Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (8): 1876-1887.DOI: 10.3969/j.issn.1004-1524.20221004
• Food Science • Previous Articles Next Articles
NING Wenkai1,2(), LI Jing1,2, SHEN Xiaodong1,2, WU Xin1, LI Zhenfeng1,2,*(
)
Received:
2022-07-06
Online:
2023-08-25
Published:
2023-08-29
CLC Number:
NING Wenkai, LI Jing, SHEN Xiaodong, WU Xin, LI Zhenfeng. Prediction of multi-source fusion of β-carotene during pumpkin drying[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1876-1887.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221004
传感器 Sensor | 传感器型号 Sensor type | 敏感气体类型 Sensitive gas type |
---|---|---|
1 | W1C | 对芳香物族化合物灵敏Sensitive to aromatic compounds |
2 | W5S | 对含氮氧类物质灵敏Sensitive to nitrogen and oxygen containing substances |
3 | W3C | 对氨等芳香物族化合物灵敏Sensitive to aromatic compounds such as ammonia |
4 | W6S | 对氢气灵敏Sensitive to hydrogen gas |
5 | W5C | 对烷烃、芳香族化合物灵敏Sensitive to alkanes and aromatic compounds |
6 | W1S | 对甲基类物质灵敏Sensitive to methyl substances |
7 | W1W | 对有机硫化物灵敏Sensitive to organic sulfides |
8 | W2S | 对含有芳香族化合物的醇类灵敏Sensitive to alcohols containing aromatic compounds |
9 | W2W | 对芳香成分灵敏Sensitive to aromatic components |
10 | W3S | 对高浓度烷烃-脂肪族物质灵敏Sensitive to high concentrations of alkanes and aliphatic substances |
Table 1 PEN3 electronic nose sensor and its performance description
传感器 Sensor | 传感器型号 Sensor type | 敏感气体类型 Sensitive gas type |
---|---|---|
1 | W1C | 对芳香物族化合物灵敏Sensitive to aromatic compounds |
2 | W5S | 对含氮氧类物质灵敏Sensitive to nitrogen and oxygen containing substances |
3 | W3C | 对氨等芳香物族化合物灵敏Sensitive to aromatic compounds such as ammonia |
4 | W6S | 对氢气灵敏Sensitive to hydrogen gas |
5 | W5C | 对烷烃、芳香族化合物灵敏Sensitive to alkanes and aromatic compounds |
6 | W1S | 对甲基类物质灵敏Sensitive to methyl substances |
7 | W1W | 对有机硫化物灵敏Sensitive to organic sulfides |
8 | W2S | 对含有芳香族化合物的醇类灵敏Sensitive to alcohols containing aromatic compounds |
9 | W2W | 对芳香成分灵敏Sensitive to aromatic components |
10 | W3S | 对高浓度烷烃-脂肪族物质灵敏Sensitive to high concentrations of alkanes and aliphatic substances |
温度 Temperature/ ℃ | 一级动力学First-order dynamics | 二级动力学Second-order dynamics | 三级动力学Third-order dynamics | ||||||
---|---|---|---|---|---|---|---|---|---|
k/min-1 | R2 | RMSE | k/(mg· kg-1)-1·min-1 | R2 | RMSE | k/(mg· kg-1)-2·min-1 | R2 | RMSE | |
60 | 0.005 83 | 0.858 74 | 0.020 29 | 2.55×10-4 | 0.901 23 | 2.39×10-5 | 1.189×10-5 | 0.940 91 | 2.975×10-8 |
70 | 0.006 69 | 0.891 46 | 0.010 33 | 2.48×10-4 | 0.917 25 | 1.049×10-5 | 9.533×10-6 | 0.932 85 | 1.240×10-8 |
80 | 0.011 73 | 0.957 69 | 0.006 27 | 5.15×10-4 | 0.985 39 | 4.060×10-6 | 2.409×10-6 | 0.980 99 | 1.160×10-8 |
Table 2 Kinetic correlation coefficient of β-carotene
温度 Temperature/ ℃ | 一级动力学First-order dynamics | 二级动力学Second-order dynamics | 三级动力学Third-order dynamics | ||||||
---|---|---|---|---|---|---|---|---|---|
k/min-1 | R2 | RMSE | k/(mg· kg-1)-1·min-1 | R2 | RMSE | k/(mg· kg-1)-2·min-1 | R2 | RMSE | |
60 | 0.005 83 | 0.858 74 | 0.020 29 | 2.55×10-4 | 0.901 23 | 2.39×10-5 | 1.189×10-5 | 0.940 91 | 2.975×10-8 |
70 | 0.006 69 | 0.891 46 | 0.010 33 | 2.48×10-4 | 0.917 25 | 1.049×10-5 | 9.533×10-6 | 0.932 85 | 1.240×10-8 |
80 | 0.011 73 | 0.957 69 | 0.006 27 | 5.15×10-4 | 0.985 39 | 4.060×10-6 | 2.409×10-6 | 0.980 99 | 1.160×10-8 |
温度 Temperature/ ℃ | 品质指标 Quality index | 横截面皱缩率 Cross section shrinkage rate | 纵截面皱缩率 Longitudinal section shrinkage rate | 色差 Chromatism | 传感器2 Sensor 2 | 传感器6 Sensor 6 | 传感器7 Sensor 7 | 传感器9 Sensor 9 |
---|---|---|---|---|---|---|---|---|
60 | β-胡萝卜素含量β-Carotene content | -0.948 | -0.959 | -0.904 | 0.915 | 0.923 | 0.870 | 0.894 |
70 | β-胡萝卜素含量β-Carotene content | -0.933 | -0.936 | -0.979 | 0.742 | 0.977 | 0.952 | 0.769 |
80 | β-胡萝卜素含量β-Carotene content | -0.973 | -0.973 | -0.984 | 0.933 | 0.919 | 0.888 | 0.938 |
Table 3 Correlation between β-carotene content and characteristics
温度 Temperature/ ℃ | 品质指标 Quality index | 横截面皱缩率 Cross section shrinkage rate | 纵截面皱缩率 Longitudinal section shrinkage rate | 色差 Chromatism | 传感器2 Sensor 2 | 传感器6 Sensor 6 | 传感器7 Sensor 7 | 传感器9 Sensor 9 |
---|---|---|---|---|---|---|---|---|
60 | β-胡萝卜素含量β-Carotene content | -0.948 | -0.959 | -0.904 | 0.915 | 0.923 | 0.870 | 0.894 |
70 | β-胡萝卜素含量β-Carotene content | -0.933 | -0.936 | -0.979 | 0.742 | 0.977 | 0.952 | 0.769 |
80 | β-胡萝卜素含量β-Carotene content | -0.973 | -0.973 | -0.984 | 0.933 | 0.919 | 0.888 | 0.938 |
模型 Model | 60 ℃ | 70 ℃ | 80 ℃ | |||
---|---|---|---|---|---|---|
预测集 | 预测集根均方差 RMSEP | 预测集 | 预测集根均方差 RMSEP | 预测集 | 预测集根均方差 RMSEP | |
机器视觉Machine vision | 0.966 7 | 0.981 2 | 0.978 5 | 0.962 3 | 0.961 2 | 0.956 8 |
电子鼻Electronic nose | 0.938 1 | 0.904 3 | 0.915 4 | 1.395 2 | 0.905 0 | 1.016 6 |
多源融合Multi-source fusion | 0.981 3 | 0.942 3 | 0.985 2 | 0.854 7 | 0.979 5 | 0.924 2 |
Table 4 Prediction results of β-carotene content in different models
模型 Model | 60 ℃ | 70 ℃ | 80 ℃ | |||
---|---|---|---|---|---|---|
预测集 | 预测集根均方差 RMSEP | 预测集 | 预测集根均方差 RMSEP | 预测集 | 预测集根均方差 RMSEP | |
机器视觉Machine vision | 0.966 7 | 0.981 2 | 0.978 5 | 0.962 3 | 0.961 2 | 0.956 8 |
电子鼻Electronic nose | 0.938 1 | 0.904 3 | 0.915 4 | 1.395 2 | 0.905 0 | 1.016 6 |
多源融合Multi-source fusion | 0.981 3 | 0.942 3 | 0.985 2 | 0.854 7 | 0.979 5 | 0.924 2 |
[1] | 白竣文, 周存山, 蔡健荣, 等. 南瓜片真空脉动干燥特性及含水率预测[J]. 农业工程学报, 2017, 33(17): 290-297. |
BAI J W, ZHOU C S, CAI J R, et al. Vacuum pulse drying characteristics and moisture content prediction of pumpkin slices[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 290-297. (in Chinese with English abstract) | |
[2] | LI J, LI Z F, RAGHAVAN G S V, et al. Fuzzy logic control of relative humidity in microwave drying of hawthorn[J]. Journal of Food Engineering, 2021, 310: 110706. |
[3] | 袁越锦, 洪晨, 徐英英, 等. 组合干燥方式下胡萝卜真空脉动蒸汽烫漂工艺优化[J]. 浙江农业学报, 2022, 34(1):163-172. |
YUAN Y J, HONG C, XU Y Y, et al. Optimization of carrot vacuum pulsating steam blanching process under combined drying method[J]. Acta Agriculturae Zhejiangensis, 2022, 34(1):163-172. (in Chinese with English abstract) | |
[4] | DE CARVALHO L M J, GOMES P B, DE OLIVEIRA GODOY R L, et al. Total carotenoid content, α-carotene and β-carotene, of Landrace pumpkins (Cucurbita moschata Duch): a preliminary study[J]. Food Research International, 2012, 47(2): 337-340. |
[5] | LI C Y, CAO Q X, GUO F. A method for color classification of fruits based on machine vision[J]. WSEAS Transactions on Systems, 2009, 8(2): 312-321. |
[6] | ZHU H K, YE Y, HE H F, et al. Evaluation of green tea sensory quality via process characteristics and image information[J]. Food and Bioproducts Processing, 2017, 102: 116-122. |
[7] | CHEN C, LIU B Y, SONG F H, et al. An adaptive fuzzy logic control of green tea fixation process based on image processing technology[J]. Biosystems Engineering, 2022, 215: 1-20. |
[8] | YADAV S P, IBARAKI Y, GUPTA S D. Estimation of the chlorophyll content of micropropagated potato plants using RGB based image analysis[J]. Plant Cell, Tissue and Organ Culture, 2010, 100(2): 183-188. |
[9] | GUPTA S D, IBARAKI Y, PATTANAYAK A K. Development of a digital image analysis method for real-time estimation of chlorophyll content in micropropagated potato plants[J]. Plant Biotechnology Reports, 2013, 7(1): 91-97. |
[10] | SIMKIN A J, UNDERWOOD B A, AULDRIDGE M, et al. Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of β-ionone, a fragrance volatile of Petunia flowers[J]. Plant Physiology, 2004, 136(3): 3504-3514. |
[11] | 徐海霞. 基于机器视觉和电子鼻技术的菠菜新鲜度无损检测研究[D]. 镇江: 江苏大学, 2016. |
XU H X. Nondestructive detection of spinach freshness based on machine vision and electronic nose technology[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract) | |
[12] | 王钊, 李长滨, 王源, 等. 多种蔬菜中β-胡萝卜素含量测定及油脂烹制作用[J]. 中国调味品, 2021, 46(2): 61-64. |
WANG Z, LI C B, WANG Y, et al. Determination of β-carotene content in various vegetables and its oil cooking effect[J]. China Condiment, 2021, 46(2): 61-64. (in Chinese) | |
[13] | SHAHABI M, RAFIEE S, MOHTASEBI S S, et al. Image analysis and green tea color change kinetics during thin-layer drying[J]. Food Science and Technology International, 2014, 20(6): 465-476. |
[14] | LI X Y, LIU Y H, GAO Z J, et al. Computer vision online measurement of shiitake mushroom (Lentinus edodes) surface wrinkling and shrinkage during hot air drying with humidity control[J]. Journal of Food Engineering, 2021, 292: 110253. |
[15] | DAI J W, RAO J Q, WANG D, et al. Process-based drying temperature and humidity integration control enhances drying kinetics of apricot halves[J]. Drying Technology, 2015, 33(3): 365-376. |
[16] | RAGHAVAN G S V, LI Z F, WANG N, et al. Control of microwave drying process through aroma monitoring[J]. Drying Technology, 2010, 28(5): 591-599. |
[17] | SUVARNAKUTA P, DEVAHASTIN S, MUJUMDAR A S. Drying kinetics and β-carotene degradation in carrot undergoing different drying processes[J]. Journal of Food Science, 2005, 70(8): s520-s526. |
[18] | 于海明, 李海源, 张欣悦, 等. 水稻秸秆营养穴盘微波热风耦合干燥动力学模型研究[J]. 农业机械学报, 2020, 51(5):339-348. |
YU H M, LI H Y, ZHANG X Y, et al. Drying kinetic model of microwave coupled with hot air drying of straw-based nutrient seedling-growing bowl tray[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5):339-348. (in Chinese with English abstract) | |
[19] | PESEK C A, WARTHESEN J J. Photodegradation of carotenoids in a vegetable juice system[J]. Journal of Food Science, 1987, 52(3): 744-746. |
[20] | GOLDMAN M, HOREV B, SAGUY I. Decolorization of β-carotene in model systems simulating dehydrated foods. mechanism and kinetic principles[J]. Journal of Food Science, 1983, 48(3): 751-754. |
[21] | DAVEY M W, MELLIDOU I, KEULEMANS W. Considerations to prevent the breakdown and loss of fruit carotenoids during extraction and analysis in Musa[J]. Journal of Chromatography A, 2009, 1216(30): 5759-5762. |
[22] | CHANDLER L A, SCHWARTZ S J. Isomerization and losses of trans-.beta.-carotene in sweet potatoes as affected by processing treatments[J]. Journal of Agricultural and Food Chemistry, 1988, 36(1): 129-133. |
[23] | ACHIR N, RANDRIANATOANDRO V A, BOHUON P, et al. Kinetic study of β-carotene and lutein degradation in oils during heat treatment[J]. European Journal of Lipid Science and Technology, 2010, 112(3): 349-361. |
[24] | HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501. |
[25] | 吴鑫, 宋飞虎, 裴永胜, 等. 基于机器视觉的茶叶微波杀青中品质变化与预测研究[J]. 茶叶科学, 2021, 41(6): 854-864. |
WU X, SONG F H, PEI Y S, et al. Study on the tea quality changes and predictions during the microwave fixation process by machine vision[J]. Journal of Tea Science, 2021, 41(6): 854-864. (in Chinese with English abstract) |
[1] | XIONG Xingwei, WANG Yiqin, TIAN Huaizhi, ZHANG Suqin, GENG Guangdong. Molecular mechanisms of chlorophyll-reduced cotyledon based on transcriptome sequencing in pumpkin [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 90-102. |
[2] | DING Yanling, WANG Pengfei, YANG Chaoyun, ZHOU Xiaonan, ZHAO Zhiyan, ZHANG Yanfeng, SHI Yuan- gang, KANG Xiaolong. Prediction of target genes and tissue expression analysis of miR-144 in cattle [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 471-479. |
[3] | YAN Ning, ZHANG Han, DONG Hongtu, KANG Kai, LUO Bin. Wheat variety recognition method based on same position segmentation of transmitted light and reflected light images [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 590-598. |
[4] | WU Yanjun, HONG Wenying, ZHANG Zhongmei, WU Yao, MIAO Qiang. Epidemic dynamic and prediction model of cucumber powdery mildew under protected cultivation [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 104-111. |
[5] | JI Xunsheng, JIANG Xiaowei, XIA Shengkui. Research on prediction of laying rate by hens based on LSTM-Kalman model [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1730-1739. |
[6] | CHEN Wen, ZHANG Weiwei, SHAO Shuli, FU Xuepeng, HUANG Xin, LI Tie. Expression of miR-423-5p in bovine muscle and predicted target genes [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 785-793. |
[7] | LONG Ming, ZHANG Peng, LIU Yuanlin, BAI Xiaoqin, ZHANG Fumei, TIAN Xiaojing, CAO Hong, ZHOU Xueyan, MA Zhongren, LUO Li, SONG Li, Nurul Izza NORDIN. Identification of functional effects of bovine whey protein based on odor information of mouse feces [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 714-723. |
[8] | GUO Fucheng, JIN Li, SU Qiang, SU Yuxin, LI Fanglin, CHEN Shien, MA Xiaoxia. Prokaryotic expression and purification of PEDV N protein and analysis of B cell antigen epitope [J]. , 2020, 32(5): 762-769. |
[9] | BAO Xiaomin, SHENG Jiawen. Research on automatic identification and counting of insect pests on sticky board [J]. , 2019, 31(9): 1516-1522. |
[10] | MA Lu, KONG Weizhou, WANG Liping, ZHANG Xikang, WANG Cong, LI Peipei, LIU Dunhua. Optimization of processing conditions for venison jerky fermented by response surface methodology and its shelf life prediction [J]. , 2019, 31(12): 2109-2119. |
[11] | TIAN Xiaojing, LONG Ming, WANG Jun, MA Zhongren, WEI Zhenbo, CHEN Shi en, GAO Dandan, DING Bo. Identification of geographical origin for wolfberry by an electronic nose in combination with multivariate analysis [J]. , 2018, 30(9): 1604-1611. |
[12] | YANG Yucen, YANG Lian'an, REN Li, LI Congli, ZHU Qun'e, WANG Tiantai, LI Xinyao. Prediction for spatial distribution of soil organic matter based on random forest model in cultivated area [J]. , 2018, 30(7): 1211-1217. |
[13] | JIANG Yefeng, GUO Xi. Prediction of soil organic matter distribution based on auxiliary variables and regression-radial basis function neural network (R-RBFNN) model [J]. , 2018, 30(4): 640-648. |
[14] | ZHAO Ziyang, LI Wangcheng, ZHANG Yuzheng, WANG Xia. Evaluation on agricultural water and soil resources security in Ningxia based on DPSIR model [J]. , 2017, 29(8): 1336-1346. |
[15] | WANG Qingxi, ZHU Lihua. Protein energy optimization based on cuckoo search algorithm [J]. , 2017, 29(7): 1216-1220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||