Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (5): 1208-1216.DOI: 10.3969/j.issn.1004-1524.20230938
• Review • Previous Articles
LUZI Zhenggang1,2(), ZHU Lixin3, JI Hongbing1,4,*(
), WANG Kang5
Received:
2023-08-01
Online:
2024-05-25
Published:
2024-05-29
CLC Number:
LUZI Zhenggang, ZHU Lixin, JI Hongbing, WANG Kang. Research progress in remediation of soil heavy metal pollution by Sphingosinomonas[J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1208-1216.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230938
菌株 Strain | 金属元素 Metallic element | 浓度 Concentration | 去除率 Removal rate/% | 参考文献 References |
---|---|---|---|---|
Sphingomonas sp. | Cu | 21.6 mg·L-1 | 42.6~71.0 | [ |
Sphingomonas paucimobilis strain BKK1 | Cd | 50 mg·L-1 | 84 | [ |
Sphingomonas sp. XJ2 | Pb | 4.16 mg·L-1 | 87.8 | [ |
Sphingomonas sp. strain BSAR-1 | U | 75.5 mg·L-1 | 90 | [ |
Sphingomonas melonis E8 | Ni | 50 mg·L-1 | 78 | [ |
Cu | 50 mg·L-1 | 62 | [ | |
Cd | 50 mg·L-1 | 56 | [ | |
Sphingomonas sp. C40 | Cd | 5 mg·L-1 | 51~95 | [ |
Sphingobium sp. SA2 | Hg | 3.2 mg·L-1 | 79 | [ |
Sphingomonas SaMR12 | Cd | 40 mg·L-1 | 29.1 | [ |
Sphingomonas sp. LK11 | Cr | 52 mg·L-1 | 54 | [ |
Pb | 25 mg·L-1 | 22.37 | [ | |
Al | 479 mg·kg-1 | 36.9 | [ | |
Zn | 392 mg·kg-1 | 60.4 | [ | |
Sphingomonas paucimobilis | Cd | 50 mg·L-1 | 48.21 | [ |
Sphingomonas sp. GX_15 | Cd | 5 mg·L-1 | 活细胞78.35,死细胞90 Living cell 78.35,dead cell 90 | [ |
Table 1 Degradation of heavy metals by Sphingosinomonas
菌株 Strain | 金属元素 Metallic element | 浓度 Concentration | 去除率 Removal rate/% | 参考文献 References |
---|---|---|---|---|
Sphingomonas sp. | Cu | 21.6 mg·L-1 | 42.6~71.0 | [ |
Sphingomonas paucimobilis strain BKK1 | Cd | 50 mg·L-1 | 84 | [ |
Sphingomonas sp. XJ2 | Pb | 4.16 mg·L-1 | 87.8 | [ |
Sphingomonas sp. strain BSAR-1 | U | 75.5 mg·L-1 | 90 | [ |
Sphingomonas melonis E8 | Ni | 50 mg·L-1 | 78 | [ |
Cu | 50 mg·L-1 | 62 | [ | |
Cd | 50 mg·L-1 | 56 | [ | |
Sphingomonas sp. C40 | Cd | 5 mg·L-1 | 51~95 | [ |
Sphingobium sp. SA2 | Hg | 3.2 mg·L-1 | 79 | [ |
Sphingomonas SaMR12 | Cd | 40 mg·L-1 | 29.1 | [ |
Sphingomonas sp. LK11 | Cr | 52 mg·L-1 | 54 | [ |
Pb | 25 mg·L-1 | 22.37 | [ | |
Al | 479 mg·kg-1 | 36.9 | [ | |
Zn | 392 mg·kg-1 | 60.4 | [ | |
Sphingomonas paucimobilis | Cd | 50 mg·L-1 | 48.21 | [ |
Sphingomonas sp. GX_15 | Cd | 5 mg·L-1 | 活细胞78.35,死细胞90 Living cell 78.35,dead cell 90 | [ |
土壤环境 Edatope | 污染物 Contaminant | 复合降解菌种 Composite degrading strains | 参考文献 Reference |
---|---|---|---|
农田Cropland | 塑料薄膜Plastic film | Sphingomonas, Bacillus, Defluviicoccus,Xanthomonas | [ |
尾矿区 Tailings area | 全/多氟烷基物质 Per-and polyfluoroalkyl substances (PFASs) | Acidobacteria_gp6, Bacillus, Gemmatimonas, Oceanobacillus, Sphingomonas | [ |
尾矿区 Tailings area | 稀土元素 Rare earth elements (REEs) | Gammaproteobacteria, Alphaproteobacteria, Gp1, Bacilli, Sphingobacteriia | [ |
实验田 Experimental field | 微塑料 Microplastics | Nocardioidaceae, Xanthomonadaceae, Chitinophagaceae, Sphingomonadaceae | [ |
固废填埋场 Solid waste landfill | 多环芳烃、重金属 Polycyclic aromatic hydrocarbons (PAHs), heavy metals | Mycobacterium, Sphingomonas, Arthrobacter, Bradyrhizobium | [ |
磷矿区农田 Farmland in phosphate mining area | 重金属 Heavy metals | Sphingomonas, Lactobacillus, Dongia, Acidobacteria bacterium RB41, Pediococcus | [ |
Table 2 Composite degrading strains applied in soil under different situations
土壤环境 Edatope | 污染物 Contaminant | 复合降解菌种 Composite degrading strains | 参考文献 Reference |
---|---|---|---|
农田Cropland | 塑料薄膜Plastic film | Sphingomonas, Bacillus, Defluviicoccus,Xanthomonas | [ |
尾矿区 Tailings area | 全/多氟烷基物质 Per-and polyfluoroalkyl substances (PFASs) | Acidobacteria_gp6, Bacillus, Gemmatimonas, Oceanobacillus, Sphingomonas | [ |
尾矿区 Tailings area | 稀土元素 Rare earth elements (REEs) | Gammaproteobacteria, Alphaproteobacteria, Gp1, Bacilli, Sphingobacteriia | [ |
实验田 Experimental field | 微塑料 Microplastics | Nocardioidaceae, Xanthomonadaceae, Chitinophagaceae, Sphingomonadaceae | [ |
固废填埋场 Solid waste landfill | 多环芳烃、重金属 Polycyclic aromatic hydrocarbons (PAHs), heavy metals | Mycobacterium, Sphingomonas, Arthrobacter, Bradyrhizobium | [ |
磷矿区农田 Farmland in phosphate mining area | 重金属 Heavy metals | Sphingomonas, Lactobacillus, Dongia, Acidobacteria bacterium RB41, Pediococcus | [ |
[1] | 李小平, 高瑜, 张蒙, 等. 城市土壤重金属空间分布、污染与来源[J]. 环境科学与技术, 2018, 41(6): 138-146. |
LI X P, GAO Y, ZHANG M, et al. Heavy metals in urban soil: spatial distribution, source and pollution assessment[J]. Environmental Science & Technology, 2018, 41(6): 138-146. (in Chinese with English abstract) | |
[2] | 梁耀杰. 我国土壤重金属污染现状及其防治措施探讨[J]. 资源节约与环保, 2020(1): 98. |
LIANG Y J. Present situation of soil heavy metal pollution in China and its control measures[J]. Resources Economization & Environmental Protection, 2020(1): 98. (in Chinese) | |
[3] | 籍龙杰, 张婧卓, 陈梦巧, 等. 污染土壤修复中心的发展现状及方向展望[J]. 化工环保, 2022, 42(2): 125-133. |
JI L J, ZHANG J Z, CHEN M Q, et al. Development status and direction of contaminated soil remediation center[J]. Environmental Protection of Chemical Industry, 2022, 42(2): 125-133. (in Chinese with English abstract) | |
[4] | RAJENDRAN S, PRIYA T A K, KHOO K S, et al. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils[J]. Chemosphere, 2022, 287: 132369. |
[5] | 王泓博, 苟文贤, 吴玉清, 等. 重金属污染土壤修复研究进展: 原理与技术[J]. 生态学杂志, 2021, 40(8): 2277-2288. |
WANG H B, GOU W X, WU Y Q, et al. Progress in remediation technologies of heavy metals contaminated soil: principles and technologies[J]. Chinese Journal of Ecology, 2021, 40(8): 2277-2288. (in Chinese with English abstract) | |
[6] | TAN Z X, AI P, WANG Q M. Recent developments in organic contaminated soil remediation with the use of thermal desorption technology[J]. Environmental Engineering and Management Journal, 2017, 16(5): 1145-1154. |
[7] | ZHAO C, DONG Y, FENG Y P, et al. Thermal desorption for remediation of contaminated soil: a review[J]. Chemosphere, 2019, 221: 841-855. |
[8] | 李爱民, 杨福胜, 郝帅, 等. 基于热脱附法的汞污染土壤修复研究进展[J]. 土壤, 2020, 52(3): 433-438. |
LI A M, YANG F S, HAO S, et al. Research progress on remediation of mercury-contaminated soil using thermal desorption method[J]. Soils, 2020, 52(3): 433-438. (in Chinese with English abstract) | |
[9] | 舒心, 胡培良, 李东阳, 等. 某炼铁厂汞和多环芳烃复合污染土壤热脱附试验研究[J]. 广东化工, 2022, 49(14): 90-93. |
SHU X, HU P L, LI D Y, et al. Experimental study on thermal desorption of mercury and polycyclic aromatic hydrocarbons composite contaminated soil in an ironmaking plant[J]. Guangdong Chemical Industry, 2022, 49(14): 90-93. (in Chinese with English abstract) | |
[10] | LU P, FENG Q Y, MENG Q J, et al. Electrokinetic remediation of chromium-and cadmium-contaminated soil from abandoned industrial site[J]. Separation and Purification Technology, 2012, 98: 216-220. |
[11] | ANNAMALAI S, SANTHANAM M, SUNDARAM M, et al. Electrokinetic remediation of inorganic and organic pollutants in textile effluent contaminated agricultural soil[J]. Chemosphere, 2014, 117: 673-678. |
[12] | YONDONJAMT J, OYUNTSETSE B, BAYANJARGA O. Removal of Cu, Mo and As from contaminated industrial soil by electrokinetic remediation[J]. Journal of Environmental Science and Technology, 2019, 13(1): 1-8. |
[13] | 邵友元, 熊钡. 土壤中铬电动修复过程及影响因素[J]. 环境工程学报, 2016, 10(10): 6028-6034. |
SHAO Y Y, XIONG B. Process and influence factors of electro-kinetic remediation of chromium contaminated soil[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 6028-6034. (in Chinese with English abstract) | |
[14] | 张小江, 宗志强, 叶静宏, 等. 土壤重金属污染强化电动修复研究进展[J]. 东华大学学报(自然科学版), 2021, 47(6): 91-99. |
ZHANG X J, ZONG Z Q, YE J H, et al. Research progress on enhanced electrokinetic remediation of heavy metal contaminated soil[J]. Journal of Donghua University (Natural Science), 2021, 47(6): 91-99. (in Chinese with English abstract) | |
[15] | TANG B, XU H P, SONG F M, et al. Effect of biochar on immobilization remediation of Cd-contaminated soil and environmental quality[J]. Environmental Research, 2022, 204: 111840. |
[16] | 曹心德, 魏晓欣, 代革联, 等. 土壤重金属复合污染及其化学钝化修复技术研究进展[J]. 环境工程学报, 2011, 5(7): 1441-1453. |
CAO X D, WEI X X, DAI G L, et al. Combined pollution of multiple heavy metals and their chemical immobilization in contaminated soils: a review[J]. Chinese Journal of Environmental Engineering, 2011, 5(7): 1441-1453. (in Chinese with English abstract) | |
[17] | 黄占斌, 李昉泽. 土壤重金属固化稳定化的环境材料研究进展[J]. 中国材料进展, 2017, 36(11): 840-851. |
HUANG Z B, LI F Z. Research progress of environmental materials on solidification and stabilization of heavy metals in soil[J]. Materials China, 2017, 36(11): 840-851. (in Chinese with English abstract) | |
[18] | ZHANG T T, NING Z, CHEN J H, et al. Characteristics and applications of sewage sludge biochar modified by ferrous sulfate for remediating Cr(VI)-contaminated soils[J]. Advances in Civil Engineering, 2020, 2020: 6521638. |
[19] | XUE W J, HUANG D L, ZENG G M, et al. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: a review[J]. Chemosphere, 2018, 210: 1145-1156. |
[20] | 白俊宾, 江晓玲, 杨红健. 几种常用还原剂在铬污染土壤中的应用探讨[J]. 化学试剂, 2021, 43(2): 127-135. |
BAI J B, JIANG X L, YANG H J. Application of several common reducing agents in chromium contaminated soil[J]. Chemical Reagents, 2021, 43(2): 127-135. (in Chinese with English abstract) | |
[21] | LI J T, GURAJALA H K, WU L H, et al. Hyperaccumulator plants from China: a synthesis of the current state of knowledge[J]. Environmental Science & Technology, 2018, 52(21): 11980-11994. |
[22] | 覃佳名, 姜必广, 南小龙, 等. 重金属污染土壤微生物修复研究进展[J]. 环境科学与技术, 2021, 44(S2): 132-143. |
QIN J M, JIANG B G, NAN X L, et al. Research progress on microbial remediation of heavy metal contaminated soil[J]. Environmental Science & Technology, 2021, 44(S2): 132-143. (in Chinese) | |
[23] | JIN Y Y, LUAN Y N, NING Y C, et al. Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review[J]. Applied Sciences, 2018, 8(8): 1336. |
[24] | YABUUCHI E, YANO I, OYAIZU H, et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and two genospecies of the genus Sphingomonas[J]. Microbiology and Immunology, 1990, 34(2): 99-119. |
[25] | LEE H, SHIN S C, LEE J, et al. Genome sequence of Sphingomonas sp. strain PAMC 26621, an Arctic-lichen-associated bacterium isolated from a Cetraria sp[J]. Journal of Bacteriology, 2012, 194(11): 3030. |
[26] | LOMBARDINO J, BIJLANI S, SINGH N K, et al. Genomic characterization of potential plant growth-promoting features of Sphingomonas strains isolated from the international space station[J]. Microbiology Spectrum, 2022, 10(1): e0199421. |
[27] | FARIAS M E, REVALE S, MANCINI E, et al. Genome sequence of Sphingomonas sp. S17, isolated from an alkaline, hyperarsenic, and hypersaline volcano-associated lake at high altitude in the Argentinean Puna[J]. Journal of Bacteriology, 2011, 193(14): 3686-3687. |
[28] | MARIZCURRENA J J, MORALES D, SMIRCICH P, et al. Draft genome sequence of the UV-resistant Antarctic bacterium Sphingomonas sp. strain UV9[J]. Microbiology Resource Announcements, 2019, 8(7): e01651-e01618. |
[29] | FENG G D, YANG S Z, XIONG X, et al. Sphingomonas spermidinifaciens sp. nov., a novel bacterium containing spermidine as the major polyamine, isolated from an abandoned lead-zinc mine and emended descriptions of the genus Sphingomonas and the species Sphingomonas yantingensis and Sphingomonas japonica[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(7): 2160-2165. |
[30] | KANG M, CHHETRI G, KIM J, et al. Sphingomonas sabuli sp. nov., a carotenoid-producing bacterium isolated from beach sand[J]. International Journal of Systematic and Evolutionary Microbiology, 2021, 71(7): 004896. |
[31] | KIKUKAWA H, OKAYA T, MAOKA T, et al. Carotenoid nostoxanthin production by Sphingomonas sp. SG73 isolated from deep sea sediment[J]. Marine Drugs, 2021, 19(5): 274. |
[32] | FAGERVOLD S K, ROHÉE C, RODRIGUES A M S, et al. Efficient degradation of the organic UV filter benzophenone-3 by Sphingomonas wittichii strain BP14P isolated from WWTP sludge[J]. Science of the Total Environment, 2021, 758: 143674. |
[33] | HIGUCHI R, GOTO T, HIROTSU Y, et al. Sphingomonas and Phenylobacterium as major microbiota in thymic epithelial tumors[J]. Journal of Personalized Medicine, 2021, 11(11): 1092. |
[34] | GANGGA Y E. Kemampuan dan mekanisme bakteri Sphingomonas sp. dan Pseudomonas sp. dalam perubahan kelarutan tembaga divalen (Cu2+) dalam medium pertumbuhannya[D]. Yogyakarta: Universitas Gadjah Mada, 2021. |
[35] | 王越, 莫莉, 余新晓, 等. 粤北典型工矿区土壤重金属富集特征、来源解析及风险评价[J]. 环境科学, 2023, 44(3): 1636-1645. |
WANG Y, MO L, YU X X, et al. Enrichment characteristics, source apportionment, and risk assessment of heavy metals in the industrial and mining area of northern Guangdong Province[J]. Environmental Science, 2023, 44(3): 1636-1645. (in Chinese with English abstract) | |
[36] | 王伟全, 徐冬莹, 黄青青, 等. 污灌区土壤: 小麦系统中重金属富集特征及其对人体健康风险评价[J]. 环境化学, 2022, 41(10): 3231-3243. |
WANG W Q, XU D Y, HUANG Q Q, et al. Characteristics of heavy metals in the soil-wheat system of sewage irrigation area and its health risk assessment[J]. Environmental Chemistry, 2022, 41(10): 3231-3243. (in Chinese with English abstract) | |
[37] | 陈斌, 祝怡斌, 翟文龙. 某退役稀土回收厂表层土壤重金属污染及其对人体健康风险评价[J]. 有色金属(冶炼部分), 2021(10): 133-138. |
CHEN B, ZHU Y B, ZHAI W L. Assessment of heavy metal and human health risk in surface soils in a decommissioned rare earth recycling plant[J]. Nonferrous Metals (Extractive Metallurgy), 2021(10): 133-138. (in Chinese with English abstract) | |
[38] | FAKHAR A, GUL B, GURMANI A R, et al. Heavy metal remediation and resistance mechanism of Aeromonas, Bacillus, and Pseudomonas: a review[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(11): 1868-1914. |
[39] | TANGAROMSUK J, POKETHITIYOOK P, KRUATRACHUE M, et al. Cadmium biosorption by Sphingomonas paucimobilis biomass[J]. Bioresource Technology, 2002, 85(1): 103-105. |
[40] | CHEN W B. The study of bioremediation on heavy metal of cultured seawater by Sphingomonas sp. XJ2 immobilized Sphingomonas strain[J]. Advanced Materials Research, 2011, 347/348/349/350/351/352/353: 1436-1441. |
[41] | NILGIRIWALA K S, ALAHARI A, RAO A S, et al. Cloning and overexpression of alkaline phosphatase PhoK from Sphingomonas sp. strain BSAR-1 for bioprecipitation of uranium from alkaline solutions[J]. Applied and Environmental Microbiology, 2008, 74(17): 5516-5523. |
[42] | HEIDARI P, SANAEIZADE S, MAZLOOMI F. Removal of nickel, copper, lead and cadmium by new strains of Sphingomonas melonis E8 and Enterobacter hormaechei WW28[J]. Journal of Applied Biotechnology Reports, 2020, 7: 208-214. |
[43] | CHENG C, WANG R, SUN L J, et al. Cadmium-resistant and arginine decarboxylase-producing endophytic Sphingomonas sp. C40 decreases cadmium accumulation in host rice (Oryza sativa Cliangyou 513)[J]. Chemosphere, 2021, 275: 130109. |
[44] | MAHBUB K R, KRISHNAN K, MEGHARAJ M, et al. Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil[J]. Chemosphere, 2016, 144: 330-337. |
[45] | PAN F S, MENG Q, WANG Q, et al. Endophytic bacterium Sphingomonas SaMR12 promotes cadmium accumulation by increasing glutathione biosynthesis in Sedum alfredii Hance[J]. Chemosphere, 2016, 154: 358-366. |
[46] | BILAL S, SHAHZAD R, KHAN A L, et al. Endophytic microbial consortia of phytohormones-producing fungus Paecilomyces formosus LHL10 and bacteria Sphingomonas sp. LK11 to Glycine max L. regulates physio-hormonal changes to attenuate aluminum and zinc stresses[J]. Frontiers in Plant Science, 2018, 9: 1273. |
[47] | BILAL S, KHAN A L, SHAHZAD R, et al. Mechanisms of Cr(VI) resistance by endophytic Sphingomonas sp. LK11 and its Cr(VI) phytotoxic mitigating effects in soybean (Glycine max L.)[J]. Ecotoxicology and Environmental Safety, 2018, 164: 648-658. |
[48] | JAAFAR R S. The potential role of sphingomonas paucimobilis in bioremediation of soils contaminated with hydrocarbon and heavy metal[J]. Malaysian Journal of Science, 2019, 38(3): 48-58. |
[49] | LI X J, LI L N, ZHAO Z G, et al. Adsorption kinetics of Cd(II) from aqueous solutions onto live vs. dead biosorbents of Sphingomonas sp. GX_15[J]. Materials Chemistry and Physics, 2023, 305: 127940. |
[50] | LI D B, LI X J, TAO Y, et al. Deciphering the bacterial microbiome in response to long-term mercury contaminated soil[J]. Ecotoxicology and Environmental Safety, 2022, 229: 113062. |
[51] | WANG Q, GE C F, XU S A, et al. The endophytic bacterium Sphingomonas SaMR12 alleviates Cd stress in oilseed rape through regulation of the GSH-AsA cycle and antioxidative enzymes[J]. BMC Plant Biology, 2020, 20(1): 63. |
[52] | LI X J, YAN Z N, GU D G, et al. Characterization of cadmium-resistant rhizobacteria and their promotion effects on Brassica napus growth and cadmium uptake[J]. Journal of Basic Microbiology, 2019, 59(6): 579-590. |
[53] | 陈杨利, 周玲玲, 黄作喜. 吲哚乙酸对园艺植物生长发育的影响[J]. 北方园艺, 2011(12): 181-183. |
CHEN Y L, ZHOU L L, HUANG Z X. The effect of indoleacetic acid on growth and development of horticultural plants[J]. Northern Horticulture, 2011(12): 181-183. (in Chinese with English abstract) | |
[54] | KIM Y J, PARK J Y, BALUSAMY S R, et al. Comprehensive genome analysis on the novel species Sphingomonas panacis DCY99T reveals insights into iron tolerance of ginseng[J]. International Journal of Molecular Sciences, 2020, 21(6): 2019. |
[55] | SHE J Y, WANG J, WEI X D, et al. Survival strategies and dominant phylotypes of maize-rhizosphere microorganisms under metal(loid)s contamination[J]. Science of the Total Environment, 2021, 774: 145143. |
[56] | GENG H H, WANG F, YAN C C, et al. Rhizosphere microbial community composition and survival strategies in oligotrophic and metal(loid) contaminated iron tailings areas[J]. Journal of Hazardous Materials, 2022, 436: 129045. |
[57] | QIAN H F, ZHANG M, LIU G F, et al. Effects of soil residual plastic film on soil microbial community structure and fertility[J]. Water, Air, & Soil Pollution, 2018, 229(8): 261. |
[58] | QIAO W C, XIE Z Y, ZHANG Y H, et al. Perfluoroalkyl substances (PFASs) influence the structure and function of soil bacterial community: greenhouse experiment[J]. Science of the Total Environment, 2018, 642: 1118-1126. |
[59] | WEI Z W, HAO Z K, LI X H, et al. The effects of phytoremediation on soil bacterial communities in an abandoned mine site of rare earth elements[J]. Science of the Total Environment, 2019, 670: 950-960. |
[60] | ZHOU J, GUI H, BANFIELD C C, et al. The microplastisphere: biodegradable microplastics addition alters soil microbial community structure and function[J]. Soil Biology and Biochemistry, 2021, 156: 108211. |
[61] | 余诗航, 刘珈佑, 李占杰, 等. 高通量测序揭示某石化固废填埋场污染对土壤微生物群落结构和功能的影响[J]. 北京师范大学学报(自然科学版), 2022, 58(2): 277-285. |
YU S H, LIU J Y, LI Z J, et al. Influence of pollutants on soil microbial community structure and function at a petrochemical landfill site: a high-throughput sequencing study[J]. Journal of Beijing Normal University (Natural Science), 2022, 58(2): 277-285. (in Chinese with English abstract) | |
[62] | LI Q, XIANG P, ZHANG T, et al. The effect of phosphate mining activities on rhizosphere bacterial communities of surrounding vegetables and crops[J]. Science of the Total Environment, 2022, 821: 153479. |
[63] | 彭春燕, 刘天翔, 高育慧, 等. 微生物固定化载体材料的最新研究进展[J]. 现代化工, 2021, 41(6): 55-59. |
PENG C Y, LIU T X, GAO Y H, et al. Latest advances on carrier materials in microbial immobilization[J]. Modern Chemical Industry, 2021, 41(6): 55-59. (in Chinese with English abstract) | |
[64] | 陈文宾, 殷磊, 许兴友, 等. 纳米Co3O4负载鞘氨醇单胞菌去除养殖海水中重金属离子的效果[J]. 湖北农业科学, 2011, 50(24): 5211-5215. |
CHEN W B, YIN L, XU X Y, et al. Study on bioremediation of heavy metal in cultured seawater by loading Sphingomonas sp. on nano Co3O4[J]. Hubei Agricultural Sciences, 2011, 50(24): 5211-5215. (in Chinese with English abstract) | |
[65] | ZHU X M, CHEN B L, ZHU L Z, et al. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review[J]. Environmental Pollution, 2017, 227: 98-115. |
[66] | WANG L, LI Z T, WANG Y, et al. Performance and mechanisms for remediation of Cd(II) and As(III) co-contamination by magnetic biochar-microbe biochemical composite: competition and synergy effects[J]. Science of the Total Environment, 2021, 750: 141672. |
[67] | 刘玉玲, 朱虎成, 彭鸥, 等. 玉米秸秆生物炭固化细菌对镉砷吸附[J]. 环境科学, 2020, 41(9): 4322-4332. |
LIU Y L, ZHU H C, PENG O, et al. Adsorption of cadmium and arsenic by corn stalk biochar solidified microorganism[J]. Environmental Science, 2020, 41(9): 4322-4332. (in Chinese with English abstract) | |
[68] | LI X, ROMANYÀ J, LI N, et al. Biochar fertilization effects on soil bacterial community and soil phosphorus forms depends on the application rate[J]. Science of the Total Environment, 2022, 843: 157022. |
[69] | GUO S Y, XIAO C Q, ZHENG Y T, et al. Removal and potential mechanisms of Cr(Ⅵ) contamination in phosphate mining wasteland by isolated Bacillus megatherium PMW-03[J]. Journal of Cleaner Production, 2021, 322: 129062. |
[70] | DIELS L, DONG Q, VAN DER LELIE D, et al. The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals[J]. Journal of Industrial Microbiology, 1995, 14(2):142-153. |
[1] | FENG Juan, ZHU Tingheng, LUO Chunping, YANG Jiayue, ZHU Siyu, LI Tong. Isolation and identification of polylactic acid degrading microorganisms from mealworm(Tenebrio molitor)gut [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1277-1287. |
[2] | YUAN Xiao\|li1, XIANG Tian\|yong2, ZHANG Zheng\|hong2, SONG Zhe\|yue2, SHAN Sheng\|dao1,*, QIU Lei3. High efficiency degradation of rice straw by diacolation process [J]. , 2014, 26(5): 1324-. |
[3] | FU Chunxia1, FU Yunxia2, QIU Zhongping1,*,JIANG Haitao1, LIU Zhigang1, HUA Jianjun1. Research progresses of lignin biodegradation [J]. , 2014, 26(4): 1139-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||