Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (9): 2032-2042.DOI: 10.3969/j.issn.1004-1524.2022.09.22
• Biosystems Engineening • Previous Articles Next Articles
JIANG Youyi1(), ZHANG Chengjian1,2,3, HAN Shaoyu2,3, YANG Xiaodong2,3, YANG Guijun2,3, YANG Hao2,3,*(
)
Received:
2021-03-24
Online:
2022-09-25
Published:
2022-09-30
Contact:
YANG Hao
CLC Number:
JIANG Youyi, ZHANG Chengjian, HAN Shaoyu, YANG Xiaodong, YANG Guijun, YANG Hao. Automatic counting of maize plants based on unmanned aerial vehicle (UAV) 3D point cloud[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 2032-2042.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.09.22
项目Item | 无人机数码UAV digital | 无人机LiDAR UAV-LiDAR |
---|---|---|
无人机型号UAV model | DJI精灵4 Pro DJI Phantom 4 Pro | DJI M600 |
传感器及产地 Sensor and origin | 1英寸CMOS/中国 1 inch CMOS/China | Riegl VUX-1/奥地利 Riegl VUX-1/Austria |
像素Pixel | 2×107 | - |
测量频率/激光发射频率 Measurement frequency/laser emission frequency | 前/后/下视:10/10/20 Hz Front/back/bottom view: 10/10/20 Hz | 550 kHz |
拍摄模式/扫描方式 Shooting mode/scanning mode | 单张拍摄/多张连拍 Single shot/multiple consecutive shots | 摆锤式 Pendulum type |
快门速度/扫描速度Shutter speed/scanning speed | 8-1/2000 s | 220 Scan/s |
照片尺寸/激光光斑直径Photo size/laser spot diameter | 3∶2/4∶3/16∶9 | 0.007 5 m |
是否可拆卸Detachable or not | 否Not | 是Yes |
价格Price | 9 999 yuan | 1×106 yuan |
Table 1 UAV platform and sensor parameters
项目Item | 无人机数码UAV digital | 无人机LiDAR UAV-LiDAR |
---|---|---|
无人机型号UAV model | DJI精灵4 Pro DJI Phantom 4 Pro | DJI M600 |
传感器及产地 Sensor and origin | 1英寸CMOS/中国 1 inch CMOS/China | Riegl VUX-1/奥地利 Riegl VUX-1/Austria |
像素Pixel | 2×107 | - |
测量频率/激光发射频率 Measurement frequency/laser emission frequency | 前/后/下视:10/10/20 Hz Front/back/bottom view: 10/10/20 Hz | 550 kHz |
拍摄模式/扫描方式 Shooting mode/scanning mode | 单张拍摄/多张连拍 Single shot/multiple consecutive shots | 摆锤式 Pendulum type |
快门速度/扫描速度Shutter speed/scanning speed | 8-1/2000 s | 220 Scan/s |
照片尺寸/激光光斑直径Photo size/laser spot diameter | 3∶2/4∶3/16∶9 | 0.007 5 m |
是否可拆卸Detachable or not | 否Not | 是Yes |
价格Price | 9 999 yuan | 1×106 yuan |
指标 Measurement index | 指标具体含义 Specific meaning of index |
---|---|
TP | 被正确检测的玉米 Maize that has been correctly detected |
FP | 非玉米或部分玉米植株被视做整株检测出 Non-maize or part of maize plants are considered to be detected as whole plants |
FN | 未被检测到的玉米Undetected maize |
Table 2 Measurement index of maize test results
指标 Measurement index | 指标具体含义 Specific meaning of index |
---|---|
TP | 被正确检测的玉米 Maize that has been correctly detected |
FP | 非玉米或部分玉米植株被视做整株检测出 Non-maize or part of maize plants are considered to be detected as whole plants |
FN | 未被检测到的玉米Undetected maize |
样点 Sampling point | 0.03 m | 0.05 m | 0.10 m | ||||||
---|---|---|---|---|---|---|---|---|---|
正检 Correct detection | 漏检 Missed detection | 错检 Error detection | 正检 Correct detection | 漏检 Missed detection | 错检 Error detection | 正检 Correct detection | 漏检 Missed detection | 错检 Error detection | |
A | 117 | 30 | 10 | 111 | 33 | 13 | 114 | 30 | 13 |
B | 121 | 37 | 17 | 136 | 25 | 14 | 105 | 65 | 5 |
C | 118 | 53 | 6 | 127 | 41 | 9 | 111 | 57 | 9 |
D | 129 | 63 | 2 | 132 | 59 | 3 | 127 | 59 | 8 |
E | 117 | 52 | 7 | 119 | 52 | 5 | 116 | 52 | 8 |
总计Total | 602 | 235 | 42 | 625 | 210 | 44 | 573 | 263 | 43 |
Table 3 Detection results of CHM based on different resolutions of RGB
样点 Sampling point | 0.03 m | 0.05 m | 0.10 m | ||||||
---|---|---|---|---|---|---|---|---|---|
正检 Correct detection | 漏检 Missed detection | 错检 Error detection | 正检 Correct detection | 漏检 Missed detection | 错检 Error detection | 正检 Correct detection | 漏检 Missed detection | 错检 Error detection | |
A | 117 | 30 | 10 | 111 | 33 | 13 | 114 | 30 | 13 |
B | 121 | 37 | 17 | 136 | 25 | 14 | 105 | 65 | 5 |
C | 118 | 53 | 6 | 127 | 41 | 9 | 111 | 57 | 9 |
D | 129 | 63 | 2 | 132 | 59 | 3 | 127 | 59 | 8 |
E | 117 | 52 | 7 | 119 | 52 | 5 | 116 | 52 | 8 |
总计Total | 602 | 235 | 42 | 625 | 210 | 44 | 573 | 263 | 43 |
分辨率 Resolution/m | RRGB | PRGB | FRGB |
---|---|---|---|
0.03 | 71.92 | 93.48 | 81.30 |
0.05 | 74.85 | 93.49 | 83.11 |
0.10 | 68.54 | 93.02 | 78.93 |
Table 4 Detection accuracy of CHM based on different resolutions %
分辨率 Resolution/m | RRGB | PRGB | FRGB |
---|---|---|---|
0.03 | 71.92 | 93.48 | 81.30 |
0.05 | 74.85 | 93.49 | 83.11 |
0.10 | 68.54 | 93.02 | 78.93 |
样点 Sampling point | 0.03 m | 0.05 m | 0.10 m | ||||||
---|---|---|---|---|---|---|---|---|---|
正检 Correct detection | 漏检 Missed detection | 错检 Error detection | 正检 Correct detection | 漏检 Missed detection | 错检 Error detection | 正检 Correct detection | 漏检 Missed detection | 错检 Error detection | |
A | 108 | 29 | 20 | 129 | 20 | 8 | 107 | 27 | 23 |
B | 118 | 44 | 13 | 136 | 37 | 2 | 117 | 54 | 4 |
C | 127 | 35 | 15 | 135 | 39 | 3 | 117 | 49 | 11 |
D | 134 | 47 | 13 | 153 | 36 | 5 | 139 | 47 | 8 |
E | 120 | 40 | 8 | 147 | 21 | 8 | 124 | 45 | 7 |
总计Total | 615 | 195 | 69 | 700 | 153 | 26 | 604 | 222 | 53 |
Table 5 Detection results of CHM based on different resolutions
样点 Sampling point | 0.03 m | 0.05 m | 0.10 m | ||||||
---|---|---|---|---|---|---|---|---|---|
正检 Correct detection | 漏检 Missed detection | 错检 Error detection | 正检 Correct detection | 漏检 Missed detection | 错检 Error detection | 正检 Correct detection | 漏检 Missed detection | 错检 Error detection | |
A | 108 | 29 | 20 | 129 | 20 | 8 | 107 | 27 | 23 |
B | 118 | 44 | 13 | 136 | 37 | 2 | 117 | 54 | 4 |
C | 127 | 35 | 15 | 135 | 39 | 3 | 117 | 49 | 11 |
D | 134 | 47 | 13 | 153 | 36 | 5 | 139 | 47 | 8 |
E | 120 | 40 | 8 | 147 | 21 | 8 | 124 | 45 | 7 |
总计Total | 615 | 195 | 69 | 700 | 153 | 26 | 604 | 222 | 53 |
分辨率 Resolution/m | RLiDAR | PLiDAR | FLiDAR |
---|---|---|---|
0.03 | 77.46 | 87.86 | 82.33 |
0.05 | 82.94 | 95.24 | 88.66 |
0.10 | 73.48 | 91.38 | 81.46 |
Table 6 Detection accuracy of CHM based on different resolutions %
分辨率 Resolution/m | RLiDAR | PLiDAR | FLiDAR |
---|---|---|---|
0.03 | 77.46 | 87.86 | 82.33 |
0.05 | 82.94 | 95.24 | 88.66 |
0.10 | 73.48 | 91.38 | 81.46 |
[1] |
PANG Y, SHI Y Y, GAO S C, et al. Improved crop row detection with deep neural network for early-season maize stand count in UAV imagery[J]. Computers and Electronics in Agriculture, 2020, 178: 105766.
DOI URL |
[2] |
CHEN R Z, CHU T X, LANDIVAR J A, et al. Monitoring cotton (Gossypium hirsutum L.) germination using ultrahigh-resolution UAS images[J]. Precision Agriculture, 2018, 19(1): 161-177.
DOI URL |
[3] |
GNÄDINGER F, SCHMIDHALTER U. Digital counts of maize plants by unmanned aerial vehicles (UAVs)[J]. Remote Sensing, 2017, 9(6): 544.
DOI URL |
[4] |
VARELA S, DHODDA P, HSU W, et al. Early-season stand count determination in corn via integration of imagery from unmanned aerial systems (UAS) and supervised learning techniques[J]. Remote Sensing, 2018, 10(3): 343.
DOI URL |
[5] |
SHIRZADIFAR A, MAHARLOOEI M, BAJWA S G, et al. Mapping crop stand count and planting uniformity using high resolution imagery in a maize crop[J]. Biosystems Engineering, 2020, 200: 377-390.
DOI URL |
[6] |
SHUAI G Y, MARTINEZ-FERIA R A, ZHANG J S, et al. Capturing maize stand heterogeneity across yield-stability zones using unmanned aerial vehicles (UAV)[J]. Sensors, 2019, 19(20): 4446.
DOI URL |
[7] | POSTMA J A, HECHT V L, HIKOSAKA K, et al. Dividing the pie: a quantitative review on plant density responses[J]. Plant, Cell & Environment, 2021, 44(4): 1072-1094. |
[8] | 明博, 谢瑞芝, 侯鹏, 等. 2005—2016年中国玉米种植密度变化分析[J]. 中国农业科学, 2017, 50(11): 1960-1972. |
MING B, XIE R Z, HOU P, et al. Changes of maize planting density in China[J]. Scientia Agricultura Sinica, 2017, 50(11): 1960-1972. (in Chinese with English abstract) | |
[9] |
ZOU H W, LU H, LI Y N, et al. Maize tassels detection: a benchmark of the state of the art[J]. Plant Methods, 2020, 16: 108.
DOI PMID |
[10] |
ZHAO B Q, ZHANG J, YANG C H, et al. Rapeseed seedling stand counting and seeding performance evaluation at two early growth stages based on unmanned aerial vehicle imagery[J]. Frontiers in Plant Science, 2018, 9: 1362.
DOI PMID |
[11] |
ZHAO H X, WANG Y X, SUN Z B, et al. Failure detection in Eucalyptus plantation based on UAV images[J]. Forests, 2021, 12(9): 1250.
DOI URL |
[12] | MATIAS F I, CARAZA-HARTER M V, ENDELMAN J B. FIELDimageR: an R package to analyze orthomosaic images from agricultural field trials[J]. The Plant Phenome Journal, 2020, 3(1): e20005. |
[13] |
JIN X L, LIU S Y, BARET F, et al. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery[J]. Remote Sensing of Environment, 2017, 198: 105-114.
DOI URL |
[14] |
ZHANG J, ZHAO B Q, YANG C H, et al. Rapeseed stand count estimation at leaf development stages with UAV imagery and convolutional neural networks[J]. Frontiers in Plant Science, 2020, 11: 617.
DOI PMID |
[15] | 郑晓岚, 张显峰, 程俊毅, 等. 利用无人机多光谱影像数据构建棉苗株数估算模型[J]. 中国图象图形学报, 2020, 25(3): 520-534. |
ZHENG X L, ZHANG X F, CHENG J Y, et al. Using the multispectral image data acquired by unmanned aerial vehicle to build an estimation model of the number of seedling stage cotton plants[J]. Journal of Image and Graphics, 2020, 25(3): 520-534. (in Chinese with English abstract) | |
[16] | 赵必权, 丁幼春, 蔡晓斌, 等. 基于低空无人机遥感技术的油菜机械直播苗期株数识别[J]. 农业工程学报, 2017, 33(19): 115-123. |
ZHAO B Q, DING Y C, CAI X B, et al. Seedlings number identification of rape planter based on low altitude unmanned aerial vehicles remote sensing technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 115-123. (in Chinese with English abstract) | |
[17] |
PICOS J, BASTOS G, MÍGUEZ D, et al. Individual tree detection in a Eucalyptus plantation using unmanned aerial vehicle (UAV)-LiDAR[J]. Remote Sensing, 2020, 12(5): 885.
DOI URL |
[18] |
YIN D M, WANG L. Individual mangrove tree measurement using UAV-based LiDAR data: possibilities and challenges[J]. Remote Sensing of Environment, 2019, 223: 34-49.
DOI URL |
[19] | 李丹, 张俊杰, 赵梦溪. 基于FCM和分水岭算法的无人机影像中林分因子提取[J]. 林业科学, 2019, 55(5): 180-187. |
LI D, ZHANG J J, ZHAO M X. Extraction of stand factors in UAV image based on FCM and watershed algorithm[J]. Scientia Silvae Sinicae, 2019, 55(5): 180-187. (in Chinese with English abstract) | |
[20] | 胡馨月, 倪海明, 戚大伟. 基于无人机影像的树木株数提取[J]. 森林工程, 2021, 37(1): 6-12. |
HU X Y, NI H M, QI D W. Tree counts extraction based on UAV imagery[J]. Forest Engineering, 2021, 37(1): 6-12. (in Chinese with English abstract) | |
[21] |
YIN T, ZENG J, ZHANG X L, et al. Individual tree parameters estimation for Chinese fir (Cunninghamia lanceolate(Lamb.) Hook) plantations of South China using UAV oblique photography: possibilities and challenges[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 827-842.
DOI URL |
[22] | 李平昊, 申鑫, 代劲松, 等. 机载激光雷达人工林单木分割方法比较和精度分析[J]. 林业科学, 2018, 54(12): 127-136. |
LI P H, SHEN X, DAI J S, et al. Comparisons and accuracy assessments of LiDAR-based tree segmentation approaches in planted forests[J]. Scientia Silvae Sinicae, 2018, 54(12): 127-136. (in Chinese with English abstract) | |
[23] |
ZHANG W M, QI J B, WAN P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501.
DOI URL |
[24] | 刘晓双, 黄建文, 鞠洪波. 高空间分辨率遥感的单木树冠自动提取方法与应用[J]. 浙江林学院学报, 2010, 27(1): 126-133. |
LIU X S, HUANG J W, JU H B. Research progress in the methods and applications of individual tree crown’s automatic extraction by high spatial resolution remote sensing[J]. Journal of Zhejiang Forestry College, 2010, 27(1): 126-133. (in Chinese with English abstract) | |
[25] |
POULIOT D A, KING D J, BELL F W, et al. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration[J]. Remote Sensing of Environment, 2002, 82(2/3): 322-334.
DOI URL |
[26] |
WALSWORTH N A, KING D J. Image modelling of forest changes associated with acid mine drainage[J]. Computers & Geosciences, 1999, 25(5): 567-580.
DOI URL |
[27] |
CULVENOR D S. TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery[J]. Computers & Geosciences, 2002, 28(1): 33-44.
DOI URL |
[1] | LYU Qian, LUO Qiao, LUO Xue, CHEN Jiubing, MA Li, LUO Zhengzhong, YAO Xueping, YU Shumin, SHEN Liuhong, CAO Suizhong. Analysis of microbial community difference between sand and rubber bedding in dairy farm by high throughput sequencing technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1377-1385. |
[2] | WANG Jun, LU Zhou, LUO Ming, XU Feifei, ZHANG Xu. Inversion of soil moisture content of winter wheat at turning green period based on multispectral remote sensing by unmanned aerial vehicle [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1297-1305. |
[3] | WU Ningshan, WANG Jiaxi, ZHANG Yan, YUAN Mutian, ZHANG Qi, GAO Chiyu. Determining tree species and crown width from unmanned aerial vehicle imagery in hilly loess region of west Shanxi, China: a case study from Caijiachuan watershed [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1505-1518. |
[4] | SUI Xiran, WANG Yan, LIU Yungen, ZHANG Yajie, WU Lifang. Responses of soil nutrients and microbial community to altitude in typical Pinus yunnanensis forest at rocky desertification region [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2348-2357. |
[5] | YIN Linjiang, ZHOU Zhongfa, HUANG Denghong, SHANG Mengjia. Extraction of individual plant of pitaya in Karst Canyon Area based on point cloud data of UAV image matching [J]. , 2020, 32(6): 1092-1102. |
[6] | YANG Yibin, AI Xiaohui, SONG Yi, DONG Jing, XU Ning, JIANG Lan. Preliminary study on hemolytic ascites disease of Pelteobagrus fulvidraco [J]. , 2019, 31(8): 1239-1248. |
[7] | LIANG Changjiang, WU Xuemei, WANG Fang, SONG Zhujun, ZHANG Fugui. Research on recognition algorithm of field mulch film based on unmanned aerial vehicle [J]. , 2019, 31(6): 1005-1011. |
[8] | ZHANG Bowei, WANG Haijing, SONG Maoyong, XIE Huijun, ZHANG Jian. Effect of tetrabromobisphenol A on inorganic nitrogen transformation in soil and its possible microbiological mechanism [J]. , 2019, 31(4): 639-645. |
[9] | XU Xiaofeng, GUO Cheng. Changes of rumen bacterial flora after starch induced milk fat depression in dairy cows [J]. , 2019, 31(10): 1591-1598. |
[10] | GUI Guohong, YANG Hua, ZHU Jiangqun, ZHU Jianfeng, XIAO Yingping, XU E. Study on microbial community structure in chilled chicken during cold storage [J]. , 2019, 31(1): 47-55. |
[11] | LIU Zongnan, WANG Xin, WU Yifei, YAO Xiaohong, SUN Hong, SHEN Qi, LI Weilin, TANG Jiangwu. Microbial ecological process of polluted urban river purified by Iris tectorum combined with immobilized bacteria [J]. , 2019, 31(1): 121-129. |
[12] | XIAO Yingping, YANG Caimei, DAI Bing, LI Kaifeng, CHEN Jinggang, YANG Hua. Effect of Clostridium butyricum in feed on structures of cecal microbiota in broilers based on high-throughput sequencing [J]. , 2017, 29(3): 373-379. |
[13] | XI Gangjun, LI Jingbao, SHI Jun, HAN Zhengmin. Diversity of endophytic fungi in Bletilla striata [J]. , 2017, 29(12): 2077-2083. |
[14] | CHEN Yun, LIU Qi, DENG Junliang, YANG Yanyi, GAO Shuang, CHEN Chong, YAO Shuhua. Effects of composite antimicrobial peptide on rumen bacteria community structure of goat [J]. , 2017, 29(11): 1800-1808. |
[15] | WANG Xin, CHENG Liang. Soil bacterial community composition and diversity of five soil types in Qinghai-Tibetan Plateau [J]. , 2017, 29(11): 1882-1889. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||