Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (4): 932-942.DOI: 10.3969/j.issn.1004-1524.20230649
Previous Articles Next Articles
KONG De1,2(), YE Ziran2, TAN Xiangfeng2, DAI Mengdi2, ZHAO Xianliang1,*(
), KONG Dedong2,*
Received:
2023-05-18
Online:
2024-04-25
Published:
2024-04-29
Contact:
KONG De,ZHAO Xianliang,KONG Dedong
CLC Number:
KONG De, YE Ziran, TAN Xiangfeng, DAI Mengdi, ZHAO Xianliang, KONG Dedong. Measurement of physical contact parameters and discrete element simulation calibration of lettuce seeds[J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 932-942.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230649
参数Parameters | 平均值Mean value |
---|---|
三轴尺寸(长×宽×厚)Three axis dimensions (length×width×thickness)/mm×mm×mm | 3.747×1.059×0.547 |
千粒重1 000 grain weight/g | 1.144 |
密度Density/(kg·m-3) | 1 650 |
Table 1 Basic physical parameters of lettuce seeds
参数Parameters | 平均值Mean value |
---|---|
三轴尺寸(长×宽×厚)Three axis dimensions (length×width×thickness)/mm×mm×mm | 3.747×1.059×0.547 |
千粒重1 000 grain weight/g | 1.144 |
密度Density/(kg·m-3) | 1 650 |
指标Index | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
厚度形变量ΔN | 0.2 | 0.16 | 0.2 | 0.16 | 0.21 | 0.19 |
Thickness deformation ΔN/mm | ||||||
宽度形变量ΔM | 0.18 | 0.07 | 0.16 | 0.09 | 0.16 | 0.05 |
Width deformation ΔM/mm |
Table 2 Deformation index of lettuce seeds
指标Index | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
厚度形变量ΔN | 0.2 | 0.16 | 0.2 | 0.16 | 0.21 | 0.19 |
Thickness deformation ΔN/mm | ||||||
宽度形变量ΔM | 0.18 | 0.07 | 0.16 | 0.09 | 0.16 | 0.05 |
Width deformation ΔM/mm |
仿真参数 Simulation parameters | 低水平 Low level(-1) | 高水平 Hight level(+1) |
---|---|---|
生菜种子泊松比Poisson’s ratio of lettuce seed (A) | 0.1 | 0.4 |
生菜种子剪切模量Shear modulus of lettuce seed (B)/MPa | 3.9 | 6.5 |
生菜种子-生菜种子恢复系数Lettuce seed-lettuce seed restitution coefficient (C) | 0.10 | 0.24 |
生菜种子-生菜种子静摩擦系数Lettuce seed-lettuce seed static friction coefficient (D) | 0.37 | 0.58 |
生菜种子-生菜种子滚动摩擦系数Lettuce seed-lettuce seed rolling friction coefficient (E) | 0.10 | 0.32 |
生菜种子-Q345碰撞恢复系数Lettuce seed-Q345 restitution coefficient (F) | 0.30 | 0.41 |
生菜种子-Q345静摩擦系数Lettuce seed-Q345 static friction coefficient (G) | 0.35 | 0.46 |
生菜种子-Q345滚动摩擦系数Lettuce seed-Q345 rolling friction coefficient (H) | 0.01 | 0.28 |
虚拟参数Virtual parameter (J~L) | -1 | +1 |
Table 3 Plackett-Burman simulation parameter range table
仿真参数 Simulation parameters | 低水平 Low level(-1) | 高水平 Hight level(+1) |
---|---|---|
生菜种子泊松比Poisson’s ratio of lettuce seed (A) | 0.1 | 0.4 |
生菜种子剪切模量Shear modulus of lettuce seed (B)/MPa | 3.9 | 6.5 |
生菜种子-生菜种子恢复系数Lettuce seed-lettuce seed restitution coefficient (C) | 0.10 | 0.24 |
生菜种子-生菜种子静摩擦系数Lettuce seed-lettuce seed static friction coefficient (D) | 0.37 | 0.58 |
生菜种子-生菜种子滚动摩擦系数Lettuce seed-lettuce seed rolling friction coefficient (E) | 0.10 | 0.32 |
生菜种子-Q345碰撞恢复系数Lettuce seed-Q345 restitution coefficient (F) | 0.30 | 0.41 |
生菜种子-Q345静摩擦系数Lettuce seed-Q345 static friction coefficient (G) | 0.35 | 0.46 |
生菜种子-Q345滚动摩擦系数Lettuce seed-Q345 rolling friction coefficient (H) | 0.01 | 0.28 |
虚拟参数Virtual parameter (J~L) | -1 | +1 |
序号 No. | 仿真参数 | 休止角 Repose angle (θ)/(°) | |||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | ||
1 | +1 | +1 | -1 | +1 | +1 | +1 | -1 | -1 | 45.817 |
2 | -1 | +1 | +1 | -1 | +1 | +1 | +1 | -1 | 42.151 |
3 | +1 | -1 | +1 | +1 | -1 | +1 | +1 | +1 | 44.119 |
4 | -1 | +1 | -1 | +1 | +1 | -1 | +1 | +1 | 48.106 |
5 | -1 | -1 | +1 | -1 | +1 | +1 | -1 | +1 | 37.111 |
6 | -1 | -1 | -1 | +1 | -1 | +1 | +1 | -1 | 43.129 |
7 | +1 | -1 | -1 | -1 | +1 | -1 | +1 | +1 | 36.871 |
8 | +1 | +1 | -1 | -1 | -1 | +1 | -1 | +1 | 32.005 |
9 | +1 | +1 | +1 | -1 | -1 | -1 | +1 | -1 | 37.151 |
10 | -1 | +1 | +1 | +1 | -1 | -1 | -1 | +1 | 39.028 |
11 | +1 | -1 | +1 | +1 | +1 | -1 | -1 | -1 | 54.726 |
12 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 29.396 |
Table 4 Plackett-Burman test protocol and results
序号 No. | 仿真参数 | 休止角 Repose angle (θ)/(°) | |||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | ||
1 | +1 | +1 | -1 | +1 | +1 | +1 | -1 | -1 | 45.817 |
2 | -1 | +1 | +1 | -1 | +1 | +1 | +1 | -1 | 42.151 |
3 | +1 | -1 | +1 | +1 | -1 | +1 | +1 | +1 | 44.119 |
4 | -1 | +1 | -1 | +1 | +1 | -1 | +1 | +1 | 48.106 |
5 | -1 | -1 | +1 | -1 | +1 | +1 | -1 | +1 | 37.111 |
6 | -1 | -1 | -1 | +1 | -1 | +1 | +1 | -1 | 43.129 |
7 | +1 | -1 | -1 | -1 | +1 | -1 | +1 | +1 | 36.871 |
8 | +1 | +1 | -1 | -1 | -1 | +1 | -1 | +1 | 32.005 |
9 | +1 | +1 | +1 | -1 | -1 | -1 | +1 | -1 | 37.151 |
10 | -1 | +1 | +1 | +1 | -1 | -1 | -1 | +1 | 39.028 |
11 | +1 | -1 | +1 | +1 | +1 | -1 | -1 | -1 | 54.726 |
12 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 29.396 |
参数 Parameters | 自由度 Degree of freedom | 平方和 Sum of squares | F值 F-value | P值 P-value |
---|---|---|---|---|
A | 1 | 11.54 | 7.33 | 0.113 7 |
B | 1 | 8.87 | 5.63 | 0.141 0 |
C | 1 | 55.43 | 35.20 | 0.027 3* |
D | 1 | 152.66 | 96.95 | 0.010 2* |
E | 1 | 53.06 | 33.69 | 0.028 4* |
F | 1 | 8.65 | 5.49 | 0.143 8 |
G | 1 | 15.06 | 9.56 | 0.090 6 |
H | 1 | 1.16 | 0.738 2 | 0.480 8 |
Table 5 Significance analysis of Plackett-Burman test parameters
参数 Parameters | 自由度 Degree of freedom | 平方和 Sum of squares | F值 F-value | P值 P-value |
---|---|---|---|---|
A | 1 | 11.54 | 7.33 | 0.113 7 |
B | 1 | 8.87 | 5.63 | 0.141 0 |
C | 1 | 55.43 | 35.20 | 0.027 3* |
D | 1 | 152.66 | 96.95 | 0.010 2* |
E | 1 | 53.06 | 33.69 | 0.028 4* |
F | 1 | 8.65 | 5.49 | 0.143 8 |
G | 1 | 15.06 | 9.56 | 0.090 6 |
H | 1 | 1.16 | 0.738 2 | 0.480 8 |
序号 No. | 生菜种子-生菜种子恢复系数 Lettuce seed-lettuce seed restitution coefficient (C) | 生菜种子-生菜种子静摩擦系数 Lettuce seed-lettuce seed static friction coefficient (D) | 生菜种子-生菜种子滚动摩擦系数 Lettuce seed-lettuce seed rolling friction coefficient (E) | 休止角 Repose angle (θ)/(°) | 相对误差 Relative error/% |
---|---|---|---|---|---|
1 | 0.100 | 0.370 | 0.100 | 31.192 | 12.36 |
2 | 0.128 | 0.412 | 0.144 | 33.755 | 5.16 |
3 | 0.156 | 0.454 | 0.188 | 36.801 | 3.40 |
4 | 0.184 | 0.496 | 0.232 | 38.307 | 7.63 |
5 | 0.212 | 0.538 | 0.276 | 44.334 | 24.82 |
6 | 0.240 | 0.580 | 0.320 | 46.705 | 31.23 |
Table 6 The steepest climbing test of lettuce seed significant parameters
序号 No. | 生菜种子-生菜种子恢复系数 Lettuce seed-lettuce seed restitution coefficient (C) | 生菜种子-生菜种子静摩擦系数 Lettuce seed-lettuce seed static friction coefficient (D) | 生菜种子-生菜种子滚动摩擦系数 Lettuce seed-lettuce seed rolling friction coefficient (E) | 休止角 Repose angle (θ)/(°) | 相对误差 Relative error/% |
---|---|---|---|---|---|
1 | 0.100 | 0.370 | 0.100 | 31.192 | 12.36 |
2 | 0.128 | 0.412 | 0.144 | 33.755 | 5.16 |
3 | 0.156 | 0.454 | 0.188 | 36.801 | 3.40 |
4 | 0.184 | 0.496 | 0.232 | 38.307 | 7.63 |
5 | 0.212 | 0.538 | 0.276 | 44.334 | 24.82 |
6 | 0.240 | 0.580 | 0.320 | 46.705 | 31.23 |
序号 No. | 生菜种子-生菜种子Lettuce seed-lettuce seed | 休止角 Repose angle (θ)/(°) | ||
---|---|---|---|---|
恢复系数 restitution coefficient (C) | 静摩擦系数 static friction coefficient (D) | 滚动摩擦系数 rolling friction coefficient (E) | ||
1 | 0.128 | 0.412 | 0.188 | 32.954 |
2 | 0.184 | 0.412 | 0.188 | 34.251 |
3 | 0.128 | 0.496 | 0.188 | 37.154 |
4 | 0.184 | 0.496 | 0.188 | 38.053 |
5 | 0.128 | 0.454 | 0.144 | 33.426 |
6 | 0.184 | 0.454 | 0.144 | 34.239 |
7 | 0.128 | 0.454 | 0.232 | 35.099 |
8 | 0.184 | 0.454 | 0.232 | 36.604 |
9 | 0.156 | 0.412 | 0.144 | 31.114 |
10 | 0.156 | 0.496 | 0.144 | 36.375 |
11 | 0.156 | 0.412 | 0.232 | 34.787 |
12 | 0.156 | 0.496 | 0.232 | 37.057 |
13 | 0.156 | 0.454 | 0.188 | 35.723 |
14 | 0.156 | 0.454 | 0.188 | 35.564 |
15 | 0.156 | 0.454 | 0.188 | 35.792 |
16 | 0.156 | 0.454 | 0.188 | 35.664 |
17 | 0.156 | 0.454 | 0.188 | 35.591 |
Table 7 Box-Behnken experimental design and results
序号 No. | 生菜种子-生菜种子Lettuce seed-lettuce seed | 休止角 Repose angle (θ)/(°) | ||
---|---|---|---|---|
恢复系数 restitution coefficient (C) | 静摩擦系数 static friction coefficient (D) | 滚动摩擦系数 rolling friction coefficient (E) | ||
1 | 0.128 | 0.412 | 0.188 | 32.954 |
2 | 0.184 | 0.412 | 0.188 | 34.251 |
3 | 0.128 | 0.496 | 0.188 | 37.154 |
4 | 0.184 | 0.496 | 0.188 | 38.053 |
5 | 0.128 | 0.454 | 0.144 | 33.426 |
6 | 0.184 | 0.454 | 0.144 | 34.239 |
7 | 0.128 | 0.454 | 0.232 | 35.099 |
8 | 0.184 | 0.454 | 0.232 | 36.604 |
9 | 0.156 | 0.412 | 0.144 | 31.114 |
10 | 0.156 | 0.496 | 0.144 | 36.375 |
11 | 0.156 | 0.412 | 0.232 | 34.787 |
12 | 0.156 | 0.496 | 0.232 | 37.057 |
13 | 0.156 | 0.454 | 0.188 | 35.723 |
14 | 0.156 | 0.454 | 0.188 | 35.564 |
15 | 0.156 | 0.454 | 0.188 | 35.792 |
16 | 0.156 | 0.454 | 0.188 | 35.664 |
17 | 0.156 | 0.454 | 0.188 | 35.591 |
方差源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | P值 P-value |
---|---|---|---|---|
模型Model | 46.630 0 | 9 | 5.180 0 | 0.000 1** |
C | 2.550 0 | 1 | 2.550 0 | 0.000 1** |
D | 30.160 0 | 1 | 30.160 0 | 0.000 1** |
E | 8.810 0 | 1 | 8.810 0 | 0.000 1** |
CD | 0.039 6 | 1 | 0.039 6 | 0.100 1 |
CE | 0.119 7 | 1 | 0.119 7 | 0.013 3* |
DE | 2.240 0 | 1 | 2.240 0 | 0.000 1** |
C2 | 0.003 2 | 1 | 0.003 2 | 0.607 6 |
D2 | 0.005 5 | 1 | 0.005 5 | 0.501 7 |
E2 | 2.680 0 | 1 | 2.680 0 | 0.000 1** |
残差Residual | 0.077 3 | 7 | 0.011 0 | |
失拟项Lack of fit | 0.042 2 | 3 | 0.014 1 | 0.322 7 |
纯误差Pure error | 0.035 2 | 4 | 0.008 8 | |
总和Sum | 46.710 0 | 16 |
Table 8 Box-Behnken test regression model analysis of variance
方差源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | P值 P-value |
---|---|---|---|---|
模型Model | 46.630 0 | 9 | 5.180 0 | 0.000 1** |
C | 2.550 0 | 1 | 2.550 0 | 0.000 1** |
D | 30.160 0 | 1 | 30.160 0 | 0.000 1** |
E | 8.810 0 | 1 | 8.810 0 | 0.000 1** |
CD | 0.039 6 | 1 | 0.039 6 | 0.100 1 |
CE | 0.119 7 | 1 | 0.119 7 | 0.013 3* |
DE | 2.240 0 | 1 | 2.240 0 | 0.000 1** |
C2 | 0.003 2 | 1 | 0.003 2 | 0.607 6 |
D2 | 0.005 5 | 1 | 0.005 5 | 0.501 7 |
E2 | 2.680 0 | 1 | 2.680 0 | 0.000 1** |
残差Residual | 0.077 3 | 7 | 0.011 0 | |
失拟项Lack of fit | 0.042 2 | 3 | 0.014 1 | 0.322 7 |
纯误差Pure error | 0.035 2 | 4 | 0.008 8 | |
总和Sum | 46.710 0 | 16 |
[1] | 张真和. 中国蔬菜产业转型升级对策探讨(上)[J]. 中国农机化学报, 2017, 38(8): 96-106. |
ZHANG Z H. Discussion on the countermeasures for the transformation and upgrading of vegetable industry in China (Ⅰ)[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(8): 96-106. (in Chinese) | |
[2] | 汪炳良, 胡美华, 施星仁, 等. 浙江省蔬菜集约化育苗基地建设与运行管理规范探讨[J]. 浙江农业科学, 2018, 59(4): 533-537, 544. |
WANG B L, HU M H, SHI X R, et al. The construction and operational guidance of the intensive cultivation base for vegetables in Zhejiang Province[J]. Journal of Zhejiang Agricultural Sciences, 2018, 59(4): 533-537, 544. (in Chinese) | |
[3] | 孙小武, 武占会, 冯一新, 等. “十三五”我国蔬菜育苗技术研究进展[J]. 中国蔬菜, 2021(8): 18-26. |
SUN X W, WU Z H, FENG Y X, et al. Research progress on vegetables seedling culture technique during ‘The Thirteenth Five-year Plan’ in China[J]. China Vegetables, 2021(8): 18-26. (in Chinese with English abstract) | |
[4] | 王伟丽. 浅析植物工厂无土栽培立体栽培架的应用[J]. 木工机床, 2019(2): 35-38. |
WANG W L. Advantages of several stereoscopic planting frames for soilless culture in plant factory[J]. Woodworking Machinery, 2019(2): 35-38. (in Chinese with English abstract) | |
[5] | 旷碧峰, 肖昌华, 刘志华, 等. 茄果类蔬菜育苗技术进展[J]. 湖南生态科学学报, 2016, 3(1): 49-53. |
KUANG B F, XIAO C H, LIU Z H, et al. Review on seedling-raising techniques of solanaceous vegetables[J]. Journal of Hunan Ecological Science, 2016, 3(1): 49-53. (in Chinese with English abstract) | |
[6] | 赵立新. 震动气吸针式精量播种机的性能与应用[J]. 中国农机化, 2003, 24(1): 16-17. |
ZHAO L X. Performance and application of vibrating inspil-ation needle precision seeder[J]. Chinese Agriculture Mechanization, 2003, 24(1): 16-17. (in Chinese with English abstract) | |
[7] | 武广伟. 温室穴盘精密播种设备的研究进展[J]. 北方园艺, 2010(15): 37-41. |
WU G W. Advances of research on precision seeding equipment with plug trays in greenhouse[J]. Northern Horticulture, 2010(15): 37-41. (in Chinese with English abstract) | |
[8] | 康欣娜. 设施生菜深液流水培技术规程[J]. 河北农业科学, 2020, 24(3): 46-47, 50. |
KANG X N. Technical specifications of deep flow hydroponics for facility lettuce[J]. Journal of Hebei Agricultural Sciences, 2020, 24(3): 46-47, 50. (in Chinese with English abstract) | |
[9] | 刘文科, 杨其长. 现代设施园艺的最高形式: 植物工厂[J]. 科技导报, 2013, 31(33): 11. |
LIU W K, YANG Q C. The highest form of modern protected horticulture—plant factory[J]. Science & Technology Review, 2013, 31(33): 11. (in Chinese) | |
[10] | HORABIK J, MOLENDA M. Parameters and contact models for DEM simulations of agricultural granular materials: a review[J]. Biosystems Engineering, 2016, 147: 206-225. |
[11] | OINONEN A, MARQUIS G. A constitutive model for interface problems with frictional contact and cohesion[J]. European Journal of Mechanics-A/Solids, 2015, 49: 205-213. |
[12] | 于建群, 付宏, 李红, 等. 离散元法及其在农业机械工作部件研究与设计中的应用[J]. 农业工程学报, 2005, 21(5): 1-6. |
YU J Q, FU H, LI H, et al. Application of discrete element method to research and design of working parts of agricultural machines[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(5): 1-6. (in Chinese with English abstract) | |
[13] | 敖日格乐, 张文杰, 王帅, 等. 葵花籽物理接触参数测定与离散元仿真标定[J]. 农机化研究, 2023, 45(4): 139-147. |
AORIGELE, ZHANG W J, WANG S, et al. Measurement of physical contact parameters and discrete element simulation calibration of sunflower seeds[J]. Journal of Agricultural Mechanization Research, 2023, 45(4): 139-147. (in Chinese with English abstract) | |
[14] | 王龙, 贺小伟, 胡灿, 等. 包衣棉种物性参数测定与离散元仿真参数标定[J]. 中国农业大学学报, 2022, 27(6): 71-82. |
WANG L, HE X W, HU C, et al. Measurement of the physical parameters and calibration of discrete element simulation parameter of coated cotton seed[J]. Journal of China Agricultural University, 2022, 27(6): 71-82. (in Chinese with English abstract) | |
[15] | 侯占峰, 戴念祖, 陈智, 等. 冰草种子物性参数测定与离散元仿真参数标定[J]. 农业工程学报, 2020, 36(24): 46-54. |
HOU Z F, DAI N Z, CHEN Z, et al. Measurement and calibration of physical property parameters for Agropyron seeds in a discrete element simulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(24): 46-54. (in Chinese with English abstract) | |
[16] | 温翔宇, 袁洪方, 王刚, 等. 颗粒肥料离散元仿真摩擦因数标定方法研究[J]. 农业机械学报, 2020, 51(2): 115-122, 142. |
WEN X Y, YUAN H F, WANG G, et al. Calibration method of friction coefficient of granular fertilizer by discrete element simulation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 115-122, 142. (in Chinese with English abstract) | |
[17] | COETZEE C J, ELS D N J, DYMOND G F. Discrete element parameter calibration and the modelling of dragline bucket filling[J]. Journal of Terramechanics, 2010, 47(1): 33-44. |
[18] | 曾智伟, 马旭, 曹秀龙, 等. 离散元法在农业工程研究中的应用现状和展望[J]. 农业机械学报, 2021, 52(4): 1-20. |
ZENG Z W, MA X, CAO X L, et al. Critical review of applications of discrete element method in agricultural engineering[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 1-20. (in Chinese with English abstract) | |
[19] | 孙传祝, 王相友, 张志杉, 等. 螺旋揉搓式豌豆脱皮机设计[J]. 农机化研究, 2013, 35(2): 94-97. |
SUN C Z, WANG X Y, ZHANG Z S, et al. Design of a screw rubbing-type pea dehulling machine[J]. Journal of Agricultural Mechanization Research, 2013, 35(2): 94-97. (in Chinese with English abstract) | |
[20] | 叶代全. 基于手机拍照和ImageJ软件的杉木种子表型指标测量[J]. 林业科技通讯, 2022(9): 32-35. |
YE D Q. Seed size measurement of Cunninghamia lanceolata based on mobile phone photography and ImageJ software[J]. Forest Science and Technology, 2022(9): 32-35. (in Chinese) | |
[21] | 葛藤, 贾智宏, 周克栋. 计算点接触碰撞恢复系数的一种理论模型[J]. 机械设计与研究, 2007, 23(3): 14-15, 22. |
GE T, JIA Z H, ZHOU K D. A theoretical model for the coefficient of restitution calculation of point impact[J]. Machine Design & Research, 2007, 23(3): 14-15, 22. (in Chinese with English abstract) | |
[22] | 刘文政, 何进, 李洪文, 等. 基于离散元的微型马铃薯仿真参数标定[J]. 农业机械学报, 2018, 49(5): 125-135, 142. |
LIU W Z, HE J, LI H W, et al. Calibration of simulation parameters for potato minituber based on EDEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 125-135, 142. (in Chinese with English abstract) | |
[23] | 陆永光, 吴努, 王冰, 等. 花生荚果碰撞模型中恢复系数的测定及分析[J]. 中国农业大学学报, 2016, 21(8): 111-118. |
LU Y G, WU N, WANG B, et al. Measurement and analysis of peanuts’ restitution coefficient in point-to-plate collision mode[J]. Journal of China Agricultural University, 2016, 21(8): 111-118. (in Chinese with English abstract) | |
[24] | 文正彪, 刘宽厚, 王婧, 等. 参种千粒重密度碰撞恢复系数的测量[J]. 农业与技术, 2017, 37(17): 55-58. |
WEN Z B, LIU K H, WANG J, et al. Measurement of collision recovery coefficient of 1 000-grain weight density of ginseng seeds[J]. Agriculture and Technology, 2017, 37(17): 55-58. (in Chinese) | |
[25] | 吴肖, 朱道云, 胡峰, 等. 利用视频分析软件Tracker研究皮球的弹跳[J]. 物理实验, 2013, 33(7): 40-42. |
WU X, ZHU D Y, HU F, et al. Research of the bounce of rubber ball using Tracker[J]. Physics Experimentation, 2013, 33(7): 40-42. (in Chinese with English abstract) | |
[26] | 张锐, 韩佃雷, 吉巧丽, 等. 离散元模拟中沙土参数标定方法研究[J]. 农业机械学报, 2017, 48(3): 49-56. |
ZHANG R, HAN D L, JI Q L, et al. Calibration methods of sandy soil parameters in simulation of discrete element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 49-56. (in Chinese with English abstract) | |
[27] | BHARADWAJ R, KETTERHAGEN W, HANCOCK B C. Discrete element simulation study of a Freeman Powder rheometer[J]. Chemical Engineering Science, 2010, 65: 5747-5756. |
[28] | 孙正和, 吴守一, 张兴宇, 等. 擦离式碾米机碾米室压力的研究[J]. 农业工程学报, 1994, 10(3): 133-137. |
SUN Z H, WU S Y, ZHANG X Y, et al. Study on the milling chamber pressure of friction-type miller[J]. Transactions of the Chinese Society of Agricultural Engineering, 1994, 10(3): 133-137. (in Chinese with English abstract) | |
[29] | 刘凡一, 张舰, 李博, 等. 基于堆积试验的小麦离散元参数分析及标定[J]. 农业工程学报, 2016, 32(12): 247-253. |
LIU F Y, ZHANG J, LI B, et al. Calibration of parameters of wheat required in discrete element method simulation based on repose angle of particle heap[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(12): 247-253. (in Chinese with English abstract) | |
[30] | YAN Y L, YONG Z C, GUO J L, et al. Design-expert optimization of skin-care material fabrication process[J]. Advanced Materials Research, 2013, 746: 132-136. |
[31] | 马彦华, 宋春东, 宣传忠, 等. 苜蓿秸秆压缩仿真离散元模型参数标定[J]. 农业工程学报, 2020, 36(11): 22-30. |
MA Y H, SONG C D, XUAN C Z, et al. Parameters calibration of discrete element model for alfalfa straw compression simulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 22-30. (in Chinese with English abstract) |
[1] | XIN Yapeng, WANG Lin, SHI Yinyan, WANG Xiaochan, WU Changwei, LIU Hui. Numerical simulation and optimization of key structure for centrifugal variable fertilizer spreader [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1452-1461. |
[2] | PENG Caiwang, ZHOU Ting, SUN Songlin, XIE Yelin, WEI Yuan. Calibration of parameters of black soldier fly in discrete method simulation based on response angle of particle heap [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 814-823. |
[3] | LIU Mingyong, HU Chenglong, XIE Bolin. Simulation and optimization analysis and experiment of split plough based on discrete element method [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2542-2552. |
[4] | QIN Kuan, LIANG Xiaolong, CAO Chengmao, FANG Liangfei, WU Zhengmin, GE Jun. Design and experiment of tea garden energy-saving ditching blade [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1320-1328. |
[5] | WANG Feng, ZHANG Fengwei, DAI Fei, ZHANG Luhai, ZHAO Wei, YANG Xiaoping. Design and experiment of double layer flat screen type Pinellia ternate harvester [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1946-1955. |
[6] | LI Weining, BAI Xuanbing, LI Bing. Optimization of structural parameters of drum type tea re-dryer [J]. , 2020, 32(2): 348-358. |
[7] | JIN Li\|li1,2,JI Chang\|ying1,2,*,FANG Hui\|min1,2, TAN Ying1,2. Numerical simulation of mixing process of fertilizer particles in continuous mixer of variable rate fertilizer applicator [J]. , 2015, 27(2): 261-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||