCACTTTGTGTTGTGAGACTGA | AGAATCTTCCTTGTTGTAGTGAAAG |
newGene_2614 | CCGAAGCTGAGAGGCAGAAA | AGCAAATAGGAAAAAGTCAGACACG |
newGene_2616 | GCAGAGTACACCGAAGCTGA | AGCAAATAGAAGAAAGTCAGACACG |
newGene_26504 | ACTCCGCCTAATGTAACGCC | GCACACGTTTACTATGAGGATGG |
newGene_31743 | AAACAGCTTGAAGTTCGCCG | TGAGACTCAGCTCATTGAATCTT |
gene_21870 | TTGCGGGCAAGCCATAATTG | ATCCTCACCGGCTTTGTCAC |
gene_31399 | GAGAGATCCGGCTTACTGTGG | AGTCTCGATTATGGCTTGTCCA |
gene_41133 | GCGGGCAAGCCATAATTGAG | CATCCTCACAGGCTGCGTTA |
gene_53574 | ACGATCGATGAGGTGGGGTA | TCGAGAAATGACCCTAACGGC |
gene_56873 | GTGCAAGACTCACAACTGCG | AGGCTTCCCATCCCCTTAGT |
gene_73099 | ACCCCGGTGGTTCTGACA | AGGTGCTAGAAAGCTGCTGA |
gene_1665 | TGCCCCTGTAATCTCAGCAG | TAGCCACAGCAGCATTGACA |
Table 2 Genes and primers for qRT-PCR analysis
基因ID Gene ID | 正向引物序列(5'→3') Forward primer sequence (5'→3') | 反向引物序列(5'→3') Reverse primer sequence(5'→3') |
---|---|---|
newGene_21354 | ATTGCCGTGGCCTTCCCTT | AGCTGCCAATGGGACCTTC |
newGene_24233 | ATCACTTTGTGTTGTGAGACTGA | AGAATCTTCCTTGTTGTAGTGAAAG |
newGene_2614 | CCGAAGCTGAGAGGCAGAAA | AGCAAATAGGAAAAAGTCAGACACG |
newGene_2616 | GCAGAGTACACCGAAGCTGA | AGCAAATAGAAGAAAGTCAGACACG |
newGene_26504 | ACTCCGCCTAATGTAACGCC | GCACACGTTTACTATGAGGATGG |
newGene_31743 | AAACAGCTTGAAGTTCGCCG | TGAGACTCAGCTCATTGAATCTT |
gene_21870 | TTGCGGGCAAGCCATAATTG | ATCCTCACCGGCTTTGTCAC |
gene_31399 | GAGAGATCCGGCTTACTGTGG | AGTCTCGATTATGGCTTGTCCA |
gene_41133 | GCGGGCAAGCCATAATTGAG | CATCCTCACAGGCTGCGTTA |
gene_53574 | ACGATCGATGAGGTGGGGTA | TCGAGAAATGACCCTAACGGC |
gene_56873 | GTGCAAGACTCACAACTGCG | AGGCTTCCCATCCCCTTAGT |
gene_73099 | ACCCCGGTGGTTCTGACA | AGGTGCTAGAAAGCTGCTGA |
gene_1665 | TGCCCCTGTAATCTCAGCAG | TAGCCACAGCAGCATTGACA |
Fig.1 Growth potential and morphological indexes of tobacco seedlings under different treatments A, Growth potential. CRH, Carbonized rice husk; FRH, fermented rice husk. Bars marked without the same lowercase letter indicated significant differences at P<0.05. The same as below.
处理 Treatment | 一级侧根Primary lateral root | 脯氨酸含量 Proline content/ (μg·g-1) | 过氧化氢 酶活性 CAT activity/ (U·g-1·min-1) | 超氧化物歧 化酶活性 SOD activity/ (U·g-1min-1) | 丙二醛含量 MDA content/ (mmol·g-1) | |||
---|---|---|---|---|---|---|---|---|
数量 Quantity | 长度 Length/ mm | 直径 Diameter/ mm | 表面积 Surface area/cm2 | |||||
FRH1 | 292±32 a | 39.7±2.7a | 0.066±0.003 a | 4.9±0.5 a | 7.0±1.6 a | 232±8 a | 45.7±4.5 a | 1.5±0.4 a |
CRH | 194±35 b | 28.3±3.7b | 0.063±0.009 a | 3.2±0.4 b | 10.6±1.6 b | 204±5 b | 27.1±9.5 b | 1.8±0.3 a |
Table 3 Primary lateral roots and root physiological indicators of tobacco seedlings under different treatments
处理 Treatment | 一级侧根Primary lateral root | 脯氨酸含量 Proline content/ (μg·g-1) | 过氧化氢 酶活性 CAT activity/ (U·g-1·min-1) | 超氧化物歧 化酶活性 SOD activity/ (U·g-1min-1) | 丙二醛含量 MDA content/ (mmol·g-1) | |||
---|---|---|---|---|---|---|---|---|
数量 Quantity | 长度 Length/ mm | 直径 Diameter/ mm | 表面积 Surface area/cm2 | |||||
FRH1 | 292±32 a | 39.7±2.7a | 0.066±0.003 a | 4.9±0.5 a | 7.0±1.6 a | 232±8 a | 45.7±4.5 a | 1.5±0.4 a |
CRH | 194±35 b | 28.3±3.7b | 0.063±0.009 a | 3.2±0.4 b | 10.6±1.6 b | 204±5 b | 27.1±9.5 b | 1.8±0.3 a |
处理 Treatments | 过滤序列 Filter sequence | Q30/% | GC含量 GC content/% | 比对数 Comparison number | 比对率 Comparison rate/% | 单一比对率 Single comparison rate/% |
---|---|---|---|---|---|---|
FRH1-1 | 48 113 920 | 94.67 | 43.22 | 44 752 999 | 95.20 | 93.01 |
FRH1-2 | 45 998 192 | 94.44 | 43.16 | 42 797 732 | 95.19 | 93.04 |
FRH1-3 | 51 248 126 | 94.68 | 43.12 | 47 770 763 | 95.42 | 93.21 |
CRH 1 | 45 101 078 | 94.29 | 43.28 | 41 752 391 | 94.80 | 92.58 |
CRH 2 | 43 370 834 | 94.78 | 43.31 | 40 360 157 | 95.29 | 93.06 |
CRH 3 | 54 891 242 | 94.48 | 43.35 | 50 322 002 | 93.89 | 91.68 |
Table 4 Quality analysis of transcriptome sequencing data
处理 Treatments | 过滤序列 Filter sequence | Q30/% | GC含量 GC content/% | 比对数 Comparison number | 比对率 Comparison rate/% | 单一比对率 Single comparison rate/% |
---|---|---|---|---|---|---|
FRH1-1 | 48 113 920 | 94.67 | 43.22 | 44 752 999 | 95.20 | 93.01 |
FRH1-2 | 45 998 192 | 94.44 | 43.16 | 42 797 732 | 95.19 | 93.04 |
FRH1-3 | 51 248 126 | 94.68 | 43.12 | 47 770 763 | 95.42 | 93.21 |
CRH 1 | 45 101 078 | 94.29 | 43.28 | 41 752 391 | 94.80 | 92.58 |
CRH 2 | 43 370 834 | 94.78 | 43.31 | 40 360 157 | 95.29 | 93.06 |
CRH 3 | 54 891 242 | 94.48 | 43.35 | 50 322 002 | 93.89 | 91.68 |
基因ID Gene ID | 功能注释 Annotation | 表达水平 Expression level | RNA-Seq(FPKM) log2(fold-change) | 相对表达量(FRH1/CRH) Relative expression |
---|---|---|---|---|
newGene_21354 | 硝酸盐转运蛋白Nitrate transporter | 下调Down-regulated | -1.89 | 0.29 |
newGene_24233 | 硝酸盐转运蛋白Nitrate transporter | 下调Down-regulated | -1.06 | 0.49 |
newGene_2614 | 硝酸盐转运蛋白Nitrate transporter | 上调Up-regulated | 0.64 | 1.60 |
newGene_2616 | 硝酸盐转运蛋白Nitrate transporter | 上调Up-regulated | 0.60 | 1.56 |
newGene_26504 | 硝酸盐转运蛋白Nitrate transporter | 下调Down-regulated | -1.26 | 0.43 |
newGene_31743 | 硝酸盐转运蛋白Nitrate transporter | 上调Up-regulated | 0.72 | 1.69 |
gene_21870 | 亚硝酸盐还原酶Nitrite reductase | 上调Up-regulated | 1.01 | 2.07 |
gene_31399 | 亚硝酸盐还原酶Nitrite reductase | 上调Up-regulated | 0.87 | 1.87 |
gene_41133 | 亚硝酸盐还原酶Nitrite reductase | 上调Up-regulated | 0.81 | 1.79 |
gene_53574 | 硝酸还原酶Nitrate reductase | 上调Up-regulated | 1.16 | 2.28 |
gene_73099 | 硝酸还原酶Nitrate reductase | 上调Up-regulated | 0.77 | 1.74 |
gene_56873 | 谷氨酸脱氢酶Glutamate dehydrogenase | 上调Up-regulated | 0.67 | 1.77 |
Table 5 Differential gene expression level of nitrogen metabolism pathway
基因ID Gene ID | 功能注释 Annotation | 表达水平 Expression level | RNA-Seq(FPKM) log2(fold-change) | 相对表达量(FRH1/CRH) Relative expression |
---|---|---|---|---|
newGene_21354 | 硝酸盐转运蛋白Nitrate transporter | 下调Down-regulated | -1.89 | 0.29 |
newGene_24233 | 硝酸盐转运蛋白Nitrate transporter | 下调Down-regulated | -1.06 | 0.49 |
newGene_2614 | 硝酸盐转运蛋白Nitrate transporter | 上调Up-regulated | 0.64 | 1.60 |
newGene_2616 | 硝酸盐转运蛋白Nitrate transporter | 上调Up-regulated | 0.60 | 1.56 |
newGene_26504 | 硝酸盐转运蛋白Nitrate transporter | 下调Down-regulated | -1.26 | 0.43 |
newGene_31743 | 硝酸盐转运蛋白Nitrate transporter | 上调Up-regulated | 0.72 | 1.69 |
gene_21870 | 亚硝酸盐还原酶Nitrite reductase | 上调Up-regulated | 1.01 | 2.07 |
gene_31399 | 亚硝酸盐还原酶Nitrite reductase | 上调Up-regulated | 0.87 | 1.87 |
gene_41133 | 亚硝酸盐还原酶Nitrite reductase | 上调Up-regulated | 0.81 | 1.79 |
gene_53574 | 硝酸还原酶Nitrate reductase | 上调Up-regulated | 1.16 | 2.28 |
gene_73099 | 硝酸还原酶Nitrate reductase | 上调Up-regulated | 0.77 | 1.74 |
gene_56873 | 谷氨酸脱氢酶Glutamate dehydrogenase | 上调Up-regulated | 0.67 | 1.77 |
[1] | 董建新, 苏建东, 王刚, 等. 我国烟草育苗技术现状分析[J]. 中国烟草学报, 2015, 21(1): 119-124. |
DONG J X, SU J D, WANG G, et al. Status quo of tobacco seedling technology in China[J]. Acta Tabacaria Sinica, 2015, 21(1): 119-124. (in Chinese with English abstract) | |
[2] | 谢春凤, 屠乃美, 田峰, 等. 烟草漂浮育苗基质替代研究现状及展望[J]. 中国农学通报, 2013, 29(16): 58-62. |
XIE C F, TU N M, TIAN F, et al. Research progress and future development on substituted medium in tobacco floating-bed seedling nursing system[J]. Chinese Agricultural Science Bulletin, 2013, 29(16): 58-62. (in Chinese with English abstract) | |
[3] | 史万华, 王树林, 刘好宝, 等. 烟草轻简高效栽培技术研究: Ⅱ.蔗渣替代草炭育苗节本降耗效果分析[J]. 中国烟草科学, 2011, 32(1): 27-31. |
SHI W H, WANG S L, LIU H B, et al. Study on simplified and labor saving cultivation of tobacco Ⅱ. study on bagasse substituted peat and its economic analysis in floating system[J]. Chinese Tobacco Science, 2011, 32(1): 27-31. (in Chinese with English abstract) | |
[4] | 牛书金, 习红昂, 孙军伟. 腐熟花生糠在烟草漂浮育苗基质中的应用试验[J]. 烟草科技, 2009, 42(12): 55-57. |
NIU S J, XI H A, SUN J W. Application test of decayed peanut shell in matrix of tobacco float seedling system[J]. Tobacco Science & Technology, 2009, 42(12): 55-57. (in Chinese with English abstract) | |
[5] | 吴涛, 晋艳, 杨宇虹, 等. 药渣及秸秆替代基质中草炭进行烤烟漂浮育苗研究初报[J]. 中国农学通报, 2007, 23(1): 305-309. |
WU T, JIN Y, YANG Y H, et al. The primary study of hurb residue and screw extrusion substituted medium in floating system of tobacco[J]. Chinese Agricultural Science Bulletin, 2007, 23(1): 305-309. (in Chinese with English abstract) | |
[6] | CHANDRASEKHAR S, SATYANARAYANA K G, PRAMADA P N, et al. Review Processing, properties and applications of reactive silica from rice husk: an overview[J]. Journal of Materials Science, 2003, 38(15): 3159-3168. |
[7] | 党娅琴, 邢英. 稻壳生物炭吸附无机汞和甲基汞的特征研究[J]. 地球与环境, 2022, 50(5): 666-675. |
DANG Y Q, XING Y. The characteristic of adsorption of inorganic mercury and methylmercury by rice husk biochar[J]. Earth and Environment, 2022, 50(5): 666-675. (in Chinese with English abstract) | |
[8] | 张双燕, 任浩, 丁文清, 等. 农业废弃物稻壳材料化利用研究进展[J]. 中国农学通报, 2022, 38(9): 101-108. |
ZHANG S Y, REN H, DING W Q, et al. Research progress on material utilization of agricultural waste rice husk[J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 101-108. (in Chinese with English abstract) | |
[9] | 陈雪娇, 王宇蕴, 徐智, 等. 不同磷石膏添加比例对稻壳与油枯堆肥过程的影响及基质化利用的评价[J]. 农业环境科学学报, 2018, 37(5): 1001-1008. |
CHEN X J, WANG Y Y, XU Z, et al. Effect of phosphogypsum addition on the rice husk and oil cake composting process and evaluation of its physicochemical character as a substrate[J]. Journal of Agro-Environment Science, 2018, 37(5): 1001-1008. (in Chinese with English abstract) | |
[10] | 于艳辉, 程智慧, 谢芝春, 等. 5种微生物发酵剂对玉米秸秆的发酵效果[J]. 西北农业学报, 2010, 19(2): 95-99. |
YU Y H, CHENG Z H, XIE Z C, et al. Effects of five microbial agents on fermentation of corn straw in composting[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(2): 95-99. (in Chinese with English abstract) | |
[11] | 尚秀华, 谢耀坚, 杨小红, 等. 4种不同氮源对稻壳腐熟处理效果的研究[J]. 热带作物学报, 2011, 32(12): 2226-2230. |
SHANG X H, XIE Y J, YANG X H, et al. The effect of four different nitrogen sources on rice husk compost[J]. Chinese Journal of Tropical Crops, 2011, 32(12): 2226-2230. (in Chinese with English abstract) | |
[12] | 韩道杰, 张忠义, 冯锡鸿. 育苗基质中发酵稻壳的添加量对西瓜幼苗生长的影响[J]. 北方园艺, 2013(9): 40-41. |
HAN D J, ZHANG Z Y, FENG X H. Effects of the amount of matured rice hull in substrate on the seedling growth of watermelon[J]. Northern Horticulture, 2013(9): 40-41. (in Chinese with English abstract) | |
[13] | 谢晓梅, 廖敏, 华嘉媛, 等. 发酵稻壳对亚铁离子和硫离子的吸附-解吸附特性[J]. 环境科学, 2015, 36(10): 3896-3905. |
XIE X M, LIAO M, HUA J Y, et al. Adsorption-desorption characteristics of fermented rice husk for ferrous and sulfur ions[J]. Environmental Science, 2015, 36(10): 3896-3905. (in Chinese with English abstract) | |
[14] | 徐经年, 祖朝龙, 郭卢, 等. 以发酵稻壳为主要原料的烤烟漂浮育苗基质替代性研究[J]. 种子, 2013, 32(8): 100-102. |
XU J N, ZU C L, GUO L, et al. Research on the substitution of medium of floating-seedling with rice hull in tobacco[J]. Seed, 2013, 32(8): 100-102. (in Chinese with English abstract) | |
[15] | 徐昱松, 宫彬彬, 吴晓蕾, 等. 以腐熟稻壳为主的黄瓜新型育苗基质研究[J]. 河北农业大学学报, 2023, 46(1): 45-49. |
XU Y S, GONG B B, WU X L, et al. Study on a new cucumber seedling substrate based on decomposed rice husk[J]. Journal of Hebei Agricultural University, 2023, 46(1): 45-49. (in Chinese with English abstract) | |
[16] | 周德英, 王锡春, 李小慧, 等. 不同发酵稻壳基质配方对烟苗生长发育的影响[J]. 贵州农业科学, 2022, 50(10): 28-33. |
ZHOU D Y, WANG X C, LI X H, et al. Effects of different substrate formula of fermented rice husk on growing development of tobacco seedling[J]. Guizhou Agricultural Sciences, 2022, 50(10): 28-33. (in Chinese with English abstract) | |
[17] | 高中超, 中本和夫, 王秋菊, 等. 稻壳深施对碱土物理性质和苜蓿产量的影响[J]. 土壤通报, 2014, 45(4): 990-995. |
GAO Z C, ZHONG B H F, WANG Q J, et al. Effects of deep application of rice husk on physical properties and alfalfa yield in alkali soil[J]. Chinese Journal of Soil Science, 2014, 45(4): 990-995. (in Chinese with English abstract) | |
[18] | 王秋菊, 刘峰, 常本超, 等. 稻壳深施改良苏打碱土理化性质长期效应[J]. 农业工程学报, 2018, 34(2): 147-152. |
WANG Q J, LIU F, CHANG B C, et al. Long-term effect of deep application of rice husk improving physical and chemical properties of soda alkaline soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 147-152. (in Chinese with English abstract) | |
[19] | 孙冰洁, 张晓平, 贾淑霞. 农田土壤理化性质对土壤微生物群落的影响[J]. 土壤与作物, 2013, 2(3): 138-144. |
SUN B J, ZHANG X P, JIA S X. The effect of soil physical and chemical properties on soil microbial community in agro-ecosystem[J]. Soil and Crop, 2013, 2(3): 138-144. (in Chinese with English abstract) | |
[20] | 许洪庆, 刘素参, 吕大树, 等. 稻壳有机物料对烤烟生长发育及产质量形成的影响[J]. 作物研究, 2022, 36(3): 219-225. |
XU H Q, LIU S S, LYU D S, et al. Effects of rice husk organic materials on the growth, development, yield and quality of flue-cured tobacco[J]. Crop Research, 2022, 36(3): 219-225. (in Chinese with English abstract) | |
[21] | 史宏志, 李志, 刘国顺, 等. 皖南不同质地土壤烤后烟叶中性香气成分含量及焦甜香风格的差异[J]. 土壤, 2009, 41(6): 980-985. |
SHI H Z, LI Z, LIU G S, et al. Differences in contents of neutral aroma components and sensory evaluation of sweet aroma in soils with different textures in South Anhui[J]. Soils, 2009, 41(6): 980-985. (in Chinese with English abstract) | |
[22] | 母少东, 蒋光华, 李浩, 等. 不同植烟区土壤对烟叶碳氮代谢品质相关指标的影响[J]. 南京农业大学学报, 2014, 37(4): 109-116. |
MU S D, JIANG G H, LI H, et al. Effects of different planting tobacco soils on carbon and nitrogen metabolism indexes related to quality of tobacco leaves[J]. Journal of Nanjing Agricultural University, 2014, 37(4): 109-116. (in Chinese with English abstract) | |
[23] | 张玉宁, 史宏志, 王景, 等. 高、低硝态氮营养条件下烟草根系基因表达谱及代谢途径的差异分析[J]. 烟草科技, 2019, 52(4): 1-8. |
ZHANG Y N, SHI H Z, WANG J, et al. Analysis of gene expression profile and metabolic pathway of tobacco root at high and low levels of nitrate nitrogen[J]. Tobacco Science & Technology, 2019, 52(4): 1-8. (in Chinese with English abstract) | |
[24] | 张合琼, 张汉马, 梁永书, 等. 植物硝酸盐转运蛋白研究进展[J]. 植物生理学报, 2016, 52(2): 141-149. |
ZHANG H Q, ZHANG H M, LIANG Y S, et al. Research progress of nitrate in plant transport mechanism[J]. Plant Physiology Journal, 2016, 52(2): 141-149. (in Chinese with English abstract) | |
[25] | WANG Y Y, CHENG Y H, CHEN K E, et al. Nitrate transport, signaling, and use efficiency[J]. Annual Review of Plant Biology, 2018, 69: 85-122. |
[26] | 尹卓然, 王驰, 轩栋栋, 等. 烟草硝酸盐转运蛋白NtNRT1.7基因的克隆、亚细胞定位及表达模式分析[J]. 烟草科技, 2022, 55(5): 1-8. |
YIN Z R, WANG C, XUAN D D, et al. Cloning, subcellular localization and expression pattern analysis of tobacco nitrate transporter NtNRT1.7 gene[J]. Tobacco Science & Technology, 2022, 55(5): 1-8. (in Chinese with English abstract) | |
[27] | 轩栋栋, 尹卓然, 康俊, 等. 烟草硝酸盐转运蛋白NtNRT1.5基因的克隆及功能分析[J]. 中国烟草学报, 2022, 28(5): 64-72. |
XUAN D D, YIN Z R, KANG J, et al. Cloning and functional analysis of nitrate transporter NtNRT1.5 gene in Nicotiana tabacum[J]. Acta Tabacaria Sinica, 2022, 28(5): 64-72. (in Chinese with English abstract) | |
[28] | FU Y F, ZHANG Z W, YANG X Y, et al. Nitrate reductase is a key enzyme responsible for nitrogen-regulated auxin accumulation in Arabidopsis roots[J]. Biochemical and Biophysical Research Communications, 2020, 532(4): 633-639. |
[29] | CHAMIZO-AMPUDIA A, SANZ-LUQUE E, LLAMAS A, et al. Nitrate reductase regulates plant nitric oxide homeostasis[J]. Trends in Plant Science, 2017, 22(2): 163-174. |
[30] | GAO Z Y, WANG Y F, CHEN G, et al. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency[J]. Nature Communications, 2019, 10: 5207. |
[31] | COSTA-BROSETA Á, CASTILLO M, LEÓN J. Nitrite reductase 1 is a target of nitric oxide-mediated post-translational modifications and controls nitrogen flux and growth in Arabidopsis[J]. International Journal of Molecular Sciences, 2020, 21(19): 7270. |
[32] | SUN H W, LI J, SONG W J, et al. Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice[J]. Journal of Experimental Botany, 2015, 66(9): 2449-2459. |
[33] | 李合生. 现代植物生理学[M]. 2版. 北京: 高等教育出版社, 2006. |
[34] | 凡聪, 赵兵飞, 符云鹏, 等. 氮用量对蛟河晒红烟碳氮代谢关键酶活性及品质的影响[J]. 烟草科技, 2019, 52(8): 30-36. |
FAN C, ZHAO B F, FU Y P, et al. Influences of nitrogen application rates on key enzyme activities of carbon-nitrogen metabolism and quality of dark sun-cured tobacco in Jiaohe[J]. Tobacco Science & Technology, 2019, 52(8): 30-36. (in Chinese with English abstract) |
[1] | WANG Kua-ping;GAO Fu-hong;ZHAN You-guo;LI Zhong-huan;ZHANG Xiao-long;*. Influencing factors on the production of Aphidus gifuensis in the tobacco floating-seedling system [J]. , 2013, 25(5): 0-1049. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||