Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (8): 1367-1378.DOI: 10.3969/j.issn.1004-1524.2021.08.03
• Crop Science • Previous Articles Next Articles
WANG Zhangjun1(), YAO Mingming1, YU Huixia1, WANG Yanqing1, LI Qingfeng1, LIU Fenglou1, LIU Caixia1, ZHANG Shuangxi2, ZHANG Xiaogang1, LIU Shengxiang1
Received:
2020-10-19
Online:
2021-08-25
Published:
2021-08-27
CLC Number:
WANG Zhangjun, YAO Mingming, YU Huixia, WANG Yanqing, LI Qingfeng, LIU Fenglou, LIU Caixia, ZHANG Shuangxi, ZHANG Xiaogang, LIU Shengxiang. Construction of genetic map and analysis of QTL for grain protein traits using F2∶5 pedigrees derived from Ningchun No.4×Hedong black wheat[J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1367-1378.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.08.03
引物编号 Marker name | 染色体 Chromosome | 位点 Loci | 引物序列(5'-3') Primer sequence(5'-3') | 退火温度 Annealing temperature/℃ |
---|---|---|---|---|
Xwmc385 | 1A | Xwmc385-1A | GAAATGGCAATGGACTCAC CCATCATATCCCTAGCACAA | 52 |
Xbarc137 | 1B | Xbarc137-1B | GGCCCATTTCCCACTTTCCA CCAGCCCCTCTACACATTTT | 50 |
Xbarc181 | 1B | Xbarc181-1B | CGCTGGAGGGGGTAAGTCATCAC CGCAAATCAAGAACACGGGAGAAAGAA | 50 |
Xcfd72 | 1D | Xcfd72-1D | CTCCTTGGAATCTCACCGAA TCCTTGGGAATATGCCTCCT | 52 |
Xgwm249 | 2A | Xgwm249-2A | CAAATGGATCGAGAAAGGGA CTGCCATTTTTCTGGATCTACC | 52 |
Xgwm372 | 2A | Xgwm372-2A | AATAGAGCCCTGGGACTGGG GAAGGACGACATTCCACCTG | 50 |
Xbarc208 | 2A | Xbarc208-2A | GCGTGCTCATATTTCCAACATCAA GCGTGGTATAACAAAACTACACAACCTG | 52 |
Xgpw2204 | 2A | Xgpw2204-2A | ACGTGCCTCGGTCGATATAC ACCCCGAGCATGTCAAATAG | 60 |
XbarcM139 | 2B | XbarcM139-2B | AGAAGCTCCCCTAAACTGAG CGACGCTGATGAATGAAT | 60 |
Xmag1241 | 2D | Xmag1241-2D | GGGACCAAAGCAAACACCATC GGCTACAAGGGTTCAAGATAATGC | 60 |
Xbarc177 | 3A/5D | Xbarc177-3A | GCGATCCTGTTGTTGAGCGTTTGCATAA TCCCGTTTTCCCGTGTGTTAGTCTA | 55 |
Xgdm8 | 3D | Xgdm8-3D | TTCTCCAACGCACGTTAGC CCCAAATGATGGCAGCTACT | 55 |
Xgpw2220 | 4D | Xgpw2220-4D | TGACACCCCTTTCTTATCCG TAGCGAGGGGGTTAAGTGTG | 55 |
Xwmc410 | 5A | Xwmc410-5A | GGACTTGAAAGGAAGCTTGTGA CATGGATGGCATGCAGTGT | 55 |
Xbarc320 | 5D | Xbarc320-5D | CGTCTTCATCAAATCCGAACTG AAAATCTATGCGCAGGAGAAAC | 55 |
Xbarc177 | 5D | Xbarc177-5D | GCGATCCTGTTGTTGAGCGTTTGCATAA TCCCGTTTTCCCGTGTGTTAGTCTA | 60 |
XbarcM169 | 6B | XbarcM169-6B | CCGCGAACCATACAAAGGAAAC GCTATAGAGGCGCCTTGGAGTACC | 55 |
Xcfb49 | 6D | Xcfb49-6D | TGAGTTCTTCTGGTGAGGCA GAATCGGTTCACAAGGGAAA | 55 |
Xcfb13 | 6D | Xcfb13-6D | CCACTAACCAAGCTGCCATT TTTTTGGCATTGATCTGCTG | 55 |
Xmag1518 | 7A | Xmag1518-7A | GCTAACTTCACCGACTTGACTACG ACTAAGCCACCCACTTGACC | 55 |
Xmag1279 | 7A | Xmag1279-7A | TGGGCGTGACAACTGGGAG CATCCATAGCAGGACTTTCAATCC | 55 |
Xgpw8188 | 7D | Xgpw8188-7D | CATGGTCAACGTCTGGGTG CTTGGAGAGTAGGACGGCAG | 55 |
Table 1 Information of molecular marker sequences
引物编号 Marker name | 染色体 Chromosome | 位点 Loci | 引物序列(5'-3') Primer sequence(5'-3') | 退火温度 Annealing temperature/℃ |
---|---|---|---|---|
Xwmc385 | 1A | Xwmc385-1A | GAAATGGCAATGGACTCAC CCATCATATCCCTAGCACAA | 52 |
Xbarc137 | 1B | Xbarc137-1B | GGCCCATTTCCCACTTTCCA CCAGCCCCTCTACACATTTT | 50 |
Xbarc181 | 1B | Xbarc181-1B | CGCTGGAGGGGGTAAGTCATCAC CGCAAATCAAGAACACGGGAGAAAGAA | 50 |
Xcfd72 | 1D | Xcfd72-1D | CTCCTTGGAATCTCACCGAA TCCTTGGGAATATGCCTCCT | 52 |
Xgwm249 | 2A | Xgwm249-2A | CAAATGGATCGAGAAAGGGA CTGCCATTTTTCTGGATCTACC | 52 |
Xgwm372 | 2A | Xgwm372-2A | AATAGAGCCCTGGGACTGGG GAAGGACGACATTCCACCTG | 50 |
Xbarc208 | 2A | Xbarc208-2A | GCGTGCTCATATTTCCAACATCAA GCGTGGTATAACAAAACTACACAACCTG | 52 |
Xgpw2204 | 2A | Xgpw2204-2A | ACGTGCCTCGGTCGATATAC ACCCCGAGCATGTCAAATAG | 60 |
XbarcM139 | 2B | XbarcM139-2B | AGAAGCTCCCCTAAACTGAG CGACGCTGATGAATGAAT | 60 |
Xmag1241 | 2D | Xmag1241-2D | GGGACCAAAGCAAACACCATC GGCTACAAGGGTTCAAGATAATGC | 60 |
Xbarc177 | 3A/5D | Xbarc177-3A | GCGATCCTGTTGTTGAGCGTTTGCATAA TCCCGTTTTCCCGTGTGTTAGTCTA | 55 |
Xgdm8 | 3D | Xgdm8-3D | TTCTCCAACGCACGTTAGC CCCAAATGATGGCAGCTACT | 55 |
Xgpw2220 | 4D | Xgpw2220-4D | TGACACCCCTTTCTTATCCG TAGCGAGGGGGTTAAGTGTG | 55 |
Xwmc410 | 5A | Xwmc410-5A | GGACTTGAAAGGAAGCTTGTGA CATGGATGGCATGCAGTGT | 55 |
Xbarc320 | 5D | Xbarc320-5D | CGTCTTCATCAAATCCGAACTG AAAATCTATGCGCAGGAGAAAC | 55 |
Xbarc177 | 5D | Xbarc177-5D | GCGATCCTGTTGTTGAGCGTTTGCATAA TCCCGTTTTCCCGTGTGTTAGTCTA | 60 |
XbarcM169 | 6B | XbarcM169-6B | CCGCGAACCATACAAAGGAAAC GCTATAGAGGCGCCTTGGAGTACC | 55 |
Xcfb49 | 6D | Xcfb49-6D | TGAGTTCTTCTGGTGAGGCA GAATCGGTTCACAAGGGAAA | 55 |
Xcfb13 | 6D | Xcfb13-6D | CCACTAACCAAGCTGCCATT TTTTTGGCATTGATCTGCTG | 55 |
Xmag1518 | 7A | Xmag1518-7A | GCTAACTTCACCGACTTGACTACG ACTAAGCCACCCACTTGACC | 55 |
Xmag1279 | 7A | Xmag1279-7A | TGGGCGTGACAACTGGGAG CATCCATAGCAGGACTTTCAATCC | 55 |
Xgpw8188 | 7D | Xgpw8188-7D | CATGGTCAACGTCTGGGTG CTTGGAGAGTAGGACGGCAG | 55 |
Fig.1 Genetic map and position of QTLs associated with protein traits in wheat chromosomes Circular represented crude protein content, triangle represented stabilization time, and rhombus represented wet gluten content.
性状 Trait | 宁春4号 Ningchun No.4 | 河东乌麦 Hedongblack wheat | F2∶5家系 F2∶5 pedigree | |||||
---|---|---|---|---|---|---|---|---|
变异范围 Variationrange | 平均值 Mean | 标准差 Standard deviation | 变异系数 Coefficient of variation/% | 超中亲比例 Proportion of ultra-mid parent/% | 超高亲比例 Proportion of ultra-high parent/% | |||
粗蛋白质含量 | 13.61 | 15.28 | 11.25~17.82 | 14.49 | 0.15 | 1.04 | 50.81 | 21.77 |
Crude protein content/% | ||||||||
稳定时间 | 4.97 | 9.99 | 0.15~22.37 | 10.86 | 1.16 | 10.64 | 77.82 | 59.27 |
Stabilization time/min | ||||||||
湿面筋含量 | 29.25 | 32.77 | 22.84~38.49 | 30.96 | 0.40 | 1.29 | 50.00 | 22.98 |
Wet gluten content/% |
Table 2 Variation analysis of grain protein traits in F2∶5 pedigrees of Ningchun No.4 × Hedong black wheat
性状 Trait | 宁春4号 Ningchun No.4 | 河东乌麦 Hedongblack wheat | F2∶5家系 F2∶5 pedigree | |||||
---|---|---|---|---|---|---|---|---|
变异范围 Variationrange | 平均值 Mean | 标准差 Standard deviation | 变异系数 Coefficient of variation/% | 超中亲比例 Proportion of ultra-mid parent/% | 超高亲比例 Proportion of ultra-high parent/% | |||
粗蛋白质含量 | 13.61 | 15.28 | 11.25~17.82 | 14.49 | 0.15 | 1.04 | 50.81 | 21.77 |
Crude protein content/% | ||||||||
稳定时间 | 4.97 | 9.99 | 0.15~22.37 | 10.86 | 1.16 | 10.64 | 77.82 | 59.27 |
Stabilization time/min | ||||||||
湿面筋含量 | 29.25 | 32.77 | 22.84~38.49 | 30.96 | 0.40 | 1.29 | 50.00 | 22.98 |
Wet gluten content/% |
性状 Traits | 位点 Loci | 标记位置 Marker position | 标记名称 Marker name | LOD值 LOD value | 表型贡献率 Phenotypic contribution rate/% | P值 P value | 加性效应 Additive effect | 显性效应 Dominant effect |
---|---|---|---|---|---|---|---|---|
粗蛋白质含量 | qCPC1A | Chr1A | Xwmc385 | 14.9 | 6 | 0.000 6 | -0.34 | 0.07 |
Crude protein | qCPC2A | Chr2A | Xgwm249 | 14.9 | 6 | 0.000 6 | -0.34 | 0.07 |
content/% | qCPC3A | Chr3A | Xbarc177 | 14.9 | 6 | 0.000 6 | -0.34 | 0.07 |
qCPC5A | Chr5A | Xwmc410 | 9.5 | 4 | 0.008 6 | 0.29 | 0.28 | |
qCPC7A | Chr7A | Xmag1518 | 9.5 | 4 | 0.008 6 | 0.29 | 0.28 | |
qCPC1B | Chr1B | Xbarc137 | 9.5 | 4 | 0.008 6 | 0.29 | 0.28 | |
qCPC2B | Chr2B | XbarcM139 | 9.5 | 4 | 0.008 6 | 0.29 | 0.28 | |
qCPC2D | Chr2D | Xmag1241 | 12.5 | 5 | 0.001 9 | -0.51 | -0.28 | |
qCPC3D | Chr3D | Xgdm8 | 12.5 | 5 | 0.001 9 | -0.51 | -0.28 | |
qCPC4D | Chr4D | Xgpw2220 | 12.5 | 5 | 0.001 9 | -0.51 | -0.28 | |
qCPC5D | Chr5D | Xbarc320 | 12.5 | 5 | 0.001 9 | -0.51 | -0.28 | |
qCPC6D-1 | Chr6D | Xcfd49 | 12.5 | 5 | 0.001 9 | -0.51 | -0.28 | |
qCPC6D-2 | Chr6D | Xcfd13 | 14.9 | 6 | 0.000 6 | -0.34 | 0.07 | |
qCPC7D | Chr7D | Xgpw8188 | 14.9 | 6 | 0.000 6 | -0.34 | 0.07 | |
稳定时间 | qST2A-1 | Chr2A | Xgwm372 | 6.8 | 3 | 0.033 6 | 0.79 | 0.72 |
Stabilization | qST2A-2 | Chr2A | Xbarc208 | 8.2 | 3 | 0.016 3 | 0.90 | 0.67 |
time/min | qST2A-3 | Chr2A | Xgpw2204 | 10.9 | 4 | 0.004 2 | 1.17 | 0.70 |
qST3A | Chr3A | Xbarc177 | 12.2 | 5 | 0.002 2 | -1.14 | 0 | |
qST5D | Chr5D | Xbarc177 | 12.2 | 5 | 0.002 2 | -1.14 | 0 | |
qST6D | Chr6D | Xcfd49 | 11.4 | 5 | 0.003 3 | -1.71 | -0.69 | |
湿面筋含量 | qWGC1A | Chr1A | Xwmc385 | 14.0 | 5 | 0.000 9 | -0.79 | 0.20 |
Wet gluten | qWGC2A | Chr2A | Xgwm249 | 14.0 | 5 | 0.000 9 | -0.79 | 0.20 |
content/% | qWGC3A | Chr3A | Xbarc177 | 14.0 | 5 | 0.000 9 | -0.79 | 0.20 |
qWGC5A | Chr5A | Xwmc410 | 7.7 | 3 | 0.021 6 | 0.54 | 0.64 | |
qWGC7A | Chr7A | Xmag1279 | 7.1 | 3 | 0.029 4 | -0.57 | -0.53 | |
qWGC1B | Chr1B | Xbarc181 | 7.1 | 3 | 0.029 4 | -0.57 | -0.53 | |
qWGC2B | Chr2B | XbarcM139 | 7.7 | 3 | 0.021 6 | 0.54 | 0.64 | |
qWGC6B | Chr6B | XbarcM169 | 6.5 | 3 | 0.038 4 | 0.36 | -0.79 | |
qWGC1D | Chr1D | Xcfd72 | 6.5 | 3 | 0.038 4 | 0.36 | -0.79 | |
qWGC2D | Chr2D | Xmag1241 | 11.9 | 5 | 0.002 7 | -1.22 | -0.75 | |
qWGC3D | Chr3D | Xgdm8 | 11.9 | 5 | 0.002 7 | -1.22 | -0.75 | |
qWGC4D | Chr4D | Xgpw2220 | 11.9 | 5 | 0.002 7 | -1.22 | -0.75 | |
qWGC5D | Chr5D | Xbarc320 | 11.9 | 5 | 0.002 7 | -1.22 | -0.75 | |
qWGC6D-1 | Chr6D | Xcfd49 | 11.9 | 5 | 0.002 7 | -1.22 | -0.75 | |
qWGC6D-2 | Chr6D | Xcfd13 | 14.0 | 5 | 0.000 9 | -0.79 | 0.20 | |
qWGC7D | Chr7D | Xgpw8188 | 14.0 | 5 | 0.000 9 | -0.79 | 0.20 |
Table 3 QTL location of grain protein traits in F2∶5 pedigrees of Ningchun No.4 × Hedong black wheat
性状 Traits | 位点 Loci | 标记位置 Marker position | 标记名称 Marker name | LOD值 LOD value | 表型贡献率 Phenotypic contribution rate/% | P值 P value | 加性效应 Additive effect | 显性效应 Dominant effect |
---|---|---|---|---|---|---|---|---|
粗蛋白质含量 | qCPC1A | Chr1A | Xwmc385 | 14.9 | 6 | 0.000 6 | -0.34 | 0.07 |
Crude protein | qCPC2A | Chr2A | Xgwm249 | 14.9 | 6 | 0.000 6 | -0.34 | 0.07 |
content/% | qCPC3A | Chr3A | Xbarc177 | 14.9 | 6 | 0.000 6 | -0.34 | 0.07 |
qCPC5A | Chr5A | Xwmc410 | 9.5 | 4 | 0.008 6 | 0.29 | 0.28 | |
qCPC7A | Chr7A | Xmag1518 | 9.5 | 4 | 0.008 6 | 0.29 | 0.28 | |
qCPC1B | Chr1B | Xbarc137 | 9.5 | 4 | 0.008 6 | 0.29 | 0.28 | |
qCPC2B | Chr2B | XbarcM139 | 9.5 | 4 | 0.008 6 | 0.29 | 0.28 | |
qCPC2D | Chr2D | Xmag1241 | 12.5 | 5 | 0.001 9 | -0.51 | -0.28 | |
qCPC3D | Chr3D | Xgdm8 | 12.5 | 5 | 0.001 9 | -0.51 | -0.28 | |
qCPC4D | Chr4D | Xgpw2220 | 12.5 | 5 | 0.001 9 | -0.51 | -0.28 | |
qCPC5D | Chr5D | Xbarc320 | 12.5 | 5 | 0.001 9 | -0.51 | -0.28 | |
qCPC6D-1 | Chr6D | Xcfd49 | 12.5 | 5 | 0.001 9 | -0.51 | -0.28 | |
qCPC6D-2 | Chr6D | Xcfd13 | 14.9 | 6 | 0.000 6 | -0.34 | 0.07 | |
qCPC7D | Chr7D | Xgpw8188 | 14.9 | 6 | 0.000 6 | -0.34 | 0.07 | |
稳定时间 | qST2A-1 | Chr2A | Xgwm372 | 6.8 | 3 | 0.033 6 | 0.79 | 0.72 |
Stabilization | qST2A-2 | Chr2A | Xbarc208 | 8.2 | 3 | 0.016 3 | 0.90 | 0.67 |
time/min | qST2A-3 | Chr2A | Xgpw2204 | 10.9 | 4 | 0.004 2 | 1.17 | 0.70 |
qST3A | Chr3A | Xbarc177 | 12.2 | 5 | 0.002 2 | -1.14 | 0 | |
qST5D | Chr5D | Xbarc177 | 12.2 | 5 | 0.002 2 | -1.14 | 0 | |
qST6D | Chr6D | Xcfd49 | 11.4 | 5 | 0.003 3 | -1.71 | -0.69 | |
湿面筋含量 | qWGC1A | Chr1A | Xwmc385 | 14.0 | 5 | 0.000 9 | -0.79 | 0.20 |
Wet gluten | qWGC2A | Chr2A | Xgwm249 | 14.0 | 5 | 0.000 9 | -0.79 | 0.20 |
content/% | qWGC3A | Chr3A | Xbarc177 | 14.0 | 5 | 0.000 9 | -0.79 | 0.20 |
qWGC5A | Chr5A | Xwmc410 | 7.7 | 3 | 0.021 6 | 0.54 | 0.64 | |
qWGC7A | Chr7A | Xmag1279 | 7.1 | 3 | 0.029 4 | -0.57 | -0.53 | |
qWGC1B | Chr1B | Xbarc181 | 7.1 | 3 | 0.029 4 | -0.57 | -0.53 | |
qWGC2B | Chr2B | XbarcM139 | 7.7 | 3 | 0.021 6 | 0.54 | 0.64 | |
qWGC6B | Chr6B | XbarcM169 | 6.5 | 3 | 0.038 4 | 0.36 | -0.79 | |
qWGC1D | Chr1D | Xcfd72 | 6.5 | 3 | 0.038 4 | 0.36 | -0.79 | |
qWGC2D | Chr2D | Xmag1241 | 11.9 | 5 | 0.002 7 | -1.22 | -0.75 | |
qWGC3D | Chr3D | Xgdm8 | 11.9 | 5 | 0.002 7 | -1.22 | -0.75 | |
qWGC4D | Chr4D | Xgpw2220 | 11.9 | 5 | 0.002 7 | -1.22 | -0.75 | |
qWGC5D | Chr5D | Xbarc320 | 11.9 | 5 | 0.002 7 | -1.22 | -0.75 | |
qWGC6D-1 | Chr6D | Xcfd49 | 11.9 | 5 | 0.002 7 | -1.22 | -0.75 | |
qWGC6D-2 | Chr6D | Xcfd13 | 14.0 | 5 | 0.000 9 | -0.79 | 0.20 | |
qWGC7D | Chr7D | Xgpw8188 | 14.0 | 5 | 0.000 9 | -0.79 | 0.20 |
[1] |
RÖDER M S, KORZUN V, WENDEHAKE K, et al. A microsatellite map of wheat[J]. Genetics, 1998, 149(4):2007-2023.
DOI URL |
[2] |
STEPHENSON P, BRYAN G, KIRBY J, et al. Fifty new microsatellite loci for the wheat genetic map[J]. Theoretical and Applied Genetics, 1998, 97(5/6):946-949.
DOI URL |
[3] |
SOMERS D J, ISAAC P, EDWARDS K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.)[J]. TAG Theoretical and Applied Genetics, 2004, 109(6):1105-1114.
DOI URL |
[4] |
TORADA A, KOIKE M, MOCHIDA K, et al. SSR-based linkage map with new markers using an intraspecific population of common wheat[J]. Theoretical and Applied Genetics, 2006, 112(6):1042-1051.
DOI URL |
[5] | 刘刚, 许盛宝, 倪中福, 等. 小麦RIL群体SSR标记偏分离的遗传分析[J]. 农业生物技术学报, 2007, 15(5):828-833. |
LIU G, XU S B, NI Z F, et al. Genetic analysis of segregation distortion of molecular markers in wheat RIL population[J]. Journal of Agricultural Biotechnology, 2007, 15(5):828-833.(in Chinese with English abstract) | |
[6] |
ZHANG K P, ZHAO L, TIAN J C, et al. A genetic map constructed using a doubled haploid population derived from two elite Chinese common wheat varieties[J]. Journal of Integrative Plant Biology, 2008, 50(8):941-950.
DOI URL |
[7] | 何中虎, 林作楫, 王龙俊, 等. 中国小麦品质区划的研究[J]. 中国农业科学, 2002, 35(4):359-364. |
HE Z H, LIN Z J, WANG L J, et al. Classification on Chinese wheat regions based on quality[J]. Scientia Agricultura Sinica, 2002, 35(4):359-364.(in Chinese with English abstract) | |
[8] | 康立宁, 魏益民, 欧阳韶晖, 等. 小麦品种品质性状的基因型因子分析[J]. 西北植物学报, 2004, 24(1):120-124. |
KANG L N, WEI Y M, OUYANG S H, et al. Genotypical factor analysis on quality properties of wheat variety[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(1):120-124.(in Chinese with English abstract) | |
[9] | 薛香, 郜庆炉, 杨忠强. 小麦品质性状的主成分分析[J]. 中国农学通报, 2011, 27(7):38-41. |
XUE X, GAO Q L, YANG Z Q. Principal components analysis on major quality traits of winter wheat[J]. Chinese Agricultural Science Bulletin, 2011, 27(7):38-41.(in Chinese with English abstract) | |
[10] | 伍玲, 董亚超, 戴常军, 等. 长江上游小麦新品种(系)品质分析[J]. 麦类作物学报, 2020, 40(4):444-454. |
WU L, DONG Y C, DAI C J, et al. Quality analysis of new wheat cultivars (lines) in the upper reaches of Yangtze River[J]. Journal of Triticeae Crops, 2020, 40(4):444-454.(in Chinese with English abstract) | |
[11] | 张亚婷. 全球600份小麦材料农艺性状与品质性状的多元性分析及小麦CYP78A家族基因与已知产量相关性状QTL位点的关系研究[D]. 杨凌: 西北农林科技大学, 2019. |
ZHANG Y T. Multivariate analysis of agronomic traits and quality traits of 600 wheat materials in the world and the relationship between wheat CYP78A family genes and QTL loci of known yield-related traits[D]. Yangling: Northwest A & F University, 2019. (in Chinese with English abstract) | |
[12] | 胡秀婵. 我国主要小麦品种品质现状与北方冬麦区品种演变研究[D]. 北京: 中国农业科学院, 2006. |
HU X C. The study of the variety and quality for main wheat and the variety evolution of nothern winter wheat in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006. (in Chinese with English abstract) | |
[13] | 胡学旭, 孙丽娟, 周桂英, 等. 2006—2015年中国小麦质量年度变化[J]. 中国农业科学, 2016, 49(16):3063-3072. |
HU X X, SUN L J, ZHOU G Y, et al. Variations of wheat quality in China from 2006 to 2015[J]. Scientia Agricultura Sinica, 2016, 49(16):3063-3072.(in Chinese with English abstract) | |
[14] | 李炜炜, 陆启玉. 小麦蛋白质与面条品质关系的研究进展[J]. 粮油加工, 2008(2):77-79. |
LI W W, LU Q Y. Research progress on the relationship between wheat protein and noodle quality[J]. Cereals and Oils Processing, 2008(2):77-79.(in Chinese) | |
[15] | 刘广田, 李保云. 小麦品质性状的遗传及其遗传改良[J]. 农业生物技术学报, 2000, 8(4):307-314. |
LIU G T, LI B Y. The inheritance and improvement of quality traits in common wheat[J]. Journal of Agricultural Biotechnology, 2000, 8(4):307-314.(in Chinese with English abstract) | |
[16] | 邓志英, 田纪春. 小麦贮藏蛋白与小麦品质性状的关系及研究进展[J]. 生命科学, 2003, 15(4):233-237. |
DENG Z Y, TIAN J C. Development and correlation between storage protein and quality characteristics of wheat[J]. Chinese Bulletin of Life Sciences, 2003, 15(4):233-237.(in Chinese with English abstract) | |
[17] |
PRASAD M, VARSHNEY R K, KUMAR A, et al. A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat[J]. Theoretical and Applied Genetics, 1999, 99(1/2):341-345.
DOI URL |
[18] |
CHARMET G, ROBERT N, BRANLARD G, et al. Genetic analysis of dry matter and nitrogen accumulation and protein composition in wheat kernels[J]. Theoretical and Applied Genetics, 2005, 111(3):540-550.
DOI URL |
[19] |
NELSON J C, ANDREESCU C, BRESEGHELLO F, et al. Quantitative trait locus analysis of wheat quality traits[J]. Euphytica, 2006, 149(1/2):145-159.
DOI URL |
[20] |
BLANCO A, SIMEONE R, GADALETA A. Detection of QTLs for grain protein content in durum wheat[J]. Theoretical and Applied Genetics, 2006, 112(7):1195-1204.
DOI URL |
[21] |
SUN H Y, LÜ J, FAN Y D, et al. Quantitative trait loci (QTLs) for quality traits related to protein and starch in wheat[J]. Progress in Natural Science, 2008, 18(7):825-831.
DOI URL |
[22] | 石培春, 曹连莆, 王光利, 等. 小麦籽粒蛋白质组分含量的QTL定位[J]. 麦类作物学报, 2008, 28(4):550-554. |
SHI P C, CAO L P, WANG G L, et al. Mapping QTLs related to protein components of grain of common wheat[J]. Journal of Triticeae Crops, 2008, 28(4):550-554.(in Chinese with English abstract) | |
[23] | 孙海艳, 吕建华, 范玉顶, 等. 小麦蛋白质和淀粉品质性状的QTL分析[J]. 自然科学进展, 2008, 18(5):505-513. |
SUN H Y, LYU J H, FAN Y D, et al. QTL analysis of protein and starch quality traits in wheat[J]. Progress in Natural Science, 2008, 18(5):505-513. (in Chinese) | |
[24] |
LI Y, SONG Y, ZHOU R, et al. Detection of QTLs for bread-making quality in wheat using a recombinant inbred line population[J]. Plant Breeding, 2009, 128(3):235-243.
DOI URL |
[25] | 刘慧, 王朝辉, 李富翠, 等. 不同麦区小麦籽粒蛋白质与氨基酸含量及评价[J]. 作物学报, 2016, 42(5):768-777. |
LIU H, WANG Z H, LI F C, et al. Contents of protein and amino acids of wheat grain in different wheat production regions and their evaluation[J]. Acta Agronomica Sinica, 2016, 42(5):768-777.(in Chinese with English abstract) | |
[26] | 方文琪, 胡淑娜, 郭鑫, 等. 利用小麦RIL群体进行面粉蛋白质含量及其组分的QTL分析[J]. 分子植物育种, 2018, 16(7):2223-2229. |
FANG W Q, HU S N, GUO X, et al. QTL analysis of flour protein content and its components using wheat recombinant inbred line population[J]. Molecular Plant Breeding, 2018, 16(7):2223-2229.(in Chinese with English abstract) | |
[27] | 余曼丽, 赵林姝, 郭会君, 等. 小麦籽粒性状的QTL定位[J]. 麦类作物学报, 2014, 34(8):1029-1035. |
YU M L, ZHAO L S, GUO H J, et al. QTL mapping for kernel traits in wheat[J]. Journal of Triticeae Crops, 2014, 34(8):1029-1035.(in Chinese with English abstract) | |
[28] | 解树斌. 小麦主要品质性状的QTL分析[D]. 泰安: 山东农业大学, 2016. |
XIE S B. QTL mapping for quality traits in wheat[D]. Tai’an: Shandong Agricultural University, 2016. (in Chinese with English abstract) | |
[29] | 郭利建, 王竹林, 汪世娟, 等. 基于SRAP和SSR标记的小麦品质相关性状的QTL定位[J]. 麦类作物学报, 2016, 36(10):1275-1282. |
GUO L J, WANG Z L, WANG S J, et al. QTL mapping of wheat grain quality traits based on SRAP and SSR marker[J]. Journal of Triticeae Crops, 2016, 36(10):1275-1282.(in Chinese with English abstract) | |
[30] | 王掌军, 刘妍, 李阳, 等. 宁春4号与河东乌麦杂交F2品质性状及其分子标记分析[J]. 河南农业科学, 2019, 48(2):17-24. |
WANG Z J, LIU Y, LI Y, et al. Analysis of quality traits and their molecular markers of F2 hybrids from Ningchun No.4 and Hedong black wheat[J]. Journal of Henan Agricultural Sciences, 2019, 48(2):17-24.(in Chinese with English abstract) | |
[31] | 刘妍, 田蓉蓉, 王天佑, 等. 2个小麦品种的遗传性状分析及分子标记筛选[J]. 河南农业科学, 2017, 46(10):13-20. |
LIU Y, TIAN R R, WANG T Y, et al. Analysis of genetic traits and screening of molecular marker in two wheat varieties[J]. Journal of Henan Agricultural Sciences, 2017, 46(10):13-20.(in Chinese with English abstract) | |
[32] | 高居荣, 韩秀兰, 孙彩玲, 等. DA7200近红外仪在小麦品质分析中的应用研究[J]. 实验室科学, 2009, 12(1):173-176. |
GAO J R, HAN X L, SUN C L, et al. Applications of DA7200 near infrared apparatus in analyzing the quality of wheats[J]. Laboratory Science, 2009, 12(1):173-176.(in Chinese with English abstract) | |
[33] |
YANG Z J, LI G R, CHANG Z J, et al. Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp. trichophorum[J]. Euphytica, 2006, 149(1/2):11-17.
DOI URL |
[34] | 王掌军, 刘妍, 张双喜, 等. 宁春4号与河东乌麦杂交F2代抗病性及分子标记鉴定[J]. 浙江农业学报, 2019, 31(5):677-687. |
WANG Z J, LIU Y, ZHANG S X, et al. Identification on disease resistance and molecular markers of F2 hybrids from Ningchun No.4 and Hedong black wheat[J]. Acta Agriculturae Zhejiangensis, 2019, 31(5):677-687.(in Chinese with English abstract) | |
[35] | 高尚, 莫洪君, 石浩然, 等. 利用SNP基因芯片技术进行小麦遗传图谱构建及重要农艺性状QTL分析[J]. 应用与环境生物学报, 2016, 22(1):85-94. |
GAO S, MO H J, SHI H R, et al. Construction of wheat genetic map and QTL analysis of main agronomic traits using SNP genotyping chips technology[J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(1):85-94.(in Chinese with English abstract) | |
[36] | 刘永安, 潘彬荣, 岳高红, 等. 浙南小麦核心育种亲本高分子量谷蛋白亚基组成分析[J]. 浙江农业学报, 2018, 30(12):2001-2006. |
LIU Y A, PAN B R, YUE G H, et al. HMW-GS composition analysis of core wheat breeding parents in Southern Zhejiang region[J]. Acta Agriculturae Zhejiangensis, 2018, 30(12):2001-2006.(in Chinese with English abstract) | |
[37] | 李桂萍, 张根生, 巴青松, 等. 杂种小麦品质性状的性状相关和主成分分析[J]. 浙江农业学报, 2016, 28(9):1447-1453. |
LI G P, ZHANG G S, BA Q S, et al. Correlation analysis and principal component analysis on quality traits in hybrid wheat[J]. Acta Agriculturae Zhejiangensis, 2016, 28(9):1447-1453.(in Chinese with English abstract) | |
[38] | 张平平, 耿志明, 杨丹, 等. 江苏沿江地区弱筋小麦品质现状分析[J]. 江西农业学报, 2012, 24(5):4-6. |
ZHANG P P, GENG Z M, YANG D, et al. Quality analysis of weak-gluten wheat along Yangtze River in Jiangsu Province[J]. Acta Agriculturae Jiangxi, 2012, 24(5):4-6.(in Chinese with English abstract) | |
[39] | 王化敦, 史高玲, 张平平, 等. 长江中下游小麦品种籽粒品质对氮素的敏感性分析[J]. 南方农业学报, 2017, 48(9):1568-1573. |
WANG H D, SHI G L, ZHANG P P, et al. Sensitivity of wheat grain quality to nitrogen application in middle and lower reaches of Yangtze River[J]. Journal of Southern Agriculture, 2017, 48(9):1568-1573.(in Chinese with English abstract) | |
[40] | 丁明亮, 林丽萍, 李明菊, 等. 云南育成小麦品种(系)品质性状遗传多样性分析及综合评价[J]. 南方农业学报, 2020, 51(2):255-266. |
DING M L, LIN L P, LI M J, et al. Genetic diversity analysis and comprehensive evaluation of quality traits of wheat varieties (lines) bred in Yunnan[J]. Journal of Southern Agriculture, 2020, 51(2):255-266.(in Chinese with English abstract) | |
[41] | 崔文礼, 王军, 汪辉, 等. 黄淮麦区35份小麦种质资源品质性状比较分析[J]. 安徽农业大学学报, 2020, 47(4):606-611. |
CUI W L, WANG J, WANG H, et al. Comparative analysis of quality characters of 35 wheat germplasm resources in Huang-Huai wheat region[J]. Journal of Anhui Agricultural University, 2020, 47(4):606-611.(in Chinese with English abstract) | |
[42] | 杭雅文, 武威, 张莀茜, 等. 弱筋小麦品质指标的相关性分析及筛选[J]. 麦类作物学报, 2020, 40(3):320-327. |
HANG Y W, WU W, ZHANG C X, et al. Correlation analysis and screening of quality indices for weak-gluten wheat[J]. Journal of Triticeae Crops, 2020, 40(3):320-327.(in Chinese with English abstract) | |
[43] | 姜朋, 张平平, 张旭, 等. 弱筋小麦宁麦9号及其衍生系的蛋白质含量遗传多样性及关联分析[J]. 作物学报, 2015, 41(12):1828-1835. |
JIANG P, ZHANG P P, ZHANG X, et al. Genetic diversity and association analysis of protein content in weak gluten wheat Ningmai 9 and its derived lines[J]. Acta Agronomica Sinica, 2015, 41(12):1828-1835.(in Chinese with English abstract) | |
[44] | 柴永峰, 李秀绒, 赵智勇, 等. 国外小麦种质资源农艺性状及品质性状的多样性分析[J]. 农学学报, 2013, 3(9):1-8. |
CHAI Y F, LI X R, ZHAO Z Y, et al. Diversity analysis of agronomic and quality characters of foreign wheat germplasm resources[J]. Journal of Agriculture, 2013, 3(9):1-8.(in Chinese with English abstract) | |
[45] | 杨学举, 荣广哲, 卢桂芬. 优质小麦重要性状的相关分析[J]. 麦类作物学报, 2001, 21(2):35-37. |
YANG X J, RONG G Z, LU G F. Correlation analysis of important characters of high quality wheat[J]. Acta Tritical Crops, 2001, 21(2):35-37.(in Chinese with English abstract) | |
[46] | 朱明哲, 杨蕊, 段红. 小麦新品种产量性状及主要品质性状的因子分析与聚类分析[J]. 河南科技学院学报(自然科学版), 2012, 40(1):1-6. |
ZHU M Z, YANG R, DUAN H. Yield characters of new wheat varieties and factor and cluster analysis of their main characters[J]. Journal of Henan Institute of Science and Technology (Natural Sciences Edition), 2012, 40(1):1-6.(in Chinese with English abstract) | |
[47] | 沈业松, 王歆, 顾正中, 等. 296份黄淮麦区小麦品种资源在江苏淮北地区的品质分析[J]. 浙江农业学报, 2018, 30(10):1617-1623. |
SHEN Y S, WANG X, GU Z Z, et al. Quality analysis of 296 wheat varieties from the Huang-Huai wheat region planted in Huaibei area of Jiangsu[J]. Acta Agriculturae Zhejiangensis, 2018, 30(10):1617-1623.(in Chinese with English abstract) | |
[48] |
BORDES J, RAVEL C, LE GOUIS J, et al. Use of a global wheat core collection for association analysis of flour and dough quality traits[J]. Journal of Cereal Science, 2011, 54(1):137-147.
DOI URL |
[49] |
REIF J C, GOWDA M, MAURER H P, et al. Association mapping for quality traits in soft winter wheat[J]. Theoretical and Applied Genetics, 2011, 122(5):961-970.
DOI URL |
[50] |
PRASAD M, KUMAR N, KULWAL P, et al. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat[J]. Theoretical and Applied Genetics, 2003, 106(4):659-667.
DOI URL |
[51] | 吴云鹏, 张业伦, 肖永贵, 等. 小麦重要品质性状的QTL定位[J]. 中国农业科学, 2008, 41(2):331-339. |
WU Y P, ZHANG Y L, XIAO Y G, et al. QTL mapping for important quality traits in common wheat[J]. Scientia Agricultura Sinica, 2008, 41(2):331-339.(in Chinese with English abstract) | |
[52] | 李红民. 西南麦区小麦主要品质性状分析及QTL定位研究[D]. 雅安: 四川农业大学, 2012. |
LI H M. The major quality traits analysis and QTL detection of hexaploid wheat in southwest China[D]. Ya’an: Sichuan Agricultural University, 2012. (in Chinese with English abstract) | |
[53] |
BOGARD M, ALLARD V, MARTRE P, et al. Identifying wheat genomic regions for improving grain protein concentration independently of grain yield using multiple inter-related populations[J]. Molecular Breeding, 2013, 31(3):587-599.
DOI URL |
[54] | 黄梦豪, 刘天相, 强琴琴, 等. 基于SNP和SSR标记的小麦品质性状的QTL定位[J]. 分子植物育种, 2019, 17(12):3966-3973. |
HUANG M H, LIU T X, QIANG Q Q, et al. QTL mapping of wheat quality traits based on SNP and SSR markers[J]. Molecular Plant Breeding, 2019, 17(12):3966-3973.(in Chinese with English abstract) | |
[55] |
JOPPA L R, DU C H, HART G E, et al. Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines[J]. Crop Science, 1997, 37(5):1586-1589.
DOI URL |
[56] |
HUANG X Q, CLOUTIER S, LYCAR L, et al. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.)[J]. Theoretical and Applied Genetics, 2006, 113(4):753-766.
DOI URL |
[57] |
LI J, CUI F, DING A M, et al. QTL detection of seven quality traits in wheat using two related recombinant inbred line populations[J]. Euphytica, 2012, 183(2):207-226.
DOI URL |
[58] |
EL-FEKI W M, BYRNE P F, REID S D, et al. Quantitative trait locus mapping for end-use quality traits in hard winter wheat under contrasting soil moisture levels[J]. Crop Science, 2013, 53(5):1953-1967.
DOI URL |
[59] |
MA J, ZHANG C Y, YAN G J, et al. Identification of QTLs conferring agronomic and quality traits in hexaploid wheat[J]. Journal of Integrative Agriculture, 2012, 11(9):1399-1408.
DOI URL |
[60] | 李君. 小麦关联重组自交系群体遗传图谱的构建及主要品质性状的QTL定位[D]. 泰安: 山东农业大学, 2011. |
LI J. Construction of genetic linkage maps and QTL mapping for quality related traits using two associated RIL populations of wheat[D]. Tai’an: Shandong Agricultural University, 2011. (in Chinese with English abstract) |
[1] | WANG Zhangjun, LIU Yan, ZHANG Shuangxi, LIU Fenglou, LI Qingfeng, ZHANG Xiaogang, LIU Shengxiang, JIA Biao. Identification on disease resistance and molecular markers of F2 hybrids from Ningchun No.4 and Hedong black wheat [J]. , 2019, 31(5): 677-687. |
[2] | YANG Ling;SUN Na;YU You-jian;HU Hai-tao. QTL mapping of some physiological traits related to drought resistance in rice leaves [J]. , 2009, 21(05): 0-494. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||