Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (3): 527-533.DOI: 10.3969/j.issn.1004-1524.20230492
• Horticultural Science • Previous Articles Next Articles
CAI Shiyi1(), YU Huifang2, WANG Jiansheng2, ZHU Biao1, SHEN Yusen2, GU Honghui2, SHENG Xiaoguang2,*(
)
Received:
2023-04-17
Online:
2024-03-25
Published:
2024-04-09
CLC Number:
CAI Shiyi, YU Huifang, WANG Jiansheng, ZHU Biao, SHEN Yusen, GU Honghui, SHENG Xiaoguang. Major gene plus polygene inheritance analysis of curd sitting height in cauliflower[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 527-533.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230492
性状 | 世代 | 平均值±标准差 | 株数 | 变异系数 |
---|---|---|---|---|
Traits | Generation | Mean±SD/cm | No. of plants | CV/% |
主茎高度 | P1 | 28.68±0.84 | 50 | 2.94 |
Main stem | P2 | 8.12±0.824 | 50 | 10.15 |
height | F1 | 20.98±0.79 | 50 | 3.79 |
F2 | 22.95±5.48 | 219 | 23.88 | |
B1 | 27.89±2.18 | 70 | 7.83 | |
B2 | 20.21±3.52 | 185 | 17.42 | |
叶痕间距 | P1 | 5.47±0.49 | 50 | 8.96 |
Leaf scar | P2 | 2.56±0.29 | 50 | 11.33 |
spacing | F2 | 4.00±0.98 | 219 | 24.50 |
Table 1 Genetic analysis of main stem height and leaf scar spacing traits in the six-generation populations of cauliflower
性状 | 世代 | 平均值±标准差 | 株数 | 变异系数 |
---|---|---|---|---|
Traits | Generation | Mean±SD/cm | No. of plants | CV/% |
主茎高度 | P1 | 28.68±0.84 | 50 | 2.94 |
Main stem | P2 | 8.12±0.824 | 50 | 10.15 |
height | F1 | 20.98±0.79 | 50 | 3.79 |
F2 | 22.95±5.48 | 219 | 23.88 | |
B1 | 27.89±2.18 | 70 | 7.83 | |
B2 | 20.21±3.52 | 185 | 17.42 | |
叶痕间距 | P1 | 5.47±0.49 | 50 | 8.96 |
Leaf scar | P2 | 2.56±0.29 | 50 | 11.33 |
spacing | F2 | 4.00±0.98 | 219 | 24.50 |
Fig.3 Frequency (column), mixed (red line), and component (black line) distributions for main stem height and leaf scar spacing traits in F2 population
六世代群体主茎高度 The height of the main stem in the six-generation population | F2群体叶痕间距 F2 group leaf scar spacing | ||||
---|---|---|---|---|---|
模型Model | MLV | AIC | 模型Model | MLV | AIC |
1MG-NCD | -1 957.999 | 3 921.997 | 1MG-NCD | -301.558 7 | 611.117 5 |
1MG-EAD | -1 911.200 | 3 828.401 | 1MG-EAD | -298.587 7 | 605.175 4 |
1MG-AD | -1 726.858 | 3 461.716 | 1MG-AD | -285.367 0 | 578.734 |
1MG-A | -1 758.092 | 3 522.183 | 1MG-A | -293.133 0 | 592.265 9 |
2MG-EAD | -1 802.738 | 3 611.476 | 2MG-EAD | -306.559 5 | 619.118 9 |
2MG-EA | -1 754.709 | 3 515.419 | 2MG-EA | 331.458 3 | -656.916 6 |
2MG-CD | -1 802.738 | 3 613.476 | 2MG-CD | -306.559 5 | 621.118 9 |
2MG-ADI | -1 592.234 | 3 204.468 | 2MG-ADI | -295.229 6 | 610.459 2 |
2MG-AD | -1 717.980 | 3 447.959 | 2MG-AD | 346.549 7 | -681.099 3 |
2MG-A | -1 780.579 | 3 569.157 | 2MG-A | 648.082 0 | -1 288.164 |
PG-ADI | -1 515.611 | 3 051.222 | PG-ADI | ||
PG-AD | -1 754.194 | 3 522.388 | PG-AD | ||
MX1-NCD-AD | -1 677.031 | 3 370.061 | MX1-NCD-AD | ||
MX1-EAD-AD | -1 578.622 | 3 173.244 | MX1-EAD-AD | ||
MX1-AD-ADI | -1 510.622 | 3 045.244 | MX1-AD-ADI | ||
MX1-AD-AD | -1 565.957 | 3 149.914 | MX1-AD-AD | ||
MX1-A-AD | -1 648.965 | 3 313.931 | MX1-A-AD | ||
MX2-EAD-AD | -1 614.513 | 3 245.025 | MX2-EAD-AD | ||
MX2-EA-AD | -1 621.050 | 3 258.100 | MX2-EA-AD | ||
MX2-CD-AD | -1 575.601 | 3 169.202 | MX2-CD-AD | ||
MX2-ADI-ADI | -1 506.296 | 3 048.592 | MX2-ADI-ADI | ||
MX2-ADI-AD | -1 521.620 | 3 073.240 | MX2-ADI-AD | ||
MX2-AD-AD | -1 550.306 | 3 122.612 | MX2-AD-AD | ||
MX2-A-AD | -1 528.941 | 3 075.882 | MX2-A-AD | ||
0MG | -306.558 7 | 617.117 4 |
Table 2 The estimation of MLV and AIC value of the main stem height of the six-generation populations and the leaf scar spacing of the F2 population of cauliflower
六世代群体主茎高度 The height of the main stem in the six-generation population | F2群体叶痕间距 F2 group leaf scar spacing | ||||
---|---|---|---|---|---|
模型Model | MLV | AIC | 模型Model | MLV | AIC |
1MG-NCD | -1 957.999 | 3 921.997 | 1MG-NCD | -301.558 7 | 611.117 5 |
1MG-EAD | -1 911.200 | 3 828.401 | 1MG-EAD | -298.587 7 | 605.175 4 |
1MG-AD | -1 726.858 | 3 461.716 | 1MG-AD | -285.367 0 | 578.734 |
1MG-A | -1 758.092 | 3 522.183 | 1MG-A | -293.133 0 | 592.265 9 |
2MG-EAD | -1 802.738 | 3 611.476 | 2MG-EAD | -306.559 5 | 619.118 9 |
2MG-EA | -1 754.709 | 3 515.419 | 2MG-EA | 331.458 3 | -656.916 6 |
2MG-CD | -1 802.738 | 3 613.476 | 2MG-CD | -306.559 5 | 621.118 9 |
2MG-ADI | -1 592.234 | 3 204.468 | 2MG-ADI | -295.229 6 | 610.459 2 |
2MG-AD | -1 717.980 | 3 447.959 | 2MG-AD | 346.549 7 | -681.099 3 |
2MG-A | -1 780.579 | 3 569.157 | 2MG-A | 648.082 0 | -1 288.164 |
PG-ADI | -1 515.611 | 3 051.222 | PG-ADI | ||
PG-AD | -1 754.194 | 3 522.388 | PG-AD | ||
MX1-NCD-AD | -1 677.031 | 3 370.061 | MX1-NCD-AD | ||
MX1-EAD-AD | -1 578.622 | 3 173.244 | MX1-EAD-AD | ||
MX1-AD-ADI | -1 510.622 | 3 045.244 | MX1-AD-ADI | ||
MX1-AD-AD | -1 565.957 | 3 149.914 | MX1-AD-AD | ||
MX1-A-AD | -1 648.965 | 3 313.931 | MX1-A-AD | ||
MX2-EAD-AD | -1 614.513 | 3 245.025 | MX2-EAD-AD | ||
MX2-EA-AD | -1 621.050 | 3 258.100 | MX2-EA-AD | ||
MX2-CD-AD | -1 575.601 | 3 169.202 | MX2-CD-AD | ||
MX2-ADI-ADI | -1 506.296 | 3 048.592 | MX2-ADI-ADI | ||
MX2-ADI-AD | -1 521.620 | 3 073.240 | MX2-ADI-AD | ||
MX2-AD-AD | -1 550.306 | 3 122.612 | MX2-AD-AD | ||
MX2-A-AD | -1 528.941 | 3 075.882 | MX2-A-AD | ||
0MG | -306.558 7 | 617.117 4 |
一阶参数Univalent parameter | 二阶参数Bivalent parameter | ||
---|---|---|---|
参数 Parameter | 估计值 Estimated value | 参数 Parameter | 估计值 Estimated value |
m | 23.498 4 | σ2 mg | 4.033 6 |
da | 1.727 6 | σ2 pg | 25.229 4 |
ha | -0.399 7 | h2 mg/% | 13.485 1 |
hb | 0.394 6 | h2 pg/% | 84.346 7 |
Table 3 Estimated value of optimal model genetic parameters for F2 population
一阶参数Univalent parameter | 二阶参数Bivalent parameter | ||
---|---|---|---|
参数 Parameter | 估计值 Estimated value | 参数 Parameter | 估计值 Estimated value |
m | 23.498 4 | σ2 mg | 4.033 6 |
da | 1.727 6 | σ2 pg | 25.229 4 |
ha | -0.399 7 | h2 mg/% | 13.485 1 |
hb | 0.394 6 | h2 pg/% | 84.346 7 |
[1] | 丁海凤, 范建光, 贾长才, 等. 我国蔬菜种业发展现状与趋势[J]. 中国蔬菜, 2020(9): 1-8. |
DING H F, FAN J G, JIA C C, et al. Present situation and trend of vegetable seed industry development in China[J]. China Vegetables, 2020(9): 1-8. (in Chinese) | |
[2] | 李素文, 赵前程, 孙德岭, 等. 国内外花椰菜种植面积及产量变化趋势[J]. 中国蔬菜, 2005(3): 36-37, 62. |
LI S W, ZHAO Q C, SUN D L, et al. Change trend of cauliflower planting area and yield at home and abroad[J]. China Vegetables, 2005(3): 36-37, 62. (in Chinese) | |
[3] | 张倩男, 王克雄, 吴立晓, 等. 松花菜机械化移栽配套提质增效栽培技术[J]. 北方园艺, 2023(1): 151-154. |
ZHANG Q N, WANG K X, WU L X, et al. Cultivation techniques for improving quality and efficiency of mechanized transplanting of Chinese cabbage[J]. Northern Horticulture, 2023(1): 151-154. (in Chinese) | |
[4] | 吕广德, 靳雪梅, 郭营, 等. 小麦株高分子遗传学研究进展[J]. 植物遗传资源学报, 2021, 22(3): 571-582. |
LYU G D, JIN X M, GUO Y, et al. Advances in molecular genetics of wheat plant height[J]. Journal of Plant Genetic Resources, 2021, 22(3): 571-582. (in Chinese with English abstract) | |
[5] | 裘霖琳, 刘窍, 付亚萍, 等. 水稻矮化小穗基因DSP2的鉴定与克隆[J]. 中国水稻科学, 2022, 36(2): 150-158. |
QIU L L, LIU Q, FU Y P, et al. Identification and gene cloning of DSP2 in rice(Oryza sativa L.)[J]. Chinese Journal of Rice Science, 2022, 36(2): 150-158. (in Chinese with English abstract) | |
[6] | 高歌, 杨媛, 郑军, 等. 玉米株高QTL的定位及主效QTL的确认[J]. 核农学报, 2022, 36(8): 1530-1536. |
GAO G, YANG Y, ZHENG J, et al. Mapping of plant height QTL and confirmation of a major QTL in maize[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(8): 1530-1536. (in Chinese with English abstract) | |
[7] | YAMAGUCHI M, FUJIMOTO H, HIRANO K, et al. Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation[J]. Scientific Reports, 2016, 6: 28366. |
[8] | 张晓科, 王辉. 小麦矮源的研究和利用现状[J]. 麦类作物学报, 1996, 16(4): 10-12. |
ZHANG X K, WANG H. Research and utilization status of wheat dwarf sources[J]. Tritical Crops, 1996, 16(4): 10-12. (in Chinese) | |
[9] | 刘超. 甘蓝型油菜矮秆基因Bnrga-ds的克隆和功能分析[D]. 武汉: 华中农业大学, 2010. |
LIU C. Cloning and functional analysis of dwarf gene bnrga-ds in rapeseed (Brassica napus L.)[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese with English abstract) | |
[10] | 赵波. 甘蓝型油菜矮秆基因定位、克隆及功能分析[D]. 武汉: 华中农业大学, 2017. |
ZHAO B. Gentic mapping, cloning and functional analysis of dwarf genes in Brassica napus L.[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract) | |
[11] | 宋晓玉, 甘德芳, 杨琳, 等. 分子标记技术在花椰菜品种鉴定上的应用研究进展[J]. 中国蔬菜, 2022(12): 30-37. |
SONG X Y, GAN D F, YANG L, et al. Research progress in applying molecular marker technology to identify cauliflower varieties[J]. China Vegetables, 2022(12): 30-37. (in Chinese with English abstract) | |
[12] | SUN D L, WANG C G, ZHANG X L, et al. Draft genome sequence of cauliflower (Brassica oleracea L. var. botrytis) provides new insights into the C genome in Brassica species[J]. Horticulture Research, 2019, 6: 82. |
[13] | 王五宏, 汪精磊, 李必元, 等. 结球甘蓝抽薹性遗传规律和QTL定位分析[J]. 园艺学报, 2020, 47(5): 974-982. |
WANG W H, WANG J L, LI B Y, et al. Genetic and QTL mapping analysis of bolting time in cabbage(Brassica oleracea)[J]. Acta Horticulturae Sinica, 2020, 47(5): 974-982. (in Chinese with English abstract) | |
[14] | 王靖天, 张亚雯, 杜应雯, 等. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424. |
WANG J T, ZHANG Y W, DU Y W, et al. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits[J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424. (in Chinese with English abstract) | |
[15] | 盖钧镒. 植物数量性状遗传体系的分离分析方法研究[J]. 遗传, 2005, 27(1): 130-136. |
GAI J Y. Segregation analysis of genetic system of QuantitativeTraits in plants[J]. Hereditas (Beijing), 2005, 27(1): 130-136. (in Chinese with English abstract) | |
[16] | 李光庆, 姚雪琴, 刘春晴, 等. 花椰菜内叶盖球性状的主基因+多基因遗传分析[J]. 上海农业学报, 2017, 33(5): 1-7. |
LI G Q, YAO X Q, LIU C Q, et al. Analysis on cauliflower’s trait for inner leaves to cover curd by means of mixed major gene plus polygene genetic model[J]. Acta Agriculturae Shanghai, 2017, 33(5): 1-7. (in Chinese with English abstract) | |
[17] | 谭华强. 花椰菜绿色花球性状的QTL定位及候选基因分析[D]. 雅安: 四川农业大学, 2020. |
TAN H Q. QTL mapping of green curd trait in cauliflower and analysis of candidate genes[D]. Yaan: Sichuan Agricultural University, 2020. (in Chinese with English abstract) | |
[18] | 何文昭, 王红武, 胡小娇, 等. 玉米株高和穗位高在不同环境下的数量遗传分析[J]. 作物杂志, 2017(3): 13-18. |
HE W Z, WANG H W, HU X J, et al. Quantitative genetic research of plant height and ear height in maize under different environments[J]. Crops, 2017(3): 13-18. (in Chinese with English abstract) | |
[19] | 解松峰, 吉万全, 张耀元, 等. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3): 365-384. |
XIE S F, JI W Q, ZHANG Y Y, et al. Genetic effects of important yield traits analysed by mixture model of major gene plus polygene in wheat[J]. Acta Agronomica Sinica, 2020, 46(3): 365-384. (in Chinese with English abstract) | |
[20] | 李英双, 胡丹, 聂蛟, 等. 甜荞株高和茎粗的遗传分析[J]. 作物学报, 2018, 44(8): 1185-1195. |
LI Y S, HU D, NIE J, et al. Genetic analysis of plant height and stem diameter in common buckwheat[J]. Acta Agronomica Sinica, 2018, 44(8): 1185-1195. (in Chinese with English abstract) | |
[21] | 李军庆, 崔翠, 陈雪峰, 等. 油菜半矮秆新种质10D130株高主基因+多基因遗传模型分析[J]. 植物遗传资源学报, 2013, 14(4): 641-646. |
LI J Q, CUI C, CHEN X F, et al. Genetic analysis of rapeseed plant height of new semi-dwaf germplasm 10D130 using major gene plus polygene mixed genetic model[J]. Journal of Plant Genetic Resources, 2013, 14(4): 641-646. (in Chinese with English abstract) |
[1] | HOU Dong, LI Yali, YUE Hongzhong, ZHANG Dongqin, YAO Tuo, HUANG Shuchao, YANG Haixing. Effects of microbial fertilizer instead of partial chemical fertilizer on yield, quality and soil microorganisms of cauliflower [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 589-599. |
[2] | ZHAI Yilan, ZHANG Chulei, CHU Aixiang, GAO Junge, XIA Qingqing, LU Zhichang. Phenotypic diversity in 27 Acer species [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2621-2635. |
[3] | SHENG Xiaoguang, SHEN Yusen, YU Huifang, WANG Jiansheng, ZHAO Zhenqing, GU Honghui. Development and application of KASP marker of BoCAL gene related to curd development in cauliflower [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1183-1192. |
[4] | WANG Zhangjun, YAO Mingming, YU Huixia, WANG Yanqing, LI Qingfeng, LIU Fenglou, LIU Caixia, ZHANG Shuangxi, ZHANG Xiaogang, LIU Shengxiang. Construction of genetic map and analysis of QTL for grain protein traits using F2∶5 pedigrees derived from Ningchun No.4×Hedong black wheat [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1367-1378. |
[5] | LI Ju, XIE Bojie, WEI Shouhui, ZHANG Guobin, WU Yue, TANG Zhongqi, XIAO Xuemei, YU Jihua. Effects of combined application of organic fertilizer and chemical fertilizer on nutritional quality and volatile compounds of cauliflower [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1199-1211. |
[6] | LI Jinwu, YU Jihua, LYU Jian, FENG Zhi, YANG Haixing, CHE Xusheng, QIN Qijie, ZHANG Yang, JIN Ning. Effects of different mulching methods on yield, quality and soil nutrients of open-air loose-curd cauliflower on plateau in summer [J]. , 2020, 32(9): 1626-1633. |
[7] | HUANG Lei, LI Guangqing, YAO Xueqin, LIU Chunqing, XIE Zhujie, GENG Chunnü. Effects of genotype and environment on downy mildew of cauliflower in different developmental stages [J]. , 2020, 32(8): 1420-1426. |
[8] | NIU Bo, LI Lina, PANG Guangchang, LU Dingqiang. Construction of plant root tip mesenchymal sensors and their effects on urea sensing dynamics [J]. , 2020, 32(8): 1466-1474. |
[9] | WANG Zhangjun, LIU Yan, ZHANG Shuangxi, LIU Fenglou, LI Qingfeng, ZHANG Xiaogang, LIU Shengxiang, JIA Biao. Identification on disease resistance and molecular markers of F2 hybrids from Ningchun No.4 and Hedong black wheat [J]. , 2019, 31(5): 677-687. |
[10] | WANG Xiaomin, ZHAO Yufei, YUAN Dongsheng, LIU Peijun, ZHENG Fushun, HU Xinhua, FU Jinjun, GAO Yanming, LI Jianshe. Analysis of combining ability and heredity for quantitative traits of 33 tomato inbred lines [J]. , 2019, 31(12): 2025-2035. |
[11] | WU Wenwen;LU Bing;*. Genetic architecture of quantitative traits based on Shanyou63 recombinant inbred lines [J]. , 2014, 26(2): 0-268273. |
[12] | JIANG Zong-qing;CAI Zhi-ling;XIE Ji-xian;SHI Jin-min;LI Xiang-qian;SHI Jyu-qin. Effects of potassium application amount on yield and quality of cauliflower [J]. , 2013, 25(2): 0-327. |
[13] | YANG Jia-fu;RAO Li-bing;GU Hong-hui. Analysis of heterosis for agronomic traits in cauliflower (Brassica oleracea L. var. botrytis L.) at different environments [J]. , 2012, 24(3): 0-420. |
[14] | ZHAO Zhen-qing;YU Hui-fang;ZHANG Xiao-hui;GU Hong-hui*. Advances in DNA markers of cauliflower(Brassica oleracea var. botrytis L.)and broccoli(Brassica oleracea var. italica L.) [J]. , 2010, 22(2): 0-262. |
[15] | CHEN Guo-lin;WU Jian-guo;SHI Chun-hai . Analysis of the genetic effects on the trait of seed amino acid content in crops [J]. , 2009, 21(05): 0-528. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||