Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (4): 745-753.DOI: 10.3969/j.issn.1004-1524.20240262
• Crop Science • Previous Articles Next Articles
PEI Damei(), ZHAO Hongping, WANG Long, LI Huaxin, ZHAO Zhi, XIAO Lu*(
)
Received:
2024-03-20
Online:
2025-04-25
Published:
2025-05-09
CLC Number:
PEI Damei, ZHAO Hongping, WANG Long, LI Huaxin, ZHAO Zhi, XIAO Lu. Mixed genetic model analysis of major gene + polygene of branch angle in Brassica rapa L.[J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 745-753.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240262
环境 Environ- ment | 世代 Gene- ration | Ⅰ组合Combination Ⅰ | Ⅱ组合Combination Ⅱ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
单株数 No. of plants | 分枝角度Branch angle | 单株数 No. of single plant | 分枝角度Branch angle | ||||||||||
最大值 Maximum/ (°) | 最小值 Minimun/ (°) | 平均数 Mean/ (°) | 标准差 SD | 变异系数 CV/% | 最大值 Maximum/ (°) | 最小值 Minimun/ (°) | 平均数 Mean/ (°) | 标准差 SD | 变异系数 CV/% | ||||
西宁 | P1 | 20 | 25.15 | 15.23 | 23.05 | 2.97 | 12.89 | 20 | 25.15 | 15.23 | 23.05 | 2.97 | 12.89 |
Xining | P2 | 20 | 54.54 | 21.53 | 33.37 | 7.22 | 21.64 | 10 | 36.76 | 23.90 | 30.10 | 5.58 | 18.54 |
F1 | 17 | 41.54 | 24.15 | 30.34 | 4.72 | 15.56 | 17 | 37.54 | 21.25 | 29.19 | 4.62 | 15.83 | |
F2 | 197 | 51.25 | 10.03 | 30.37 | 7.37 | 24.27 | 190 | 43.78 | 9.07 | 26.86 | 6.58 | 24.50 | |
云南 | P1 | 20 | 29.71 | 17.42 | 22.44 | 3.79 | 16.89 | 20 | 29.71 | 17.42 | 22.44 | 3.79 | 16.89 |
Yunnan | P2 | 20 | 48.70 | 25.31 | 33.94 | 9.06 | 26.69 | 20 | 50.44 | 20.21 | 38.91 | 8.14 | 20.92 |
F1 | 17 | 44.74 | 21.08 | 31.97 | 4.57 | 14.29 | 17 | 47.23 | 28.80 | 34.39 | 5.20 | 15.12 | |
F2 | 185 | 65.36 | 16.20 | 35.11 | 9.29 | 26.46 | 188 | 57.18 | 10.01 | 32.82 | 9.61 | 29.28 |
Table 1 Phenotype data statistics of branch angle in four generations from Dahuang×Haoyou 11 and Dahuang×No.952
环境 Environ- ment | 世代 Gene- ration | Ⅰ组合Combination Ⅰ | Ⅱ组合Combination Ⅱ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
单株数 No. of plants | 分枝角度Branch angle | 单株数 No. of single plant | 分枝角度Branch angle | ||||||||||
最大值 Maximum/ (°) | 最小值 Minimun/ (°) | 平均数 Mean/ (°) | 标准差 SD | 变异系数 CV/% | 最大值 Maximum/ (°) | 最小值 Minimun/ (°) | 平均数 Mean/ (°) | 标准差 SD | 变异系数 CV/% | ||||
西宁 | P1 | 20 | 25.15 | 15.23 | 23.05 | 2.97 | 12.89 | 20 | 25.15 | 15.23 | 23.05 | 2.97 | 12.89 |
Xining | P2 | 20 | 54.54 | 21.53 | 33.37 | 7.22 | 21.64 | 10 | 36.76 | 23.90 | 30.10 | 5.58 | 18.54 |
F1 | 17 | 41.54 | 24.15 | 30.34 | 4.72 | 15.56 | 17 | 37.54 | 21.25 | 29.19 | 4.62 | 15.83 | |
F2 | 197 | 51.25 | 10.03 | 30.37 | 7.37 | 24.27 | 190 | 43.78 | 9.07 | 26.86 | 6.58 | 24.50 | |
云南 | P1 | 20 | 29.71 | 17.42 | 22.44 | 3.79 | 16.89 | 20 | 29.71 | 17.42 | 22.44 | 3.79 | 16.89 |
Yunnan | P2 | 20 | 48.70 | 25.31 | 33.94 | 9.06 | 26.69 | 20 | 50.44 | 20.21 | 38.91 | 8.14 | 20.92 |
F1 | 17 | 44.74 | 21.08 | 31.97 | 4.57 | 14.29 | 17 | 47.23 | 28.80 | 34.39 | 5.20 | 15.12 | |
F2 | 185 | 65.36 | 16.20 | 35.11 | 9.29 | 26.46 | 188 | 57.18 | 10.01 | 32.82 | 9.61 | 29.28 |
环境 Environment | 组合Ⅰ Combination Ⅰ | 组合Ⅱ Combination Ⅱ | ||||
---|---|---|---|---|---|---|
模型含义 Implication of model | AIC值 AIC value | 极大似然函数值 Maximum likelihood function value | 模型含义 Implication of model | AIC值 AIC value | 极大似然函数值 Maximum likelihood function value | |
西宁Xining | 1MG-AD | 1 654.77 | -821.39 | 1MG-AD | 1 441.82 | -714.91 |
1MG-A | 1 653.22 | -821.61 | 1MG-A | 1 440.13 | -715.06 | |
1MG-EAD | 1 653.30 | -821.65 | 1MG-EAD | 1 439.97 | -714.98 | |
1MG - NCD | 1 652.41 | -821.20 | 1MG-NCD | 1 440.02 | -715.01 | |
2MG-ADI | 1 672.71 | -825.35 | 2MG-ADI | 1 456.28 | -717.14 | |
2MG-AD | 1 668.77 | -827.39 | 2MG-AD | 1 451.66 | -718.83 | |
2MG-A | 1 679.56 | -834.78 | 2MG - A | 1 431.33 | -710.67 | |
2MG-EA | 1 652.47 | -822.24 | 2MG - EA | 1 431.86 | -711.93 | |
2MG-CD | 1 694.88 | -842.44 | 2MG-CD | 1 448.50 | -719.25 | |
2MG - EAD | 1 651.54 | -821.77 | 2MG-EAD | 1 440.52 | -716.26 | |
云南Yunnan | 1MG-AD | 1 088.24 | -538.12 | 1MG-AD | 1 090.69 | -539.34 |
1MG-A | 1 086.77 | -538.39 | 1MG-A | 1 088.70 | -539.35 | |
1MG-EAD | 1 086.63 | -538.32 | 1MG-EAD | 1 089.08 | -539.54 | |
1MG-NCD | 1 087.79 | -538.90 | 1MG-NCD | 1 090.24 | -540.12 | |
2MG-ADI | 1 106.72 | -542.36 | 2MG-ADI | 1 108.64 | -543.32 | |
2MG-AD | 1 100.32 | -543.16 | 2MG-AD | 1 103.81 | -544.90 | |
2MG-A | 1 109.01 | -549.51 | 2MG-A | 1 110.38 | -550.19 | |
2MG - EA | 1 083.34 | -537.67 | 2MG - EA | 1 085.71 | -538.85 | |
2MG-CD | 1 112.02 | -551.01 | 2MG-CD | 1 135.54 | -562.77 | |
2MG - EAD | 1 084.36 | -538.18 | 2MG - EAD | 1 085.50 | -538.75 |
Table 2 Alternative models for genetic analysis of each combination
环境 Environment | 组合Ⅰ Combination Ⅰ | 组合Ⅱ Combination Ⅱ | ||||
---|---|---|---|---|---|---|
模型含义 Implication of model | AIC值 AIC value | 极大似然函数值 Maximum likelihood function value | 模型含义 Implication of model | AIC值 AIC value | 极大似然函数值 Maximum likelihood function value | |
西宁Xining | 1MG-AD | 1 654.77 | -821.39 | 1MG-AD | 1 441.82 | -714.91 |
1MG-A | 1 653.22 | -821.61 | 1MG-A | 1 440.13 | -715.06 | |
1MG-EAD | 1 653.30 | -821.65 | 1MG-EAD | 1 439.97 | -714.98 | |
1MG - NCD | 1 652.41 | -821.20 | 1MG-NCD | 1 440.02 | -715.01 | |
2MG-ADI | 1 672.71 | -825.35 | 2MG-ADI | 1 456.28 | -717.14 | |
2MG-AD | 1 668.77 | -827.39 | 2MG-AD | 1 451.66 | -718.83 | |
2MG-A | 1 679.56 | -834.78 | 2MG - A | 1 431.33 | -710.67 | |
2MG-EA | 1 652.47 | -822.24 | 2MG - EA | 1 431.86 | -711.93 | |
2MG-CD | 1 694.88 | -842.44 | 2MG-CD | 1 448.50 | -719.25 | |
2MG - EAD | 1 651.54 | -821.77 | 2MG-EAD | 1 440.52 | -716.26 | |
云南Yunnan | 1MG-AD | 1 088.24 | -538.12 | 1MG-AD | 1 090.69 | -539.34 |
1MG-A | 1 086.77 | -538.39 | 1MG-A | 1 088.70 | -539.35 | |
1MG-EAD | 1 086.63 | -538.32 | 1MG-EAD | 1 089.08 | -539.54 | |
1MG-NCD | 1 087.79 | -538.90 | 1MG-NCD | 1 090.24 | -540.12 | |
2MG-ADI | 1 106.72 | -542.36 | 2MG-ADI | 1 108.64 | -543.32 | |
2MG-AD | 1 100.32 | -543.16 | 2MG-AD | 1 103.81 | -544.90 | |
2MG-A | 1 109.01 | -549.51 | 2MG-A | 1 110.38 | -550.19 | |
2MG - EA | 1 083.34 | -537.67 | 2MG - EA | 1 085.71 | -538.85 | |
2MG-CD | 1 112.02 | -551.01 | 2MG-CD | 1 135.54 | -562.77 | |
2MG - EAD | 1 084.36 | -538.18 | 2MG - EAD | 1 085.50 | -538.75 |
环境 Environment | 组合 Combination | 模型 Model | 世代 Generation | nW2 | Dn | |||
---|---|---|---|---|---|---|---|---|
西宁Xining | Ⅰ | 2MG-EAD | P1 | 0.021(0.884) | 0.041(0.840) | 0.060(0.807) | 0.002(0.933) | 0.119(0.909) |
P2 | 0.289(0.591) | 0.833(0.361) | 2.465(0.116) | 0.023(0.384) | 0.190(0.418) | |||
F1 | 0.128(0.720) | 0.117(0.732) | 0.000 3(0.986) | 0.005(0.735) | 0.167(0.637) | |||
F2 | 0.002(0.966) | 0.001(0.981) | 0.005(0.947) | 0.002(0.937) | 0.042(0.885) | |||
Ⅱ | 2MG-A | P1 | 0.021(0.884) | 0.041(0.840) | 0.060(0.807) | 0.002(0.933) | 0.119(0.909) | |
P2 | 0.004(0.949) | 0.001(0.972) | 0.011(0.916) | 0.004(0.784) | 0.284(0.726) | |||
F1 | 0.002(0.961) | 0.118(0.732) | 2.430(0.119) | 0.005(0.771) | 0.153(0.850) | |||
F2 | 0.001(0.971) | 0.001(0.971) | 0(0.995) | 0(1.000) | 0.025(1.000) | |||
云南Yunnan | Ⅰ | 2MG-EA | P1 | 0.040(0.842) | 0.011(0.917) | 0.126(0.723) | 0.003(0.839) | 0.176(0.866) |
P2 | 0.064(0.801) | 0.049(0.825) | 0.008(0.928) | 0.008(0.666) | 0.281(0.470) | |||
F1 | 0.002(0.961) | 0.043(0.836) | 0.413(0.520) | 0.002(0.899) | 0.116(0.965) | |||
F2 | 0(0.998) | 0(0.994) | 0.001(0.980) | 0.001(0.984) | 0.048(0.943) | |||
Ⅱ | 2MG-EAD | P1 | 0.040(0.842) | 0.011(0.917) | 0.126(0.723) | 0.004(0.839) | 0.176(0.865) | |
P2 | 0.228(0.633) | 0.062(0.804) | 0.732(0.392) | 0.022(0.393) | 0.296(0.407) | |||
F1 | 0.022(0.882) | 0.007(0.932) | 0.056(0.813) | 0.005(0.759) | 0.195(0.516) | |||
F2 | 0(0.993) | 0(0.998) | 0.002(0.965) | 0(0.985) | 0.047(0.952) |
Table 3 Goodness-of-fit test of the optimal genetic model
环境 Environment | 组合 Combination | 模型 Model | 世代 Generation | nW2 | Dn | |||
---|---|---|---|---|---|---|---|---|
西宁Xining | Ⅰ | 2MG-EAD | P1 | 0.021(0.884) | 0.041(0.840) | 0.060(0.807) | 0.002(0.933) | 0.119(0.909) |
P2 | 0.289(0.591) | 0.833(0.361) | 2.465(0.116) | 0.023(0.384) | 0.190(0.418) | |||
F1 | 0.128(0.720) | 0.117(0.732) | 0.000 3(0.986) | 0.005(0.735) | 0.167(0.637) | |||
F2 | 0.002(0.966) | 0.001(0.981) | 0.005(0.947) | 0.002(0.937) | 0.042(0.885) | |||
Ⅱ | 2MG-A | P1 | 0.021(0.884) | 0.041(0.840) | 0.060(0.807) | 0.002(0.933) | 0.119(0.909) | |
P2 | 0.004(0.949) | 0.001(0.972) | 0.011(0.916) | 0.004(0.784) | 0.284(0.726) | |||
F1 | 0.002(0.961) | 0.118(0.732) | 2.430(0.119) | 0.005(0.771) | 0.153(0.850) | |||
F2 | 0.001(0.971) | 0.001(0.971) | 0(0.995) | 0(1.000) | 0.025(1.000) | |||
云南Yunnan | Ⅰ | 2MG-EA | P1 | 0.040(0.842) | 0.011(0.917) | 0.126(0.723) | 0.003(0.839) | 0.176(0.866) |
P2 | 0.064(0.801) | 0.049(0.825) | 0.008(0.928) | 0.008(0.666) | 0.281(0.470) | |||
F1 | 0.002(0.961) | 0.043(0.836) | 0.413(0.520) | 0.002(0.899) | 0.116(0.965) | |||
F2 | 0(0.998) | 0(0.994) | 0.001(0.980) | 0.001(0.984) | 0.048(0.943) | |||
Ⅱ | 2MG-EAD | P1 | 0.040(0.842) | 0.011(0.917) | 0.126(0.723) | 0.004(0.839) | 0.176(0.865) | |
P2 | 0.228(0.633) | 0.062(0.804) | 0.732(0.392) | 0.022(0.393) | 0.296(0.407) | |||
F1 | 0.022(0.882) | 0.007(0.932) | 0.056(0.813) | 0.005(0.759) | 0.195(0.516) | |||
F2 | 0(0.993) | 0(0.998) | 0.002(0.965) | 0(0.985) | 0.047(0.952) |
环境 Environment | 组合 Combination | 一阶遗传参数1st order genetic parameter/% | ||
---|---|---|---|---|
群体均方m | 第1对主基因的加性效应da | 第2对主基因的加性效应db | ||
西宁Xining | Ⅰ(2MG-EAD) | 28.68 | -1.10 | 0 |
Ⅱ(2MG-A) | 27.50 | -5.65 | 2.54 | |
云南Yunnan | Ⅰ(2MG-EA) | 30.82 | -2.89 | 0 |
Ⅱ(2MG-EAD) | 32.69 | -4.12 | 0 |
Table 4 Estimation of the 1st genetic parameter for the optimal genetic model
环境 Environment | 组合 Combination | 一阶遗传参数1st order genetic parameter/% | ||
---|---|---|---|---|
群体均方m | 第1对主基因的加性效应da | 第2对主基因的加性效应db | ||
西宁Xining | Ⅰ(2MG-EAD) | 28.68 | -1.10 | 0 |
Ⅱ(2MG-A) | 27.50 | -5.65 | 2.54 | |
云南Yunnan | Ⅰ(2MG-EA) | 30.82 | -2.89 | 0 |
Ⅱ(2MG-EAD) | 32.69 | -4.12 | 0 |
环境 Environment | 组合 Combination | 二阶遗传参数 2nd order genetic parameter/% | |
---|---|---|---|
主基因方差 | 主基因遗传率 | ||
西宁Xining | Ⅰ(2MG-EAD) | 46.00 | 84.61 |
Ⅱ(2MG-A) | 35.01 | 80.71 | |
云南Yunnan | Ⅰ(2MG-EA) | 79.52 | 86.05 |
Ⅱ(2MG-EAD) | 79.52 | 86.05 |
Table 5 Estimation of 2nd genetic parameter for the optimal genetic model
环境 Environment | 组合 Combination | 二阶遗传参数 2nd order genetic parameter/% | |
---|---|---|---|
主基因方差 | 主基因遗传率 | ||
西宁Xining | Ⅰ(2MG-EAD) | 46.00 | 84.61 |
Ⅱ(2MG-A) | 35.01 | 80.71 | |
云南Yunnan | Ⅰ(2MG-EA) | 79.52 | 86.05 |
Ⅱ(2MG-EAD) | 79.52 | 86.05 |
[1] | 徐亮, 唐国永, 杜德志. 我国双低油菜多功能利用及青海省发展潜力分析[J]. 青海大学学报, 2019, 37(3): 41-48. |
XU L, TANG G Y, DU D Z. Multi-functional utilization of “double-low” rapeseed in China and development potential in Qinghai Province[J]. Journal of Qinghai University, 2019, 37(3): 41-48. (in Chinese with English abstract) | |
[2] | 赵洪平, 李延玲, 马茜茹, 等. 白菜型油菜产量相关性状的数量遗传分析[J]. 江苏农业科学, 2023, 51(2): 92-97. |
ZHAO H P, LI Y L, MA Q R, et al. Quantitative genetic analysis of yield-related traits in Brassic rapa[J]. Jiangsu Agricultural Sciences, 2023, 51(2): 92-97. (in Chinese with English abstract) | |
[3] | 王焕强. 青海省杂交油菜制种现状与潜力[J]. 中国种业, 2015(4): 1-3. |
WANG H Q. Current situation and potential of hybrid rapeseed production in Qinghai Province[J]. China Seed Industry, 2015(4): 1-3. (in Chinese) | |
[4] | 牛妍, 赵志刚, 余青兰, 等. 芥菜型油菜和白菜型油菜种间杂种遗传分析[J]. 植物遗传资源学报, 2013, 14(4): 715-722. |
NIU Y, ZHAO Z G, YU Q L, et al. Genetic analysis on interspecific hybrids progeny between Brassica juncea and Brassica rapa[J]. Journal of Plant Genetic Resources, 2013, 14(4): 715-722. (in Chinese with English abstract) | |
[5] | 马寿福, 刁治民, 吴保锋. 青海省油菜产业化现状及发展对策[J]. 安徽农业科学, 2006, 34(11): 2568-2571. |
MA S F, DIAO Z M, WU B F. Industrialization actuality and development countermeasure of rapeseed in Qinghai[J]. Journal of Anhui Agricultural Sciences, 2006, 34(11): 2568-2571. (in Chinese) | |
[6] | 夏胜前, 张毅, 涂金星. 油菜重要性状功能基因研究进展[J]. 中国油料作物学报, 2018, 40(5): 656-663. |
XIA S Q, ZHANG Y, TU J X. Research advance on functional genomics in rapeseed[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 656-663. (in Chinese with English abstract) | |
[7] | 李洪戈. 甘蓝型油菜分枝角度和茎秆倒伏性状的遗传基础解析[D]. 武汉: 华中农业大学, 2018. |
LI H G. Genetic basis analysis of branch angle and stem lodging traits in Brassica napus[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese with English abstract) | |
[8] | 张倩. 甘蓝型油菜主要株型性状的遗传分析和QTL初步定位[D]. 重庆: 西南大学, 2013. |
ZHANG Q. Genetic analysis and QTL mapping of main plant type traits in Brassica napus[D]. Chongqing: Southwest University, 2013. (in Chinese with English abstract) | |
[9] | 汪文祥, 胡琼, 梅德圣, 等. 甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应[J]. 作物学报, 2016, 42(8): 1103-1111. |
WANG W X, HU Q, MEI D S, et al. Genetic effects of branch angle using mixture model of major gene plus polygene in Brassica napus L[J]. Acta Agronomica Sinica, 2016, 42(8): 1103-1111. (in Chinese with English abstract) | |
[10] | 张淼. 甘蓝型油菜分枝角度QTL定位及候选基因分析[D]. 杨凌: 西北农林科技大学, 2022. |
ZHANG M. QTL mapping for brach angle and analysis of candidate genes in Brassica napus L.[D]. Yangling: Northwest A & F University, 2022. (in Chinese with English abstract) | |
[11] | 赵小珍, 赵卫国, 张春, 等. 甘蓝型油菜分枝角度QTL定位及候选基因分析[J]. 中国油料作物学报, 2022, 44(1): 25-34. |
ZHAO X Z, ZHAO W G, ZHANG C, et al. QTL mapping and candidate gene analysis of branch angle in Brassica napus L[J]. Chinese Journal of Oil Crop Sciences, 2022, 44(1): 25-34. (in Chinese with English abstract) | |
[12] | LIU J, WANG W X, MEI D S, et al. Characterizing variation of branch angle and genome-wide association mapping in rapeseed (Brassica napus L.)[J]. Frontiers in Plant Science, 2016, 7: 21. |
[13] | 江建华, 张武汉, 党小景, 等. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227. |
JIANG J H, ZHANG W H, DANG X J, et al. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice(Oryza sativa L.)[J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227. (in Chinese with English abstract) | |
[14] | 陈悦, 王同著, 郑跃婷, 等. 小麦分蘖性状分子遗传研究进展[J]. 麦类作物学报, 2022, 42(5): 564-571. |
CHEN Y, WANG T Z, ZHENG Y T, et al. Advances in molecular genetics of tillering characters in wheat[J]. Journal of Triticeae Crops, 2022, 42(5): 564-571. (in Chinese with English abstract) | |
[15] | 王聚辉, 程子祥, 修文雯, 等. 玉米茎叶夹角与根系入土角度相关性研究[J]. 华北农学报, 2015, 30(S1):173-178. |
WANG J H, CHENG Z X, XIU W W, et al. Study on the correlation between maize leaf angle and root penetration angle[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(S1):173-178. (in Chinese with English abstract) | |
[16] | 马麒, 李吉莲, 徐守振, 等. 陆地棉果枝夹角性状的主基因+多基因混合遗传模型分析[J]. 生物技术通报, 2022, 38(10): 148-158. |
MA Q, LI J L, XU S Z, et al. Genetic analysis of FBA trait in upland cotton with major gene plus polygenes mixed genetic model[J]. Biotechnology Bulletin, 2022, 38(10): 148-158. (in Chinese with English abstract) | |
[17] | 盖钧镒. 植物数量性状遗传体系的分离分析方法研究[J]. 遗传, 2005, 27(1): 130-136. |
GAI J Y. Segregation analysis of genetic system of quantitative traits in plants[J]. Hereditas(Beijing), 2005, 27(1): 130-136. (in Chinese with English abstract) | |
[18] | 章元明, 盖钧镒, 张孟臣. 利用P1 F1 P2和F2或F2∶3世代联合的数量性状分离分析[J]. 西南农业大学学报(自然科学版), 2000, 22(1):6-9. |
ZHANG Y M, GAI J Y, ZHANG M C. Jointly segregating analysis of P1 P2 F1 and F2 or F2∶3 families[J]. Journal of Southwest Agricultural University (Natural Science Edition), 2000, 22(1):6-9. (in Chinese with English abstract) | |
[19] | 王靖天, 张亚雯, 杜应雯, 等. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424. |
WANG J T, ZHANG Y W, DU Y W, et al. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits[J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424. (in Chinese with English abstract) | |
[20] | 高丽萍, 陈慧, 刘嘉诚, 等. 油菜机械直播同步分层施肥对根系构型和抗倒伏能力影响[J]. 农业工程学报, 2023, 39(11): 87-97. |
GAO L P, CHEN H, LIU J C, et al. Effects of synchronous layered fertilization with machinery on the root architecture and lodging resistance of rape[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(11): 87-97. (in Chinese with English abstract) | |
[21] | 张斯媚. 我国油菜生产现状及发展前景分析[J]. 农村经济与科技, 2016, 27(20): 35. |
ZHANG S M. Analysis of the current situation and development prospect of rapeseed production in China[J]. Rural Economy and Science-Technology, 2016, 27(20): 35. (in Chinese) | |
[22] | 陈莎莎. 长江流域油菜生产规模效益研究[D]. 武汉: 华中农业大学, 2017. |
CHEN S S. The research of rapeseed production scale profit in YangtzeRiver Basin[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract) | |
[23] | 董凤. 油菜绿色高效高产栽培[J]. 云南农业, 2021(8): 77-78. |
DONG F. Rape green high-efficiency and high-yield cultivation[J]. Yunnan Agriculture, 2021(8): 77-78. (in Chinese) | |
[24] | DALTON-MORGAN J, HAYWARD A, ALAMERY S, et al. A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes[J]. Functional & Integrative Genomics, 2014, 14(4): 643-655. |
[25] | 马霓, 李云昌, 胡琼, 等. 我国南方冬油菜机械化生产农艺研究进展[J]. 中国油料作物学报, 2010, 32(3): 451-456. |
MA N, LI Y C, HU Q, et al. Research of agronomic techniques for mechanical production of winter rape (Brassica napus L.) in South China[J]. Chinese Journal of Oil Crop Sciences, 2010, 32(3): 451-456. (in Chinese with English abstract) | |
[26] | 陈新军, 戚存扣, 浦惠明, 等. 甘蓝型油菜抗倒性评价及抗倒性与株型结构的关系[J]. 中国油料作物学报, 2007, 29(1): 54-57. |
CHEN X J, QI C K, PU H M, et al. Evaluation of lodging resistance in rapeseed(Brassica napus L.) and relationship between plant architecture and lodging resistance[J]. Chinese Journal of Oil Crop Sciences, 2007, 29(1): 54-57. (in Chinese with English abstract) | |
[27] | 库丽霞, 张君, 张伟强, 等. 作物株型相关性状分子机理的研究进展[J]. 中国农学通报, 2010, 26(5): 20-25. |
KU L X, ZHANG J, ZHANG W Q, et al. Study advances in molecular mechanism of the crop architecture relevant traits[J]. Chinese Agricultural Science Bulletin, 2010, 26(5): 20-25. (in Chinese with English abstract) | |
[28] | 马娟, 王铁固, 张怀胜, 等. 玉米叶夹角、叶向值主基因+多基因遗传模型分析[J]. 河南农业科学, 2012, 41(5): 15-19. |
MA J, WANG T G, ZHANG H S, et al. The major genes plus polygenes genetic analysis on leaf angle and leaf orientation value in maize[J]. Journal of Henan Agricultural Sciences, 2012, 41(5): 15-19. (in Chinese with English abstract) | |
[29] | 冯辉, 王五宏, 徐娜, 等. 串番茄主要株型性状的遗传研究[J]. 中国农业科学, 2008, 41(12): 4134-4139. |
FENG H, WANG W H, XU N, et al. Inheritance of several plant type characters in truss tomato[J]. Scientia Agricultura Sinica, 2008, 41(12): 4134-4139. (in Chinese with English abstract) | |
[30] | 庞欣, 郭勤卫, 张婷. 辣椒株高主基因+多基因混合遗传模型分析[J]. 中国蔬菜, 2023(11):80-86. |
PANG X, GUO Q W, ZHANG T, et al. Genetic analysis of plant height trait in pepper with major gene plus polygene mixed model[J]. Chinese vegetables, 2023(11): 80-86. (in Chinese) |
[1] | TAN Jingru, HU Qizan, YUE Zhichen, TAO Peng, LEI Juanli, LI Biyuan, ZHAO Yanting, ZANG Yunxiang. Comprehensive evaluation system for heat tolerance of seedling-edible Chinese cabbage (Brassica rapa L. ssp.) based on chlorophyll fluorescence parameters [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 288-299. |
[2] | YANG Cunming, LIU Jing, ZHANG Menghua, ZHANG Xiaoxue, LIU Guifen, HE Junmin, MAO Jingyi, LI Xue, TANG Li, ZHANG Wenjing, PAN Linxiang, TIAN Kechuan, HUANG Xixia. Estimation of genetic parameters of body size and body weight at different growth stages of Luzhong mutton sheep [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 48-57. |
[3] | YAO Yanlin, MA Li, LIU Lijun, PU Yuanyuan, LI Xuecai, WANG Wangtian, FANG Yan, SUN Wancang, WU Junyan. Bioinformatics and expression analysis of flowering regulation gene BrFT in Brassica rapa L. [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 992-1000. |
[4] | LYU Fengxian, HE Jiangming, LI Chongjuan, YANG Ding, HU Jingfeng, YANG Hongli, LAN Mei, XU Xuezhong, ZHANG Liqin. Creation of allotetraploid vegetable germplasm by interspecific hybridization of Brassica rapa L. ssp chinensis var. utilis Tsen et Lee and Brassica oleracea var. Alboglabra [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1638-1647. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||