Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (1): 14-23.DOI: 10.3969/j.issn.1004-1524.20240253
• Crop Science • Previous Articles Next Articles
YANG Xiaoyu1,2(), MA Zhihui1,2, WEI Qing1,2, NIU Zhipeng1,2, CHEN Anqi1,2, HU Zhengchong1,2, WANG Linsheng1,2,*(
)
Received:
2024-03-18
Online:
2025-01-25
Published:
2025-02-14
CLC Number:
YANG Xiaoyu, MA Zhihui, WEI Qing, NIU Zhipeng, CHEN Anqi, HU Zhengchong, WANG Linsheng. Preliminary mapping of a wheat awn length gene and prediction of candidate genes[J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 14-23.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240253
标记 Marker | 染色体 Chr | 引物序列 Sequence (5'-3') | 退火温度 Tm/℃ |
---|---|---|---|
yzu443936 | 5A | F:CCGGCAATACTCACCTCTTT | 59 |
R:GCTAGCGTTCTGCTGTCCTT | |||
yzu454712 | 5A | F:TACCACCGATTGATGCTTGA | 60 |
R:CCGCTAGGGACATATCGAAG | |||
yzu460465 | 5A | F:AGAGTATTGCGGCCAGCTTA | 60 |
R:ATCCTACAGCCCCACCCTAT |
Table 1 Three pairs of SSR primers showing polymorphism differences
标记 Marker | 染色体 Chr | 引物序列 Sequence (5'-3') | 退火温度 Tm/℃ |
---|---|---|---|
yzu443936 | 5A | F:CCGGCAATACTCACCTCTTT | 59 |
R:GCTAGCGTTCTGCTGTCCTT | |||
yzu454712 | 5A | F:TACCACCGATTGATGCTTGA | 60 |
R:CCGCTAGGGACATATCGAAG | |||
yzu460465 | 5A | F:AGAGTATTGCGGCCAGCTTA | 60 |
R:ATCCTACAGCCCCACCCTAT |
基因序列号Gene ID | 注释信息Annotation | 物理位置Physical position/bp |
---|---|---|
TraesCS5A03G1219200 | Post-GPI attachment to proteins factor 3 | 684 710 738~684 713 456 |
TraesCS5A03G1219400 | — | 684 902 731~684 903 105 |
TraesCS5A03G1219900 | Copper transport protein 86 | 685 124 674~685 127 733 |
TraesCS5A03G1220200 | — | 685 156 738~685 159 437 |
TraesCS5A03G1220800 | Probable low-specificity L-threonine aldolase 1 | 685 405 389~685 408 368 |
TraesCS5A03G1224200 | Peroxisomal membrane protein 11-1 | 686 771 813~686 774 194 |
TraesCS5A03G1225300 | F-box protein At4g00755 | 687 299 524~687 304 202 |
TraesCS5A03G1226300 | Defensin-like protein | 687 631 077~687 631 292 |
TraesCS5A03G1227500 | RHOMBOID-like protein 2 | 687 747 729~687 750 510 |
TraesCS5A03G1230400 | Mitochondrial inner membrane protein OXA1 | 689 537 887~689 543 316 |
TraesCS5A03G1232600 | CASP-like protein 5B3 | 690 097 794~690 100 067 |
TraesCS5A03G1235400 | Phosphoglucan phosphatase DSP4, amyloplastic | 690 618 114~690 623 247 |
TraesCS5A03G1237100 | — | 690 817 727~690 820 259 |
TraesCS5A03G1237500 | Major pollen allergen Hol l 1 | 690 844 500~690 845 663 |
TraesCS5A03G1238000 | Pollen allergen Dac g 3 (Fragment) | 691 032 197~691 032 592 |
TraesCS5A03G1228900 | — | 689 010 955~689 013 189 |
TraesCS5A03G1227400 | COP9 signalosome complex subunit 1 | 687 741 228~687 747 570 |
Table 2 Prediction of candidate genes between yzu454712-yzu443936 markers on chromosome 5A of wheat
基因序列号Gene ID | 注释信息Annotation | 物理位置Physical position/bp |
---|---|---|
TraesCS5A03G1219200 | Post-GPI attachment to proteins factor 3 | 684 710 738~684 713 456 |
TraesCS5A03G1219400 | — | 684 902 731~684 903 105 |
TraesCS5A03G1219900 | Copper transport protein 86 | 685 124 674~685 127 733 |
TraesCS5A03G1220200 | — | 685 156 738~685 159 437 |
TraesCS5A03G1220800 | Probable low-specificity L-threonine aldolase 1 | 685 405 389~685 408 368 |
TraesCS5A03G1224200 | Peroxisomal membrane protein 11-1 | 686 771 813~686 774 194 |
TraesCS5A03G1225300 | F-box protein At4g00755 | 687 299 524~687 304 202 |
TraesCS5A03G1226300 | Defensin-like protein | 687 631 077~687 631 292 |
TraesCS5A03G1227500 | RHOMBOID-like protein 2 | 687 747 729~687 750 510 |
TraesCS5A03G1230400 | Mitochondrial inner membrane protein OXA1 | 689 537 887~689 543 316 |
TraesCS5A03G1232600 | CASP-like protein 5B3 | 690 097 794~690 100 067 |
TraesCS5A03G1235400 | Phosphoglucan phosphatase DSP4, amyloplastic | 690 618 114~690 623 247 |
TraesCS5A03G1237100 | — | 690 817 727~690 820 259 |
TraesCS5A03G1237500 | Major pollen allergen Hol l 1 | 690 844 500~690 845 663 |
TraesCS5A03G1238000 | Pollen allergen Dac g 3 (Fragment) | 691 032 197~691 032 592 |
TraesCS5A03G1228900 | — | 689 010 955~689 013 189 |
TraesCS5A03G1227400 | COP9 signalosome complex subunit 1 | 687 741 228~687 747 570 |
[1] | LI X J, WANG H G, LI H B, et al. Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticum aestivum)[J]. Physiologia Plantarum, 2006, 127(4): 701-709. |
[2] | 蔡文华, 裴建文. 小麦芒对产量构成因素的影响[J]. 甘肃农业科技, 1986, 17(5): 5-7. |
CAI W H, PEI J W. Effects of wheat and awn on yield components[J]. Gansu Agricultural Science and Technology, 1986, 17(5): 5-7. (in Chinese) | |
[3] | 陈培元, 李英. 小麦芒的功能及去芒对籽粒重的影响[J]. 作物学报, 1981, 7(4): 279-282. |
CHEN P Y, LI Y. The effect of wheat awns on grain weight and thier physiological function[J]. Acta Agronomica Sinica, 1981, 7(4): 279-282. (in Chinese with English abstract) | |
[4] | 吴鹏. 芒对小麦种子增重作用与其叶绿素含量关系的研究[J]. 种子, 1985, 4(5): 5-8. |
WU P. Study on the effect of awns on wheat seed weight gain and its chlorophyll content[J]. Seed, 1985, 4(5): 5-8. (in Chinese) | |
[5] | 冯朝章, 余泽高. 小麦冠层叶片和芒对产量因素的影响[J]. 湖北农学院学报, 1994(1): 1-7. |
FENG C Z, YU Z G. Effects of canopy leaves and awns on yield components in wheat[J]. Journal of Hubei Agricultural College, 1994(1): 1-7. (in Chinese) | |
[6] | 杨兆生, 许红霞, 梁文科. 小麦叶片、穗、芒对粒重的作用及品种间效应的研究[J]. 麦类作物学报, 1995, 15(4): 38-39. |
YANG Z S, XU H X, LIANG W K. Effects of leaf, ear and awns on grain weight and intervarietal effects of wheat[J]. Journal of Triticeae Crops, 1995, 15(4): 38-39. (in Chinese) | |
[7] | 王瑞清, 闫志顺, 杨继芝, 等. 冬小麦穗、穗下节、芒对籽粒重的影响[J]. 塔里木农垦大学学报, 2003, 15(4): 20-22. |
WANG R Q, YAN Z S, YANG J Z, et al. Effects of ear, lower ear and awn on grain weight of winter wheat[J]. Journal of Tarim University of Agricultural Reclamation, 2003, 15(4): 20-22. (in Chinese) | |
[8] | BISCOE P V, LITTLETON E J, SCOTT R K. Stomatal control of gas exchange in barley awns[J]. Annals of Applied Biology, 1973, 75(2): 285-297. |
[9] | BLUM A. Photosynthesis and transpiration in leaves and ears of wheat and barley varieties[J]. Journal of Experimental Botany, 1985, 36(3): 432-440. |
[10] | RAI K N, RAO A S. Effect of d2 dwarfing gene on grain yield and yield components in pearl millet near-isogenic lines[J]. Euphytica, 1991, 52(1): 25-31. |
[11] | MOTZO R, GIUNTA F. Awnedness affects grain yield and kernel weight in near-isogenic lines of durum wheat[J]. Australian Journal of Agricultural Research, 2002, 53(12): 1285. |
[12] | KING R W, RICHARDS R A. Water uptake in relation to pre-harvest sprouting damage in wheat: ear characteristics[J]. Australian Journal of Agricultural Research, 1984, 35(3): 327. |
[13] | MESTERHÁZY A. Types and components of resistance to Fusarium head blight of wheat[J]. Plant Breeding, 1995, 114(5): 377-386. |
[14] | WHALEY J M, KIRBY E J M, SPINK J H, et al. Frost damage to winter wheat in the UK: the effect of plant population density[J]. European Journal of Agronomy, 2004, 21(1): 105-115. |
[15] | 蒋钰婕. 利用KASP标记定位小麦中国春无芒位点Awn-4A.1[D]. 杨凌: 西北农林科技大学, 2020. |
JIANG Y J. Location of Awn-4A.1 in Chinese spring awn-free wheat using KASP markers[D]. Yangling: Northwest A & F University, 2020. (in Chinese with English abstract) | |
[16] | DEWITT N, GUEDIRA M, LAUER E, et al. Sequence-based mapping identifies a candidate transcription repressor underlying awn suppression at the B1 locus in wheat[J]. New Phytologist, 2020, 225(1): 326-339. |
[17] | 杜斌. 小麦芒长抑制基因B1近等基因系的鉴定及遗传分析[D]. 泰安: 山东农业大学, 2010. |
DU B. Identification and genetic analysis of near-isogenic line of wheat awn growth suppressor B1[D]. Taian: Shandong Agricultural University, 2010. (in Chinese with English abstract) | |
[18] | 王冬至, 余慷, 孙林鹤, 等. 小麦芒长抑制基因B1的精细定位[C]// 中国作物学会.2017年中国作物学会学术年会摘要集. 2017: 61. |
[19] | LI L, SUN F Y, WU D, et al. High-throughput development of genome-wide locus-specific informative SSR markers in wheat[J]. Science China Life Sciences, 2017, 60(6): 671-673. |
[20] | 夏豫川, 周胜芳, 刘钰, 等. 石斛的遗传连锁图谱构建及QTL定位研究进展[J]. 分子植物育种, 2022, 20(11): 3730-3736. |
XIA Y C, ZHOU S F, LIU Y, et al. Research progress on genetic linkage map construction and QTL mapping of Dendrobium[J]. Molecular Plant Breeding, 2022, 20(11): 3730-3736. (in Chinese with English abstract) | |
[21] | 耿君佑, 陈建辉, 董中东, 等. 小麦芒性基因的定位与候选基因分析[J]. 植物遗传资源学报, 2021, 22(4): 1090-1098. |
GENG J Y, CHEN J H, DONG Z D, et al. Mapping and candidate gene analysis of awn type in common wheat[J]. Journal of Plant Genetic Resources, 2021, 22(4): 1090-1098. (in Chinese with English abstract) | |
[22] | 陈真真, 周国勤, 陈金平, 等. 小麦芒长近等基因系的表型及遗传分析[J]. 湖北农业科学, 2023, 62(10): 5-8, 21. |
CHEN Z Z, ZHOU G Q, CHEN J P, et al. Phenotypic and genetic analysis of wheat near-isogenic lines in awn length[J]. Hubei Agricultural Sciences, 2023, 62(10): 5-8, 21. (in Chinese with English abstract) | |
[23] | 金迪, 王冬至, 王焕雪, 等. 小麦芒长抑制基因B2的精细定位与候选基因分析[J]. 作物学报, 2019, 45(6): 807-817. |
JIN D, WANG D Z, WANG H X, et al. Fine mapping and candidate gene analysis of awn inhibiting gene B2 in common wheat[J]. Acta Agronomica Sinica, 2019, 45(6): 807-817. (in Chinese with English abstract) | |
[24] | 杜斌, 崔法, 王洪刚, 等. 小麦芒长抑制基因B1近等基因系的鉴定及遗传分析[J]. 分子植物育种, 2010, 8(2): 259-264. |
DU B, CUI F, WANG H G, et al. Characterization and genetic analysis of near-isogenic lines of common wheat for awn-inhibitor gene B1[J]. Molecular Plant Breeding, 2010, 8(2): 259-264. (in Chinese with English abstract) | |
[25] | 高亚男. 小麦芒长近等基因系的遗传分析与转录组研究[D]. 泰安: 山东农业大学, 2015. |
GAO Y N. Genetic analysis and transcriptome study of near-isogenic lines of wheat awn length[D]. Taian: Shandong Agricultural University, 2015. (in Chinese with English abstract) | |
[26] | HUANG D Q, ZHENG Q, MELCHKART T, et al. Dominant inhibition of awn development by a putative zinc-finger transcriptional repressor expressed at the B1 locus in wheat[J]. New Phytologist, 2020, 225(1): 340-355. |
[27] | 张传量, 简俊涛, 冯洁, 等. 基于90K芯片标记的小麦芒长QTL定位[J]. 中国农业科学, 2018, 51(1): 17-26. |
ZHANG C L, JIAN J T, FENG J, et al. QTL identification for awn length based on 90K array mapping in wheat[J]. Scientia Agricultura Sinica, 2018, 51(1): 17-26. (in Chinese with English abstract) | |
[28] | 黄瑾, 骆惠生, 张勃, 等. 普通小麦芒的遗传分析[J]. 甘肃农业科技, 2011, 42(2): 11-12. |
HUANG J, LUO H S, ZHANG B, et al. Genetic analysis of mount of common wheat[J]. Gansu Agricultural Science and Technology, 2011, 42(2): 11-12. (in Chinese with English abstract) | |
[29] | 王彦梅, 安调过, 王志国, 等. “高优503” 小麦芒基因染色体定位[J]. 生态农业研究, 2000, 8(4): 31-33. |
WANG Y M, AN D G, WANG Z G, et al. A monosomic analysis of the awness gene of wheat variety Gaoyou503[J]. Chinese Journal of Eco-Agriculture, 2000, 8(4): 31-33. (in Chinese with English abstract) | |
[30] | 欧巧明, 崔文娟, 李忠旺, 等. 小麦持久条锈病抗源品种89144(BJ144)芒性状遗传分析[J]. 甘肃农业科技, 2020, 51(10): 31-34. |
OU Q M, CUI W J, LI Z W, et al. Genetic analysis of awn traits of enduring rust-resistant wheat cultivar resources 89144(BJ144)[J]. Gansu Agricultural Science and Technology, 2020, 51(10): 31-34. (in Chinese with English abstract) | |
[31] | 赫丽飞, 周仲乐, 马春婕, 等. 植物铜转运蛋白结构、功能及调控机制[J]. 中国细胞生物学学报, 2022, 44(12): 2411-2420. |
HE L F, ZHOU Z L, MA C J, et al. Structure, function and regulatory mechanism of COPT in plants[J]. Chinese Journal of Cell Biology, 2022, 44(12): 2411-2420. (in Chinese with English abstract) | |
[32] | 孙艳雨, 张金羽, 郭东林. 植物铜转运蛋白研究进展及其应用价值[J]. 分子植物育种, 2021, 19(12): 4014-4023. |
SUN Y Y, ZHANG J Y, GUO D L. Advances and the application value of plant copper transporters[J]. Molecular Plant Breeding, 2021, 19(12): 4014-4023. (in Chinese with English abstract) | |
[33] | KAO Y T, GONZALEZ K L, BARTEL B. Peroxisome function, biogenesis, and dynamics in plants[J]. Plant Physiology, 2018, 176(1): 162-177. |
[34] | 张钰婵. 植物过氧化物酶体蛋白的系统挖掘及过氧化物酶体蛋白HRLP的功能机制探究[D]. 杭州: 浙江大学, 2023. |
ZHANG Y C. Systematic mining of plant peroxisome protein and functional mechanism of peroxisome protein HRLP[D]. Hangzhou: Zhejiang University, 2023. (in Chinese with English abstract) | |
[35] | LI X H, WANG Y H, DUAN E C, et al. OPEN GLUME1: a key enzyme reducing the precursor of JA, participates in carbohydrate transport of lodicules during anthesis in rice[J]. Plant Cell Reports, 2018, 37(2): 329-346. |
[36] | YOU X M, ZHU S S, ZHANG W W, et al. OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis[J]. New Phytologist, 2019, 224(2): 712-724. |
[37] | 刘杨杨. 拟南芥Armadillo蛋白ZAK IXIK与F-box蛋白SAP相互作用参与花器官发育[D]. 北京: 中国农业大学, 2017. |
LIU Y Y. Interaction between Arabidopsis Armadillo protein ZAK IXIK and F-box protein SAP is involved in flower organ development[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract) |
[1] | LUAN Haiye, ZHU Linjie, LI Yu, MENG Wei, LIU Yuqian, XU Xiao, LIU Fangfang, SHEN Huiquan. Genome-wide association analysis of barley grain related traits [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 997-1002. |
[2] | CAI Shiyi, YU Huifang, WANG Jiansheng, ZHU Biao, SHEN Yusen, GU Honghui, SHENG Xiaoguang. Major gene plus polygene inheritance analysis of curd sitting height in cauliflower [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 527-533. |
[3] | SHOU Weisong, HE Yanjun, SHEN Jia, XU Xinyang. Genome-wide identification and bioinformatics analysis of SWEET gene family in melon [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1591-1603. |
[4] | LI Yanyan, BU Jianhua, HAN Liyun, WANG Chuanchuan, MU Tong. Identification and functional analysis of key candidate genes for milk fat metabolism in dairy cattle [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2794-2808. |
[5] | LANG Chunxiu, LIU Renhu, ZHENG Tao, WANG Fulin, SHI Jianghua, HU Zhanghua, WU Guanting. New dwarf mutants of oilseed rape (Brassica napus L.) induced by chemical mutagenesis [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2516-2524. |
[6] | ZHONG Liping, WANG Jian, WU Xiaohua, WANG Ying, WU Xinyi, WANG Baogen, LU Zhongfu, WANG Huasen, LI Guojing. Genome wide association analysis of powdery mildew resistance of bottle gourd based on MAGIC population [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2398-2407. |
[7] | WEI Haizhong, PAN Liqin, TANG Ziyi, TIAN Shengye, HE Haiye, YIN Longfei, ZHENG Dewei, ZHANG Huijuan, JIANG Ming. Isolation and expression analysis of a SKIP gene from Brassica oleracea var. italica [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 966-973. |
[8] | ZHAO Guofu, YAN Yaqin, WANG Jinglei, WEI Qingzhen, BAO Chonglai. Genome-wide identification and expression analysis of LOX gene family in eggplant (Solanum melongena) [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1025-1034. |
[9] | ZHAO Ke, LI Qiurong, HOU Lu, BAI Yaobo, JIANG Liling, WEI Youhai, GUO Qingyun. Genetic analysis of stripe rust resistance genes in 2 spring wheat germplasm resources at adult stage [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 595-601. |
[10] | PU Lusha, SU Shibo, CHEN Xiaohan, ZHAO Lili, CHEN Hongyan. Prokaryotic expression and phylogenetic analysis of ORF2 gene of goose astrovirus [J]. , 2020, 32(5): 789-797. |
[11] | JIA Xiaoping, WANG Zhenshan, ZHU Xuehai, YANG Dezhi, KOU Shujun, LIU Xingxing. Genetic analysis of dwarf gene for dwarf mutant“819” in Panicum miliaceum L. [J]. , 2020, 32(1): 20-27. |
[12] | SHAN Ying, XU Weicheng, SHI Xingfen, LIU Ziqi, CHEN Cong, LUO Hao, LIU Yajie, FANG Weihuan, LI Xiaoliang. Establishment of one-step Taqman quantitative PCR detection method and molecular S gene characterization analysis of porcine deltacoronavirus [J]. , 2018, 30(2): 220-227. |
[13] | ZHANG Lizhi, FAN Sheng, AN Na, ZUO Xiya, GAO Cai, ZHANG Dong, HAN Mingyu. Identification and expression analysis of PAL gene family in apple [J]. , 2018, 30(12): 2031-2043. |
[14] | XIAO Shanshan, ZHAO Hu, SUN Yefang, DAI Yuyou*. Identification, characterization and evolution of NAC transcription factors in Phalaenopsis [J]. , 2016, 28(7): 1156-. |
[15] | ZOU Li, YANG Yuan\|yi, SUN Ting\|ting, WANG Shi\|xin, CUI Rong, LI Jing\|ying. Isolation and identification of wild Lepista sordida by ITS gene sequence [J]. , 2016, 28(2): 264-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||