Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (10): 2198-2208.DOI: 10.3969/j.issn.1004-1524.20240868
• Biosystems Engineering • Previous Articles Next Articles
LI Mengmin(
), LIU Shuo(
), OUYANG Yu, ZHANG Peng
Received:2024-10-10
Online:2025-10-25
Published:2025-11-13
CLC Number:
LI Mengmin, LIU Shuo, OUYANG Yu, ZHANG Peng. An efficient and lightweight citrus leaf disease detection model based on YOLOv8n[J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2198-2208.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240868
| 标签 Label | 类型 Type | 图像数量Quantity of images | ||||
|---|---|---|---|---|---|---|
| 增强前 Before enhancement | 增强后 After enhancement | 训练集 Training set | 验证集 Validation set | 测试集 Test set | ||
| 0 | 黑斑病Black spot | 223 | 1 115 | 892 | 112 | 111 |
| 1 | 黑点病Melanose | 297 | 1 188 | 950 | 119 | 119 |
| 2 | 溃疡病Canker | 335 | 1 340 | 1 072 | 134 | 134 |
| 3 | 黄龙病Huanglongbing | 291 | 1 164 | 931 | 117 | 116 |
| 4 | 健康Healthy | 231 | 1 155 | 924 | 116 | 115 |
Table 1 Basic information of dataset
| 标签 Label | 类型 Type | 图像数量Quantity of images | ||||
|---|---|---|---|---|---|---|
| 增强前 Before enhancement | 增强后 After enhancement | 训练集 Training set | 验证集 Validation set | 测试集 Test set | ||
| 0 | 黑斑病Black spot | 223 | 1 115 | 892 | 112 | 111 |
| 1 | 黑点病Melanose | 297 | 1 188 | 950 | 119 | 119 |
| 2 | 溃疡病Canker | 335 | 1 340 | 1 072 | 134 | 134 |
| 3 | 黄龙病Huanglongbing | 291 | 1 164 | 931 | 117 | 116 |
| 4 | 健康Healthy | 231 | 1 155 | 924 | 116 | 115 |
Fig.2 Structure of YOLOv8-DTBI network Bbox.Loss, Bounding box loss; Cls.Loss, Classification loss; Conv, Convolution; DualConv, Dual convolution; MaxPool, Max pooling; BN, Batch normalization. The same as below.
| 模块 Module | 将模块嵌入不同位置后模型的精度 Precision of models with module deployed at different locations | ||
|---|---|---|---|
| 骨干网络 Backbone | 颈部 Neck | 骨干网络+颈部 Backbone+neck | |
| C2f | — | — | 83.6 |
| C2f_SE | 86.6 | 83.5 | 88.8 |
| C2f_CBAM | 87.0 | 87.4 | 84.5 |
| C2f_DT | 89.2 | 84.3 | 87.8 |
Table 2 Precision of YOLOv8n with attention mechanism deployed at different locations %
| 模块 Module | 将模块嵌入不同位置后模型的精度 Precision of models with module deployed at different locations | ||
|---|---|---|---|
| 骨干网络 Backbone | 颈部 Neck | 骨干网络+颈部 Backbone+neck | |
| C2f | — | — | 83.6 |
| C2f_SE | 86.6 | 83.5 | 88.8 |
| C2f_CBAM | 87.0 | 87.4 | 84.5 |
| C2f_DT | 89.2 | 84.3 | 87.8 |
Fig.6 Comparison of performance of YOLOv8n and YOLOv8-DTBI models on small target detection The values in the above figures are confidence scores. The same as below.
| 损失函数 Loss function | P | R | mAP@50 | F1 |
|---|---|---|---|---|
| CIoU | 83.6 | 85.5 | 90.7 | 84.5 |
| EIoU | 85.1 | 89.9 | 91.1 | 87.4 |
| GIoU | 85.5 | 89.3 | 90.1 | 87.4 |
| SIoU | 87.9 | 87.4 | 91.1 | 87.6 |
| Inner IoU | 89.2 | 90.8 | 92.1 | 90.9 |
Table 3 Effects of different loss functions on performace of model %
| 损失函数 Loss function | P | R | mAP@50 | F1 |
|---|---|---|---|---|
| CIoU | 83.6 | 85.5 | 90.7 | 84.5 |
| EIoU | 85.1 | 89.9 | 91.1 | 87.4 |
| GIoU | 85.5 | 89.3 | 90.1 | 87.4 |
| SIoU | 87.9 | 87.4 | 91.1 | 87.6 |
| Inner IoU | 89.2 | 90.8 | 92.1 | 90.9 |
| r | P | R | mAP@50 | F1 |
|---|---|---|---|---|
| 0.5 | 84.7 | 87.5 | 90.0 | 86.1 |
| 0.6 | 88.6 | 89.6 | 90.9 | 89.1 |
| 0.7 | 89.0 | 85.7 | 90.1 | 87.3 |
| 0.8 | 83.5 | 89.2 | 90.3 | 86.3 |
| 0.9 | 87.0 | 84.5 | 90.8 | 85.7 |
| 1.0 | 89.2 | 90.8 | 92.1 | 90.0 |
| 1.1 | 87.3 | 88.9 | 90.8 | 88.1 |
| 1.2 | 87.4 | 87.9 | 90.3 | 87.6 |
| 1.3 | 85.9 | 89.3 | 91.0 | 87.6 |
| 1.4 | 87.8 | 89.3 | 92.0 | 88.5 |
| 1.5 | 87.1 | 88.8 | 91.3 | 87.9 |
Table 4 Effects of ratio (r) on performance of model
| r | P | R | mAP@50 | F1 |
|---|---|---|---|---|
| 0.5 | 84.7 | 87.5 | 90.0 | 86.1 |
| 0.6 | 88.6 | 89.6 | 90.9 | 89.1 |
| 0.7 | 89.0 | 85.7 | 90.1 | 87.3 |
| 0.8 | 83.5 | 89.2 | 90.3 | 86.3 |
| 0.9 | 87.0 | 84.5 | 90.8 | 85.7 |
| 1.0 | 89.2 | 90.8 | 92.1 | 90.0 |
| 1.1 | 87.3 | 88.9 | 90.8 | 88.1 |
| 1.2 | 87.4 | 87.9 | 90.3 | 87.6 |
| 1.3 | 85.9 | 89.3 | 91.0 | 87.6 |
| 1.4 | 87.8 | 89.3 | 92.0 | 88.5 |
| 1.5 | 87.1 | 88.8 | 91.3 | 87.9 |
| 样本类型 Sample type | 不同模型的精度 Precision of different models | 不同模型的mAP@50 mAP@50 of different models | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| YOLOv8n | YOLOv8n- C2f_DT | YOLOv8n- BiFPN | YOLOv8n- Inner IoU | YOLOv8- DTBI | YOLOv8n | YOLOv8n- C2f_DT | YOLOv8n- BiFPN | YOLOv8n- Inner IoU | YOLOv8- DTBI | ||
| 黑斑病 Black spot | 89.6 | 98.5 | 98.3 | 97.1 | 98.9 | 98.1 | 99.5 | 98.7 | 98.9 | 99.5 | |
| 黑点病 Melanose | 79.9 | 81.4 | 80.5 | 79.5 | 80.0 | 89.3 | 86.1 | 89.1 | 91.2 | 91.4 | |
| 溃疡病Canker | 75.2 | 82.5 | 83.8 | 82.0 | 87.0 | 85.3 | 86.2 | 85.4 | 87.4 | 87.0 | |
| 黄龙病 Huanglongbing | 76.9 | 82.4 | 77.6 | 87.2 | 83.1 | 82.6 | 86.8 | 83.7 | 84.7 | 83.2 | |
| 健康Healthy | 96.3 | 95.4 | 97.5 | 95.8 | 97.1 | 98.3 | 99.1 | 99.0 | 98.5 | 99.4 | |
| 全部All | 83.6 | 88.0 | 87.5 | 88.3 | 89.2 | 90.7 | 91.5 | 91.2 | 92.1 | 92.1 | |
Table 5 Effects of different structure improvement on performance of model %
| 样本类型 Sample type | 不同模型的精度 Precision of different models | 不同模型的mAP@50 mAP@50 of different models | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| YOLOv8n | YOLOv8n- C2f_DT | YOLOv8n- BiFPN | YOLOv8n- Inner IoU | YOLOv8- DTBI | YOLOv8n | YOLOv8n- C2f_DT | YOLOv8n- BiFPN | YOLOv8n- Inner IoU | YOLOv8- DTBI | ||
| 黑斑病 Black spot | 89.6 | 98.5 | 98.3 | 97.1 | 98.9 | 98.1 | 99.5 | 98.7 | 98.9 | 99.5 | |
| 黑点病 Melanose | 79.9 | 81.4 | 80.5 | 79.5 | 80.0 | 89.3 | 86.1 | 89.1 | 91.2 | 91.4 | |
| 溃疡病Canker | 75.2 | 82.5 | 83.8 | 82.0 | 87.0 | 85.3 | 86.2 | 85.4 | 87.4 | 87.0 | |
| 黄龙病 Huanglongbing | 76.9 | 82.4 | 77.6 | 87.2 | 83.1 | 82.6 | 86.8 | 83.7 | 84.7 | 83.2 | |
| 健康Healthy | 96.3 | 95.4 | 97.5 | 95.8 | 97.1 | 98.3 | 99.1 | 99.0 | 98.5 | 99.4 | |
| 全部All | 83.6 | 88.0 | 87.5 | 88.3 | 89.2 | 90.7 | 91.5 | 91.2 | 92.1 | 92.1 | |
| 模型 Model | P | R | mAP@50 | 参数量 Parameters/MB | 模型大小 Model size/MB |
|---|---|---|---|---|---|
| SSD | 82.5 | 84.9 | 89.7 | 25.6 | 92.6 |
| Faster R-CNN | 83.2 | 85.3 | 91.3 | 72.4 | 521.3 |
| YOLOv7n | 80.3 | 82.7 | 87.5 | 3.7 | 74.9 |
| YOLOv8n | 83.6 | 85.5 | 90.7 | 3.0 | 5.9 |
| YOLOv9s | 84.1 | 86.4 | 91.6 | 9.7 | 19.4 |
| YOLOv8-DTBI | 89.2 | 90.8 | 92.1 | 2.4 | 5.4 |
Table 6 Comparison of performace of different models
| 模型 Model | P | R | mAP@50 | 参数量 Parameters/MB | 模型大小 Model size/MB |
|---|---|---|---|---|---|
| SSD | 82.5 | 84.9 | 89.7 | 25.6 | 92.6 |
| Faster R-CNN | 83.2 | 85.3 | 91.3 | 72.4 | 521.3 |
| YOLOv7n | 80.3 | 82.7 | 87.5 | 3.7 | 74.9 |
| YOLOv8n | 83.6 | 85.5 | 90.7 | 3.0 | 5.9 |
| YOLOv9s | 84.1 | 86.4 | 91.6 | 9.7 | 19.4 |
| YOLOv8-DTBI | 89.2 | 90.8 | 92.1 | 2.4 | 5.4 |
| [1] | 周志英. 柑橘绿色种植与管理技术要点[J]. 河北农业, 2024(8): 86-87. |
| ZHOU Z Y. Key points of citrus green planting and management technology[J]. Hebei Agriculture, 2024(8): 86-87. (in Chinese with English abstract) | |
| [2] | 彭桂芳, 向长海. 农文旅融合视域下我国柑橘产业可持续发展研究[J]. 当代县域经济, 2024 (8):22-25. |
| PENG G F. XIANG C H. Research on the sustainable development of Chinese citrus industry from the perspective of agricultural, cultural and tourism integration[J]. Dangdai Xianyu Jingji, 2024 (8): 22-25. (in Chinese) | |
| [3] | 贾惠, 伍希志, 薛洋, 等. 基于迁移学习和数据增强的小样本柑橘缺陷检测研究[J]. 农业与技术, 2024, 44(2): 23-27. |
| JIA H, WU X Z, XUE Y, et al. Research on defect detection of small sample citrus based on transfer learning and data enhancement[J]. Agriculture and Technology, 2024, 44(2): 23-27. (in Chinese with English abstract) | |
| [4] | 谭彬, 蔡健荣, 许骞, 等. 基于注意力机制改进卷积神经网络的柑橘病虫害识别[J]. 江苏农业科学, 2024, 52(8): 176-182. |
| TAN B, CAI J R, XU J, et al. Recognition of citrus pests and diseases based on attention mechanism improved convolutional neural networks[J]. Jiangsu Agricultural Sciences, 2024, 52(8): 176-182. (in Chinese with English abstract) | |
| [5] | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
| [6] | HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017. Venice. New York: IEEE, 2017: 2980-2988. |
| [7] | 王云露, 吴杰芳, 兰鹏, 等. 基于改进Faster R-CNN的苹果叶部病害识别方法[J]. 林业工程学报, 2022, 7(1): 153-159. |
| WANG Y L, WU J F, LAN P, et al. Apple disease identification using improved Faster R-CNN[J]. Journal of Forestry Engineering, 2022, 7(1): 153-159. (in Chinese with English abstract) | |
| [8] | 杨宁, 程巍, 张钊源, 等. 基于Mask R-CNN的稻瘟病图像片上识别算法[J/OL]. 农业机械学报, 2024: 1-10. (2024-05-21)[2024-10-10]. https://kns.cnki.net/KCMS/detail/detail.aspxfilename=NYJX20240516003&dbname=CJFD&dbcode=CJFQ. |
| YANG N, CHENG W, ZHANG Z Y, et al. Mask R-CNN based on-chip recognition algorithm for rice blast image[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2024: 1-10. (2024-05-21)[2024-10-10]. https://kns.cnki.net/KCMS/detail/detail.aspxfilename=NYJX20240516003&dbname=CJFD&dbcode=CJFQ. (in Chinese with English abstract) | |
| [9] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// Computer Vision:ECCV 2016. Cham: Springer, 2016: 21-37. |
| [10] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 2016: 779-788. |
| [11] | 李大华, 孔舒, 李栋, 等. 基于改进SSD模型的柑橘叶片病害轻量化检测模型[J]. 浙江农业学报, 2024, 36(3): 662-670. |
| LI D H, KONG S, LI D, et al. Lightweight detection model of citrus leaf disease based on improved SSD[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 662-670. (in Chinese with English abstract) | |
| [12] | 郑宇达, 陈仁凡, 杨长才, 等. 基于改进YOLOv5s模型的柑橘病虫害识别方法[J]. 华中农业大学学报, 2024, 43(2): 134-143. |
| ZHENG Y D, CHEN R F, YANG C C, et al. Improved YOLOv5s based identification of pests and diseases in citrus[J]. Journal of Huazhong Agricultural University, 2024, 43(2): 134-143. (in Chinese with English abstract) | |
| [13] | 贾雪莹, 赵春江, 周娟, 等. 基于改进YOLOv7模型的柑橘表面缺陷在线检测[J]. 农业工程学报, 2023, 39(23): 142-151. |
| JIA X Y, ZHAO C J, ZHOU J, et al. Online detection of citrus surface defects using improved YOLOv7 modeling[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(23): 142-151. (in Chinese with English abstract) | |
| [14] | 岳凯, 张鹏超, 王磊, 等. 基于改进YOLOv8n的复杂环境下柑橘识别[J]. 农业工程学报, 2024, 40(8): 152-158. |
| YUE K, ZHANG P C, WANG L, et al. Recognizing citrus in complex environment using improved YOLOv8n[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(8): 152-158. (in Chinese with English abstract) | |
| [15] | ZHONG J C, CHEN J Y, MIAN A. DualConv: dual convolutional kernels for lightweight deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34(11): 9528-9535. |
| [16] | MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend:convolutional triplet attention module[C]// 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). January 3-8, 2021, Waikoloa, HI, USA. New York: IEEE, 2021: 3138-3147. |
| [17] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
| [18] | SINGH P, VERMA V K, RAI P, et al. HetConv:heterogeneous kernel-based convolutions for deep CNNs[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. New York: IEEE, 2019: 4830-4839. |
| [19] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE, 2018: 7132-7141. |
| [20] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Computer Vision:ECCV 2018. Cham: Springer, 2018: 3-19. |
| [21] | TAN M X, PANG R M, LE Q V. EfficientDet:scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. New York: IEEE, 2020: 10778-10787. |
| [22] | WANG X F, SONG J. ICIoU: improved loss based on complete intersection over union for bounding box regression[J]. IEEE Access, 2021, 9: 105686-105695. |
| [23] | ZHANG H, XU C, ZHANG S. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[EB/OL]. (2023-11-14) [2024-10-10]. https://arxiv.org/abs/2311.02877. |
| [24] | YANG Z M, WANG X L, LI J G. EIoU: an improved vehicle detection algorithm based on VehicleNet neural network[J]. Journal of Physics: Conference Series, 2021, 1924(1): 012001. |
| [25] | REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union:a metric and a loss for bounding box regression[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. New York: IEEE, 2019: 658-666. |
| [26] | GEVORGYAN Z. SIoU loss: More powerful learning for bounding box regression[EB/OL]. (2022-05-25) [2024-10-10]. https://arxiv.org/abs/2205.12740. |
| [27] | WANG C Y, YEH I H, MARK LIAO H Y. YOLOv9: learning what you want to learn using programmable gradient information[C]// Computer Visio:ECCV 2024. Cham: Springer, 2025: 1-21. |
| [1] | LYU Yinchun, DUAN Enze, ZHU Yixing, ZHENG Xia, BAI Zongchun. Real-time detection of overturned meat ducks based on YOLOv8-Swin Transformer model [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1556-1566. |
| [2] | GUO Xiuming, WANG Dawei, LIU Shengping, ZHU Yeping, LIU Xiaohui, LIN Kejian, WANG Jiayu, LI Fei. Study on key problems for rat hole recognition and count near ground based on deep learning and its application [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2146-2154. |
| [3] | NING Wenkai, LI Jing, SHEN Xiaodong, WU Xin, LI Zhenfeng. Prediction of multi-source fusion of β-carotene during pumpkin drying [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1876-1887. |
| [4] | YAN Ning, ZHANG Han, DONG Hongtu, KANG Kai, LUO Bin. Wheat variety recognition method based on same position segmentation of transmitted light and reflected light images [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 590-598. |
| [5] | BAO Xiaomin, SHENG Jiawen. Research on automatic identification and counting of insect pests on sticky board [J]. , 2019, 31(9): 1516-1522. |
| [6] | WU Yuanyuan, SHANG Xin, ZHANG Chengbin, XIE Xinyi. Acquisition of operation parameters of intelligent leaf vegetable harvester under natural lighting [J]. , 2017, 29(11): 1930-1937. |
| [7] | TIAN Hai-tao, ZHAO Jun, PU Fu-peng. A method for recognizing potato’s bud eye [J]. , 2016, 28(11): 1947-1953. |
| [8] | REN Lei1, ZHANG Jun2,*, LU Sheng\|min2. Research on machine vision algorithm for automatic sorting of membrane\|removed mandarin segments [J]. , 2015, 27(12): 2212-. |
| [9] | LIU Jian-jun;YAO Li-jian;PENG Zhang-lin. Detection technique for cathay hickory grade based on machine vision [J]. , 2010, 22(6): 854-858. |
| [10] | LIANG Kun;LUO Han-ya;SHEN Ming-xia;*;HE Rui-yin;ZHANG Lu. Review and prospect for the detection technique of paddy seeding quality [J]. , 2010, 22(2): 0-257. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||