Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (8): 1867-1877.DOI: 10.3969/j.issn.1004-1524.20230691
• Environmental Science • Previous Articles Next Articles
XU Junyan1,2(), QIU Gaoyang2,3, LIU Junli2, GUO Bin2, LI Hua2, CHEN Xiaodong2, WANG Yuan2, FU Qinglin2,*(
)
Received:
2023-05-29
Online:
2024-08-25
Published:
2024-09-06
Contact:
FU Qinglin
CLC Number:
XU Junyan, QIU Gaoyang, LIU Junli, GUO Bin, LI Hua, CHEN Xiaodong, WANG Yuan, FU Qinglin. Effects of montmorillonite, kaolinite and basalt on soil carbon sequestration[J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1867-1877.
Fig.2 Effects of different treatments on soil chemical properties Bars marked without the same letters indicate significant (P<0.05) difference within treatments. The same as below.
处理 Treatment | 不同粒级占比Percentage of different size fractions/% | ||
---|---|---|---|
0.25~2 mm | 0.053~<0.25 mm | <0.053 mm | |
CK | 19.2±0.8 b | 12.8±0.4 b | 68.0±0.5 c |
H | 18.6±0.1 b | 14.7±1.5 a | 66.7±1.6 c |
BH | 13.1±0.1 c | 14.5±0.3 a | 72.4±0.3 a |
MH | 18.2±1.2 b | 11.6±0.7 b | 70.1±0.9 b |
KH | 20.9±0.6 a | 15.2±0.2 a | 63.9±0.8 d |
Table 1 Percentage of soil aggregates with different size fractions under treatments
处理 Treatment | 不同粒级占比Percentage of different size fractions/% | ||
---|---|---|---|
0.25~2 mm | 0.053~<0.25 mm | <0.053 mm | |
CK | 19.2±0.8 b | 12.8±0.4 b | 68.0±0.5 c |
H | 18.6±0.1 b | 14.7±1.5 a | 66.7±1.6 c |
BH | 13.1±0.1 c | 14.5±0.3 a | 72.4±0.3 a |
MH | 18.2±1.2 b | 11.6±0.7 b | 70.1±0.9 b |
KH | 20.9±0.6 a | 15.2±0.2 a | 63.9±0.8 d |
Fig.6 The correlation between soil carbon pool components and basic chemical properties pH, Soil pH; ECa, Soil exchange calcium content; EMg, Soil exchange magnesium content; CEC, Soil cation exchange capacity; OC, Soil organic carbon content; IC, Soil inorganic carbon content; MBC, Soil microbial biomass content; DOC, Soil dissolved organic carbon content. “*” and “**” indicate significant correlation at P<0.05 and P<0.01 level, respectively.
[1] | 陈梦蝶, 崔晓阳. 土壤有机碳矿物固持机制及其影响因素[J]. 中国生态农业学报(中英文), 2022, 30(2): 175-183. |
CHEN M D, CUI X Y. Mechanisms and influencing factors of soil organic carbon sequestration by minerals[J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 175-183. (in Chinese with English abstract) | |
[2] | 余健, 房莉, 卞正富, 等. 土壤碳库构成研究进展[J]. 生态学报, 2014, 34(17): 4829-4838. |
YU J, FANG L, BIAN Z F, et al. A review of the composition of soil carbon pool[J]. Acta Ecologica Sinica, 2014, 34(17): 4829-4838. (in Chinese with English abstract) | |
[3] | WHITBREAD A M, LEFROY R D B, BLAIR G J. A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales[J]. Soil Research, 1998, 36(4): 669. |
[4] | 安玲玲, 吕晓男, 麻万诸, 等. 浙江省土壤有机碳密度与储量的初步研究[J]. 浙江农业学报, 2014, 26(1): 148-153. |
AN L L, LYU X N, MA W Z, et al. The density and storage of soil organic carbon in Zhejiang Province[J]. Acta Agriculturae Zhejiangensis, 2014, 26(1): 148-153. (in Chinese with English abstract) | |
[5] | WU H B, GUO Z T, GAO Q, et al. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China[J]. Agriculture, Ecosystems & Environment, 2009, 129(4): 413-421. |
[6] | BATJES N H. Soil carbon stocks of Jordan and projected changes upon improved management of croplands[J]. Geoderma, 2006, 132(3/4): 361-371. |
[7] | TAMIR G, SHENKER M, HELLER H, et al. Can soil carbonate dissolution lead to overestimation of soil respiration?[J]. Soil Science Society of America Journal, 2011, 75(4): 1414-1422. |
[8] | TORN M S, TRUMBORE S E, CHADWICK O A, et al. Mineral control of soil organic carbon storage and turnover[J]. Nature, 1997, 389(6647): 170-173. |
[9] | BEERLING D J, KANTZAS E P, LOMAS M R, et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands[J]. Nature, 2020, 583(7815): 242-248. |
[10] | LEWIS A L, SARKAR B, WADE P, et al. Effects of mineralogy, chemistry and physical properties of basalts on carbon capture potential and plant-nutrient element release via enhanced weathering[J]. Applied Geochemistry, 2021, 132: 105023. |
[11] | AUGUSTO V L, LAÉRCIO A P, MARCELO A B, et al. Agronomic feasibility of using basalt powder as soil nutrient remineralizer[J]. African Journal of Agricultural Research, 2021, 17(3): 487-497. |
[12] | CONCEIÇÃO L T, SILVA G N, HOLSBACK H M S, et al. Potential of basalt dust to improve soil fertility and crop nutrition[J]. Journal of Agriculture and Food Research, 2022, 10: 100443. |
[13] | RASMUSSEN C, DAHLGREN R A, SOUTHARD R J. Basalt weathering and pedogenesis across an environmental gradient in the southern Cascade Range, California, USA[J]. Geoderma, 2010, 154: 473-485. |
[14] | SAIDY A R, SMERNIK R J, BALDOCK J A, et al. Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation[J]. Geoderma, 2012, 173: 104-110. |
[15] | BRUUN T B, ELBERLING B, CHRISTENSEN B T. Lability of soil organic carbon in tropical soils with different clay minerals[J]. Soil Biology and Biochemistry, 2010, 42(6): 888-895. |
[16] | 刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报, 2007, 27(6): 2642-2650. |
LIU M Q, HU F, CHEN X Y. A review on mechanisms of soil organic carbon stabilization[J]. Acta Ecologica Sinica, 2007, 27(6): 2642-2650. (in Chinese with English abstract) | |
[17] | KAISER K, EUSTERHUES K, RUMPEL C, et al. Stabilization of organic matter by soil minerals: investigations of density and particle-size fractions from two acid forest soils[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(4): 451-459. |
[18] | 田雨, 杨建军, HUSSAIN S. 红壤有机矿物复合体吸附Cu(Ⅱ)的分子机制[J]. 土壤学报, 2021, 58(3): 722-731. |
TIAN Y, YANG J J, HUSSAIN S. Molecular mechanism of Cu (Ⅱ) adsorption by organo-mineral complexes of red soil[J]. Acta Pedologica Sinica, 2021, 58(3): 722-731. (in Chinese with English abstract) | |
[19] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[20] | VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6): 703-707. |
[21] | WU J, JOERGENSEN R G, POMMERENING B, et al. Measurement of soil microbial biomass C by fumigation-extraction: an automated procedure[J]. Soil Biology and Biochemistry, 1990, 22(8): 1167-1169. |
[22] | 张泽洲, 王冬梅, 李梦寻. 干湿交替程度对土壤速效养分的影响[J]. 水土保持学报, 2021, 35(2): 265-270. |
ZHANG Z Z, WANG D M, LI M X. Effect of drying-rewetting intensity on soil nutrient availability[J]. Journal of Soil and Water Conservation, 2021, 35(2): 265-270. (in Chinese with English abstract) | |
[23] | KANTOLA I B, MASTERS M D, BEERLING D J, et al. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering[J]. Biology Letters, 2017, 13(4): 20160714. |
[24] | 王梅, 蒋先军. 施用石灰与钙蒙脱石对酸性土壤硝化动力学过程的影响[J]. 农业资源与环境学报, 2017, 34(1): 47-53. |
WANG M, JIANG X J. Effects of applying lime and calcium montmorillonite on nitrification dynamics in acidic soil[J]. Journal of Agricultural Resources and Environment, 2017, 34(1): 47-53. (in Chinese with English abstract) | |
[25] | 吕波, 王宇函, 夏浩, 等. 不同改良剂对黄棕壤和红壤上白菜生长及土壤肥力影响的差异[J]. 中国农业科学, 2018, 51(22): 4306-4315. |
LÜ B, WANG Y H, XIA H, et al. Effects of biochar and other amendments on the cabbage growth and soil fertility in yellow-brown soil and red soil[J]. Scientia Agricultura Sinica, 2018, 51(22): 4306-4315. (in Chinese with English abstract) | |
[26] | 徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2): 238-244. |
XU R K. Research progresses in soil acidification and its control[J]. Soils, 2015, 47(2): 238-244. (in Chinese with English abstract) | |
[27] | 苏杨, 张俊涛, 李铤, 等. 4种改良材料对城市绿地酸性土壤的改良效果[J]. 林业与环境科学, 2021, 37(4): 62-68. |
SU Y, ZHANG J T, LI T, et al. Effects of four amendments on acidic soils of urban green space[J]. Forestry and Environmental Science, 2021, 37(4): 62-68. (in Chinese with English abstract) | |
[28] | ZHANG Y T, HE X H, LIANG H, et al. Long-term tobacco plantation induces soil acidification and soil base cation loss[J]. Environmental Science and Pollution Research International, 2016, 23(6): 5442-5450. |
[29] | 干方群, 杭小帅, 刘云, 等. 苏南地区膨润土物理化学和矿物学特性研究[J]. 土壤学报, 2018, 55(4): 945-954. |
GAN F Q, HANG X S, LIU Y, et al. Physicochemical and mineralogical properties of bentonites in South Jiangsu, China[J]. Acta Pedologica Sinica, 2018, 55(4): 945-954. (in Chinese with English abstract) | |
[30] | HUANG L, HU H Q, LI X Y, et al. Influences of low molar mass organic acids on the adsorption of Cd2+ and Pb2+ by goethite and montmorillonite[J]. Applied Clay Science, 2010, 49(3): 281-287. |
[31] | 王清奎, 汪思龙. 土壤团聚体形成与稳定机制及影响因素[J]. 土壤通报, 2005 (3): 415-421. |
WANG Q K, WANG S L. Forming and stable mechanism of soil aggregate and influencing factors[J]. Chinese Journal of Soil Science, 2005(3): 415-421. (in Chinese with English abstract) | |
[32] | DENEF K, SIX J. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization[J]. European Journal of Soil Science, 2005, 56(4): 469-479. |
[33] | FERNÁNDEZ-UGALDE O, BARRÉ P, HUBERT F, et al. Clay mineralogy differs qualitatively in aggregate-size classes: clay-mineral-based evidence for aggregate hierarchy in temperate soils[J]. European Journal of Soil Science, 2013, 64(4): 410-422. |
[34] | 胡诚, 曹志平, 罗艳蕊, 等. 长期施用生物有机肥对土壤肥力及微生物生物量碳的影响[J]. 中国生态农业学报, 2007, 15(3): 48-51. |
HU C, CAO Z P, LUO Y R, et al. Effect of long-term application of microorganismic compost or vermicompost on soil fertility and microbial biomass carbon[J]. Chinese Journal of Eco-Agriculture, 2007, 15(3): 48-51. (in Chinese with English abstract) | |
[35] | 张小磊, 齐庆超, 李春发, 等. 小浪底库区不同水位高程下消落带落干期土壤微生物量碳分布特征[J]. 土壤通报, 2022, 53(6): 1395-1403. |
ZHANG X L, QI Q C, LI C F, et al. Distribution characteristics of soil microbial biomass carbon in hydro-fluctuation belt at different altitudes during the drying period of the Xiaolangdi Reservoir[J]. Chinese Journal of Soil Science, 2022, 53(6): 1395-1403. (in Chinese with English abstract) | |
[36] | LIU W G, WEI J, CHENG J M, et al. Profile distribution of soil inorganic carbon along a chronosequence of grassland restoration on a 22-year scale in the Chinese Loess Plateau[J]. CATENA, 2014, 121: 321-329. |
[37] | EDWARDS D P, LIM F, JAMES R H, et al. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture[J]. Biology Letters, 2017, 13(4): 20160715. |
[38] | SHI Y, BAUMANN F, MA Y, et al. Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications[J]. Biogeosciences, 2012, 9(6): 2287-2299. |
[39] | 孙盛凯, 刘新坤, 朱旭毅, 等. 土壤可溶性有机碳、氮的迁移淋溶规律研究进展[J]. 山西农业科学, 2022, 50(8): 1158-1167. |
SUN S K, LIU X K, ZHU X Y, et al. Research progress on migration and leaching law of dissolved organic carbon and nitrogen in farmland[J]. Journal of Shanxi Agricultural Sciences, 2022, 50(8): 1158-1167. (in Chinese with English abstract) |
[1] | HAO Liuliu, DAI Lili, PENG Liang, CHEN Siyuan, TAO Ling, LI Gu, ZHANG Hui. Active organic carbon, microbial community structure and their relationship in rice rhizosphere soil of rice-crayfish co-culture systems [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2901-2913. |
[2] | JIAN Xing, ZHAI Xiaoyu, WANG Yu, CAI Yangyang. Influence of land use changes on soil total organic carbon and dissolved organic carbon in wetland [J]. , 2020, 32(3): 475-482. |
[3] | TAO Libo, WANG Jianjun, WANG Guohui, YU Shuang, LI Huihui, XU Dongmei. Effects of enclosure on soil organic carbon mineralization of desert steppe in Ningxia [J]. , 2017, 29(9): 1549-1554. |
[4] | YU Zhoulu, QIU Lefeng, LIN Lin. Influence of land use changes on soil organic carbon distribution in agricultural soils [J]. , 2017, 29(5): 806-811. |
[5] | JI Bo, LI Na, MA Fan, CAI Jinjun, DONG Liguo, XU Hao, HAN Xinsheng. Effect of typical re-vegetation patterns on soil organic carbon sequestration in southern Ningxia [J]. , 2017, 29(3): 483-488. |
[6] | LAN Jiacheng, XIAO Shizhen, LIN Junqing, SHEN Yan. Effect of land use types on soil light and heavy fraction organic carbon in Karst mountain area [J]. , 2017, 29(10): 1720-1725. |
[7] | WANG Lianxiao1, SHI Zhengtao1,*, LIU Xinyou2,3, YANG Fan1. Distribution characteristics of soil organic carbon of rubber plantation in Xishuangbanna [J]. , 2016, 28(7): 1200-. |
[8] | SHAO Yangfeng1, MEI Hongfei1, PAN zhongchao1, LIU Huan2, WANG Chaoqi2. Effects of corn straw returning on soil organic carbon content, microbial functional diversity and cabbage yield [J]. , 2016, 28(5): 838-. |
[9] | JIAN Xing1,2, WANG Song3, WANG Yu\|liang3, WANG Jian\|fei1,2. Soil organic carbon and its active components characteristics under different land utilization types at the periphery of city wetlands [J]. , 2016, 28(1): 119-. |
[10] | ZHU Zhen\|ling1,2, MA Wan\|zhu2, LONG Wen\|li2, REN Zhou\|qiao2, DENG Xun\|fei2, CHEN Xiao\|jia2, SHEN Jian\|guo3, LYU Xiao\|nan1,2,*. Spatial distribution characteristics of topsoil organic carbon in farmland and its influencing factors in Yuhang District, Hangzhou City [J]. , 2015, 27(11): 1990-. |
[11] | AN Ling\|ling;LYU Xiao\|nan;MA Wan\|zhu;*;REN Zhou\|qiao;DENG Xun\|fei;CHEN Xiao\|jia. The density and storage of soil organic carbon in Zhejiang Province [J]. , 2014, 26(1): 0-153. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 397
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 212
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||