Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (10): 2230-2239.DOI: 10.3969/j.issn.1004-1524.2022.10.17
• Plant Protection • Previous Articles Next Articles
ZHANG Ziting1(), HAN Jinyu1, ZHANG Donghui1, LI Han1, LI Mingyuan1, DENG Zhiping2, SUN Xiaoyong1,*(
)
Received:
2021-08-07
Online:
2022-10-25
Published:
2022-10-26
Contact:
SUN Xiaoyong
CLC Number:
ZHANG Ziting, HAN Jinyu, ZHANG Donghui, LI Han, LI Mingyuan, DENG Zhiping, SUN Xiaoyong. Anomaly detection of potato, maize and apple leaf diseases based on color moments[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2230-2239.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.10.17
植物种类 Plant species | 样本情况 Sample status | 样本数量 Sample quantity | |
---|---|---|---|
土豆Potato | 正常Normal | 健康Healthy | 152 |
异常Abnormal | 早疫病Early blight | 1 000 | |
晚疫病Late blight | 1 000 | ||
玉米Maize | 正常Normal | 健康Healthy | 1 162 |
异常Abnormal | 普通锈病Common rust | 1 142 | |
灰斑病Gray spot | 463 | ||
叶枯病Leaf blight | 935 | ||
苹果Apple | 正常Normal | 健康Healthy | 1 638 |
异常Abnormal | 黑腐病Black rot | 621 | |
雪松锈病Cedar rust | 275 | ||
黑星病Black-spot | 630 |
Table 1 Distribution of datasets
植物种类 Plant species | 样本情况 Sample status | 样本数量 Sample quantity | |
---|---|---|---|
土豆Potato | 正常Normal | 健康Healthy | 152 |
异常Abnormal | 早疫病Early blight | 1 000 | |
晚疫病Late blight | 1 000 | ||
玉米Maize | 正常Normal | 健康Healthy | 1 162 |
异常Abnormal | 普通锈病Common rust | 1 142 | |
灰斑病Gray spot | 463 | ||
叶枯病Leaf blight | 935 | ||
苹果Apple | 正常Normal | 健康Healthy | 1 638 |
异常Abnormal | 黑腐病Black rot | 621 | |
雪松锈病Cedar rust | 275 | ||
黑星病Black-spot | 630 |
植物种类 Plant species | 数据集类型 Dataset type | 正常样本数 Quantity of normal samples | 异常样本数 Quantity of abnormal samples |
---|---|---|---|
土豆Potato | 训练集Training set | 120 | 0 |
测试集Testing set | 30 | 20 | |
玉米Maize | 训练集Training set | 928 | 0 |
测试集Testing set | 232 | 150 | |
苹果Apple | 训练集Training set | 1 232 | 0 |
测试集Testing set | 308 | 211 |
Table 2 Sample quantity distribution of training and testing datasets
植物种类 Plant species | 数据集类型 Dataset type | 正常样本数 Quantity of normal samples | 异常样本数 Quantity of abnormal samples |
---|---|---|---|
土豆Potato | 训练集Training set | 120 | 0 |
测试集Testing set | 30 | 20 | |
玉米Maize | 训练集Training set | 928 | 0 |
测试集Testing set | 232 | 150 | |
苹果Apple | 训练集Training set | 1 232 | 0 |
测试集Testing set | 308 | 211 |
颜色矩 Color moment | 聚类数 Cluster number | A | MAR | ||
---|---|---|---|---|---|
1×1 | 2×2 | 1×1 | 2×2 | ||
RGB | 0 | 80.8 | 67.2 | 43.0 | 82.0 |
2 | 85.2 | 82.0 | 13.0 | 38.0 | |
3 | 74.4 | 81.2 | 21.0 | 34.0 | |
HSV | 0 | 64.4 | 67.2 | 31.0 | 79.0 |
2 | 72.0 | 66.8 | 45.0 | 80.0 | |
3 | 72.0 | 67.2 | 54.0 | 75.0 |
Table 3 Test accuracy and missing alarm rate of segmentation dataset on potato %
颜色矩 Color moment | 聚类数 Cluster number | A | MAR | ||
---|---|---|---|---|---|
1×1 | 2×2 | 1×1 | 2×2 | ||
RGB | 0 | 80.8 | 67.2 | 43.0 | 82.0 |
2 | 85.2 | 82.0 | 13.0 | 38.0 | |
3 | 74.4 | 81.2 | 21.0 | 34.0 | |
HSV | 0 | 64.4 | 67.2 | 31.0 | 79.0 |
2 | 72.0 | 66.8 | 45.0 | 80.0 | |
3 | 72.0 | 67.2 | 54.0 | 75.0 |
颜色矩 Color moment | 聚类数 Cluster number | A | MAR | ||
---|---|---|---|---|---|
1×1 | 2×2 | 1×1 | 2×2 | ||
RGB | 0 | 60.7 | 60.7 | 100.0 | 100.0 |
2 | 68.1 | 77.1 | 44.9 | 40.9 | |
3 | 68.6 | 73.8 | 38.7 | 46.0 | |
HSV | 0 | 80.9 | 83.3 | 1.2 | 1.2 |
2 | 87.7 | 84.2 | 24.8 | 37.0 | |
3 | 89.7 | 92.3 | 8.0 | 11.0 |
Table 4 Test accuracy and missing alarm rate of segmentation dataset on maize %
颜色矩 Color moment | 聚类数 Cluster number | A | MAR | ||
---|---|---|---|---|---|
1×1 | 2×2 | 1×1 | 2×2 | ||
RGB | 0 | 60.7 | 60.7 | 100.0 | 100.0 |
2 | 68.1 | 77.1 | 44.9 | 40.9 | |
3 | 68.6 | 73.8 | 38.7 | 46.0 | |
HSV | 0 | 80.9 | 83.3 | 1.2 | 1.2 |
2 | 87.7 | 84.2 | 24.8 | 37.0 | |
3 | 89.7 | 92.3 | 8.0 | 11.0 |
颜色矩 Color moment | 聚类数 Cluster number | A | MAR | ||
---|---|---|---|---|---|
1×1 | 2×2 | 1×1 | 2×2 | ||
RGB | 0 | 59.3 | 59.5 | 100 | 100.0 |
2 | 57.9 | 58.7 | 63.8 | 91.1 | |
3 | 60.2 | 65.7 | 42.2 | 42.2 | |
HSV | 0 | 54.3 | 69.7 | 6.4 | 27.6 |
2 | 71.4 | 69.4 | 49.1 | 71.0 | |
3 | 76.2 | 70.0 | 46.7 | 60.6 |
Table 5 Test accuracy and missing alarm rate of segmentation dataset on apple %
颜色矩 Color moment | 聚类数 Cluster number | A | MAR | ||
---|---|---|---|---|---|
1×1 | 2×2 | 1×1 | 2×2 | ||
RGB | 0 | 59.3 | 59.5 | 100 | 100.0 |
2 | 57.9 | 58.7 | 63.8 | 91.1 | |
3 | 60.2 | 65.7 | 42.2 | 42.2 | |
HSV | 0 | 54.3 | 69.7 | 6.4 | 27.6 |
2 | 71.4 | 69.4 | 49.1 | 71.0 | |
3 | 76.2 | 70.0 | 46.7 | 60.6 |
聚类数 Cluster number | A | MAR | ||
---|---|---|---|---|
1×1 | 2×2 | 1×1 | 2×2 | |
0 | 82.8 | 74.8 | 18.0 | 61.0 |
2 | 89.2 | 78.8 | 7.0 | 22.0 |
3 | 80.0 | 82.8 | 14.0 | 37.0 |
Table 6 Test accuracy and missing alarm rate of intercepted dataset on potato %
聚类数 Cluster number | A | MAR | ||
---|---|---|---|---|
1×1 | 2×2 | 1×1 | 2×2 | |
0 | 82.8 | 74.8 | 18.0 | 61.0 |
2 | 89.2 | 78.8 | 7.0 | 22.0 |
3 | 80.0 | 82.8 | 14.0 | 37.0 |
聚类数 Cluster number | A | MAR | ||
---|---|---|---|---|
1×1 | 2×2 | 1×1 | 2×2 | |
0 | 95.9 | 97.6 | 0 | 0 |
2 | 97.5 | 98.7 | 0 | 0 |
3 | 94.8 | 96.1 | 0 | 0 |
Table 7 Test accuracy and missing alarm rate of intercepted dataset on maize %
聚类数 Cluster number | A | MAR | ||
---|---|---|---|---|
1×1 | 2×2 | 1×1 | 2×2 | |
0 | 95.9 | 97.6 | 0 | 0 |
2 | 97.5 | 98.7 | 0 | 0 |
3 | 94.8 | 96.1 | 0 | 0 |
聚类数 Cluster number | A | MAR | ||||||
---|---|---|---|---|---|---|---|---|
1×1 | 2×2 | 4×4 | 8×8 | 1×1 | 2×2 | 4×4 | 8×8 | |
0 | 68.1 | 72.1 | 94.1 | 94.7 | 8.2 | 0 | 0 | 0 |
2 | 77.8 | 85.4 | 96.2 | 96.4 | 20.6 | 0 | 0 | 0 |
3 | 79.0 | 91.8 | 95.0 | 95.1 | 23.8 | 0 | 0 | 0 |
Table 8 Test accuracy and missing alarm rate of intercepted dataset on apple %
聚类数 Cluster number | A | MAR | ||||||
---|---|---|---|---|---|---|---|---|
1×1 | 2×2 | 4×4 | 8×8 | 1×1 | 2×2 | 4×4 | 8×8 | |
0 | 68.1 | 72.1 | 94.1 | 94.7 | 8.2 | 0 | 0 | 0 |
2 | 77.8 | 85.4 | 96.2 | 96.4 | 20.6 | 0 | 0 | 0 |
3 | 79.0 | 91.8 | 95.0 | 95.1 | 23.8 | 0 | 0 | 0 |
模型 Model | A | MAR | ||||
---|---|---|---|---|---|---|
土豆Potato | 玉米Maize | 苹果Apple | 土豆Potato | 玉米Maize | 苹果Apple | |
KNN | 92.0 | 89.8 | 79.2 | 5.0 | 10.4 | 36.8 |
ABOD | 92.4 | 92.2 | 75.4 | 3.0 | 4.2 | 47.4 |
HBOS | 76.4 | 85.6 | 60.8 | 48.0 | 20.0 | 80.6 |
COF | 79.6 | 59.0 | 58.8 | 47.0 | 89.6 | 89.2 |
CBLOF | 90.8 | 81.6 | 79.6 | 4.0 | 29.4 | 33.6 |
Iforest | 81.2 | 83.0 | 62.4 | 31.0 | 26.8 | 77.2 |
CMAD | 89.2 | 98.7 | 96.4 | 7.0 | 0 | 0 |
Table 9 Comparison of effect of different models %
模型 Model | A | MAR | ||||
---|---|---|---|---|---|---|
土豆Potato | 玉米Maize | 苹果Apple | 土豆Potato | 玉米Maize | 苹果Apple | |
KNN | 92.0 | 89.8 | 79.2 | 5.0 | 10.4 | 36.8 |
ABOD | 92.4 | 92.2 | 75.4 | 3.0 | 4.2 | 47.4 |
HBOS | 76.4 | 85.6 | 60.8 | 48.0 | 20.0 | 80.6 |
COF | 79.6 | 59.0 | 58.8 | 47.0 | 89.6 | 89.2 |
CBLOF | 90.8 | 81.6 | 79.6 | 4.0 | 29.4 | 33.6 |
Iforest | 81.2 | 83.0 | 62.4 | 31.0 | 26.8 | 77.2 |
CMAD | 89.2 | 98.7 | 96.4 | 7.0 | 0 | 0 |
[1] | 刘慧, 朱莉, 赵守歧, 等. 警惕番茄褐色皱果病毒传入我国[J]. 中国植保导刊, 2019, 39(8): 73-76. |
LIU H, ZHU L, ZHAO S Q, et al. Watch out for introduction of Tomato brown rugose fruit virus to China[J]. China Plant Protection, 2019, 39(8): 73-76. (in Chinese with English abstract) | |
[2] |
OPPENHEIM D, SHANI G. Potato disease classification using convolution neural networks[J]. Advances in Animal Biosciences, 2017, 8(2): 244-249.
DOI URL |
[3] | SRAVAN V, SWARAJ K, MEENAKSHI K, et al. A deep learning based crop disease classification using transfer learning[J]. Materials Today: Proceedings, 2021. |
[4] | 王志国, 章毓晋. 监控视频异常检测: 综述[J]. 清华大学学报(自然科学版), 2020, 60(6): 518-529. |
WANG Z G, ZHANG Y J. Anomaly detection in surveillance videos: a survey[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(6): 518-529. (in Chinese with English abstract) | |
[5] |
SMITI A. A critical overview of outlier detection methods[J]. Computer Science Review, 2020, 38: 100306.
DOI URL |
[6] | 张勇东, 陈思洋, 彭雨荷, 等. 基于深度学习的网络入侵检测研究综述[J]. 广州大学学报(自然科学版), 2019, 18(3): 17-26. |
ZHANG Y D, CHEN S Y, PENG Y H, et al. A survey of deep learning based network intrusion detection[J]. Journal of Guangzhou University (Natural Science Edition), 2019, 18(3): 17-26. (in Chinese with English abstract) | |
[7] |
WEST J, BHATTACHARYA M. Intelligent financial fraud detection: a comprehensive review[J]. Computers & Security, 2016, 57: 47-66.
DOI URL |
[8] |
FERNANDO T, DENMAN S, AHMEDT-ARISTIZABAL D, et al. Neural memory plasticity for medical anomaly detection[J]. Neural Networks, 2020, 127: 67-81.
DOI PMID |
[9] |
BAUR C, DENNER S, WIESTLER B, et al. Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study[J]. Medical Image Analysis, 2021, 69: 101952.
DOI URL |
[10] |
TOGO R, WATANABE H, OGAWA T, et al. Deep convolutional neural network-based anomaly detection for organ classification in gastric X-ray examination[J]. Computers in Biology and Medicine, 2020, 123: 103903.
DOI URL |
[11] |
RUBINSTEIN E, SALHOV M, NIDAM-LESHEM M, et al. Unsupervised tumor detection in dynamic PET/CT imaging of the prostate[J]. Medical Image Analysis, 2019, 55: 27-40.
DOI PMID |
[12] |
DONG L, LIU S L, ZHANG H L. A method of anomaly detection and fault diagnosis with online adaptive learning under small training samples[J]. Pattern Recognition, 2017, 64: 374-385.
DOI URL |
[13] |
PURARJOMANDLANGRUDI A, GHAPANCHI A H, ESMALIFALAK M. A data mining approach for fault diagnosis: an application of anomaly detection algorithm[J]. Measurement, 2014, 55: 343-352.
DOI URL |
[14] |
AYDIN I, KARAKOSE M, AKIN E. A multi-objective artificial immune algorithm for parameter optimization in support vector machine[J]. Applied Soft Computing, 2011, 11(1): 120-129.
DOI URL |
[15] |
WU Y T, LI D L, LI Z B, et al. Fast processing of foreign fiber images by image blocking[J]. Information Processing in Agriculture, 2014, 1(1): 2-13.
DOI URL |
[16] | 袁渊, 丁胜, 徐新. 基于颜色与纹理特征的安防视频遮挡树叶检测[J]. 计算机工程与设计, 2016, 37(6): 1549-1554. |
YUAN Y, DING S, XU X. Color and texture feature based approach for leaf occlusion detection in security surveillance video[J]. Computer Engineering and Design, 2016, 37(6): 1549-1554. (in Chinese with English abstract) | |
[17] | 苗荣慧, 杨华, 武锦龙, 等. 基于图像分块及重构的菠菜重叠叶片与杂草识别[J]. 农业工程学报, 2020, 36(4): 178-184. |
MIAO R H, YANG H, WU J L, et al. Weed identification of overlapping spinach leaves based on image sub-block and reconstruction[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(4): 178-184. (in Chinese with English abstract) | |
[18] | 王国屹, 孙永荣, 张怡, 等. 背景对齐差分的机场跑道异物分块检测与跟踪算法[J]. 计算机辅助设计与图形学学报, 2021, 33(3): 413-423. |
WANG G Y, SUN Y R, ZHANG Y, et al. Block detection and tracking algorithm of foreign objects debris in airport runway based on background alignment and difference[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(3): 413-423. (in Chinese with English abstract) | |
[19] |
ROTHER C, KOLMOGOROV V, BLAKE A. GrabCut: interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics, 2004, 23(3): 309-314.
DOI URL |
[20] | BOYKOV Y Y, JOLLY M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images[C]// Proceedings of Eighth IEEE International Conference on Computer Vision. ICCV 2001. Vancouver, BC, Canada: IEEE, 2001: 105-112. |
[21] | STRICKER M A, ORENGO M. Similarity of color images[J]. Proceedings of SPIE, 1995, 2420: 381-392. |
[22] | POYNTON C A. A guided tour of colour space[C]// The SMPTE Advanced Television and Electronic Imaging Conference, February 10-11, 1995. San Francisco, CA, USA:. IEEE, 1995: 167-180. |
[23] | CHERNOV V, ALANDER J, BOCHKO V. Integer-based accurate conversion between RGB and HSV color spaces[J]. Computers & Electrical Engineering, 2015, 46: 328-337. |
[24] | STEMMER U. Locally private k-means clustering[M]//Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA: Society for Industrial and Applied Mathematics, 2020: 548-559. |
[1] | JIANG Zhaohui, ZHANG Jing, RAO Yuan, ZHU Cheng, LI Shaowen. Study on crop monitoring data preprocess based on cluster analysis and anomaly detection [J]. , 2016, 28(5): 885-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||