Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (5): 1149-1158.DOI: 10.3969/j.issn.1004-1524.20240338
• Food Science • Previous Articles Next Articles
ZHU Xiao(), ZHU Ying, LI Hongjun, CHEN Shanfeng(
)
Received:
2024-04-09
Online:
2025-05-25
Published:
2025-06-11
CLC Number:
ZHU Xiao, ZHU Ying, LI Hongjun, CHEN Shanfeng. Preparation and quality of oat chickpea compound rice by squeezing[J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1149-1158.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240338
原料 Raw material | 淀粉含量 Starch content | 蛋白质含量 Protein content | 水分含量 Moisture content | 可溶性膳食纤维含量 Soluble dietary fiber content | 不可溶性膳食纤维含量 Insoluble dietary fiber content |
---|---|---|---|---|---|
碎糙米Broken brown rice | 70.19 | 7.68 | 12.84 | 2.08 | 4.79 |
燕麦Oats | 48.43 | 12.68 | 11.12 | 5.02 | 17.91 |
鹰嘴豆Chickpea | 44.69 | 19.02 | 9.47 | 4.85 | 14.78 |
Table 1 Basic components of raw materials %
原料 Raw material | 淀粉含量 Starch content | 蛋白质含量 Protein content | 水分含量 Moisture content | 可溶性膳食纤维含量 Soluble dietary fiber content | 不可溶性膳食纤维含量 Insoluble dietary fiber content |
---|---|---|---|---|---|
碎糙米Broken brown rice | 70.19 | 7.68 | 12.84 | 2.08 | 4.79 |
燕麦Oats | 48.43 | 12.68 | 11.12 | 5.02 | 17.91 |
鹰嘴豆Chickpea | 44.69 | 19.02 | 9.47 | 4.85 | 14.78 |
水平 Level | 鹰嘴豆添加量 Proportion of chickpea/% | 挤压温度 Extrusion temperature/℃ | 螺杆转速 Screw speed/ (r·min-1) | 水分含量 Moisture content/% |
---|---|---|---|---|
1 | 5 | 100 | 140 | 20 |
2 | 10 | 120 | 150 | 24 |
3 | 15 | 140 | 160 | 28 |
4 | 20 | 160 | 170 | 32 |
5 | 25 | 180 | 180 | 36 |
Table 2 Factor levels in single factor experiments
水平 Level | 鹰嘴豆添加量 Proportion of chickpea/% | 挤压温度 Extrusion temperature/℃ | 螺杆转速 Screw speed/ (r·min-1) | 水分含量 Moisture content/% |
---|---|---|---|---|
1 | 5 | 100 | 140 | 20 |
2 | 10 | 120 | 150 | 24 |
3 | 15 | 140 | 160 | 28 |
4 | 20 | 160 | 170 | 32 |
5 | 25 | 180 | 180 | 36 |
水平 Level | 螺杆转速 Screw speed/ (r·min-1) | 挤压温度 Extrusion temperature/℃ | 水分含量 Moisture content/% | 鹰嘴豆添加量 Proportion of chickpea/% |
---|---|---|---|---|
-2 | 150 | 130 | 28 | 9 |
-1 | 155 | 135 | 30 | 12 |
0 | 160 | 140 | 32 | 15 |
1 | 165 | 145 | 34 | 18 |
2 | 170 | 150 | 36 | 21 |
Table 3 Design of factors and levels for response surface experiment
水平 Level | 螺杆转速 Screw speed/ (r·min-1) | 挤压温度 Extrusion temperature/℃ | 水分含量 Moisture content/% | 鹰嘴豆添加量 Proportion of chickpea/% |
---|---|---|---|---|
-2 | 150 | 130 | 28 | 9 |
-1 | 155 | 135 | 30 | 12 |
0 | 160 | 140 | 32 | 15 |
1 | 165 | 145 | 34 | 18 |
2 | 170 | 150 | 36 | 21 |
指标(总分) Index(Total score) | 评分标准 Evaluation standard | 得分 Score | |
---|---|---|---|
外观结构Appearance structure(30) | 颜色Color(10) | 颜色均匀,为白色或燕麦色Uniform color, white or oatmeal | 8~10 |
颜色不均匀,偏黄或偏暗Uneven color, slightly yellow or dark | 4~7 | ||
颜色很不均匀,很黄或很黑Very uneven color, very yellow or very black | 0~3 | ||
光泽Gloss(10) | 光泽明显Obvious luster | 8~10 | |
略有光泽Slightly glossy | 4~7 | ||
无光泽Matte | 0~3 | ||
饭粒完整性 Integrity of rice grains(10) | 外形完整,颗粒饱满,大小均匀,米粒基本没有开裂 Complete appearance, full particles with uniform size, basically without cracking rice grains | 8~10 | |
有开裂米粒,颗粒不饱满,大小不均匀 Cracked rice grains, not full particles with nonuniform size | 4~7 | ||
米粒大量开裂,颗粒干瘪,大小很不均匀 Large amount of cracked rice grains, particle shrinkage, very uneven in size | 0~3 | ||
气味Smell(15) | 具有米饭香气和燕麦鹰嘴豆独有香气,香气浓郁,无异味 Unique aroma of oats, chickpeas and rice with a rich aroma and no odor | 11~15 | |
具有米饭独有香气,米饭清香,无明显异味 Unique aroma of rice, fragrant, without obvious odor | 6~10 | ||
米饭香气不明显,有豆腥味,气味复杂Not obvious aroma of rice, beany and complex odor | 0~5 | ||
滋味Taste(20) | 滋味浓厚Rich flavor | 15~20 | |
滋味一般Average taste | 8~14 | ||
滋味较差Poor taste | 0~7 | ||
适口性 Mouthfeel(30) | 口感爽滑,不黏牙,软硬适中,有嚼劲 Smooth taste, non-sticky, moderate softness and hardness, chewy | 21~30 | |
有黏性,基本不黏牙,稍硬或稍软Stickiness, basically non-sticky to teeth, slightly hard or slightly soft | 11~20 | ||
黏牙或无黏性,口感粗糙,米饭疏松或发硬Sticky or non-sticky teeth, rough taste, loose or hard rice | 0~10 | ||
冷饭质地Cold rice texture(5) | 松散有度,硬度适度,黏弹性好Loose and moderately hard, with good viscoelasticity | 4~5 | |
略有结团,稍变硬,黏弹性稍差Slightly clumped, slightly hardened, slightly less viscoelastic | 2~3 | ||
板结,偏硬,黏弹性差Hardened, slightly hard, with poor viscoelasticity | 0~1 |
Table 4 Sensory score criteria of cooked rice
指标(总分) Index(Total score) | 评分标准 Evaluation standard | 得分 Score | |
---|---|---|---|
外观结构Appearance structure(30) | 颜色Color(10) | 颜色均匀,为白色或燕麦色Uniform color, white or oatmeal | 8~10 |
颜色不均匀,偏黄或偏暗Uneven color, slightly yellow or dark | 4~7 | ||
颜色很不均匀,很黄或很黑Very uneven color, very yellow or very black | 0~3 | ||
光泽Gloss(10) | 光泽明显Obvious luster | 8~10 | |
略有光泽Slightly glossy | 4~7 | ||
无光泽Matte | 0~3 | ||
饭粒完整性 Integrity of rice grains(10) | 外形完整,颗粒饱满,大小均匀,米粒基本没有开裂 Complete appearance, full particles with uniform size, basically without cracking rice grains | 8~10 | |
有开裂米粒,颗粒不饱满,大小不均匀 Cracked rice grains, not full particles with nonuniform size | 4~7 | ||
米粒大量开裂,颗粒干瘪,大小很不均匀 Large amount of cracked rice grains, particle shrinkage, very uneven in size | 0~3 | ||
气味Smell(15) | 具有米饭香气和燕麦鹰嘴豆独有香气,香气浓郁,无异味 Unique aroma of oats, chickpeas and rice with a rich aroma and no odor | 11~15 | |
具有米饭独有香气,米饭清香,无明显异味 Unique aroma of rice, fragrant, without obvious odor | 6~10 | ||
米饭香气不明显,有豆腥味,气味复杂Not obvious aroma of rice, beany and complex odor | 0~5 | ||
滋味Taste(20) | 滋味浓厚Rich flavor | 15~20 | |
滋味一般Average taste | 8~14 | ||
滋味较差Poor taste | 0~7 | ||
适口性 Mouthfeel(30) | 口感爽滑,不黏牙,软硬适中,有嚼劲 Smooth taste, non-sticky, moderate softness and hardness, chewy | 21~30 | |
有黏性,基本不黏牙,稍硬或稍软Stickiness, basically non-sticky to teeth, slightly hard or slightly soft | 11~20 | ||
黏牙或无黏性,口感粗糙,米饭疏松或发硬Sticky or non-sticky teeth, rough taste, loose or hard rice | 0~10 | ||
冷饭质地Cold rice texture(5) | 松散有度,硬度适度,黏弹性好Loose and moderately hard, with good viscoelasticity | 4~5 | |
略有结团,稍变硬,黏弹性稍差Slightly clumped, slightly hardened, slightly less viscoelastic | 2~3 | ||
板结,偏硬,黏弹性差Hardened, slightly hard, with poor viscoelasticity | 0~1 |
鹰嘴豆添加量 Proportion of chickpea/% | 感官评分 Sensory score | 硬度 Hardness/g | 咀嚼性 Chewiness/g | 弹性 Springiness |
---|---|---|---|---|
5 | 75.00±1.73 d | 2 010.71±17.83 a | 830.32±28.57 c | 0.75±0.02 c |
10 | 81.33±0.58 c | 1 924.12±17.61 b | 994.30±9.14 a | 0.83±0.02 b |
15 | 88.67±0.58 a | 1 432.16±16.85 c | 972.51±9.94 a | 0.87±0.01 a |
20 | 85.33±1.53 b | 1 384.36±6.92 d | 864.96±3.51 b | 0.81±0.01 b |
25 | 84.67±1.53 b | 1 241.86±25.05 e | 808.76±4.48 c | 0.76±0.01 c |
Table 5 Effects of ingredients on sensory score and texture characteristics of oat chickpea compound rice
鹰嘴豆添加量 Proportion of chickpea/% | 感官评分 Sensory score | 硬度 Hardness/g | 咀嚼性 Chewiness/g | 弹性 Springiness |
---|---|---|---|---|
5 | 75.00±1.73 d | 2 010.71±17.83 a | 830.32±28.57 c | 0.75±0.02 c |
10 | 81.33±0.58 c | 1 924.12±17.61 b | 994.30±9.14 a | 0.83±0.02 b |
15 | 88.67±0.58 a | 1 432.16±16.85 c | 972.51±9.94 a | 0.87±0.01 a |
20 | 85.33±1.53 b | 1 384.36±6.92 d | 864.96±3.51 b | 0.81±0.01 b |
25 | 84.67±1.53 b | 1 241.86±25.05 e | 808.76±4.48 c | 0.76±0.01 c |
挤压温度 Extrusion temperature/℃ | 感官评分 Sensory score | 硬度 Hardness/g | 咀嚼性 Chewiness/g | 弹性 Springiness | 可溶性膳食纤维含量 Soluble dietary fiber content/% | 不溶性膳食纤维含量 Insoluble dietary fiber content/% |
---|---|---|---|---|---|---|
100 | 69.00±3.00 d | 913.89±20.28 d | 530.20±14.80 e | 0.76±0.01 b | 5.77±0.17 b | 6.86±0.13 c |
120 | 81.67±0.58 c | 1 118.16±39.30 c | 749.91±4.30 c | 0.76±0.01 b | 5.92±0.19 ab | 6.91±0.12 c |
140 | 88.67±0.58 a | 1 432.16±16.85 a | 972.51±9.94 a | 0.87±0.01 a | 6.26±0.14 a | 6.44±0.20 d |
160 | 85.00±1.00 b | 1 229.29±14.71 b | 828.21±13.94 b | 0.85±0.02 a | 5.02±0.18 c | 7.69±0.11 b |
180 | 80.67±0.58 c | 920.62±41.84 d | 597.62±7.48 d | 0.85±0.01 a | 3.51±0.08 d | 8.93±0.22 a |
Table 6 Effect of extrusion temperature on sensory score, texture characteristics and dietary fiber content of oat chickpea compound rice
挤压温度 Extrusion temperature/℃ | 感官评分 Sensory score | 硬度 Hardness/g | 咀嚼性 Chewiness/g | 弹性 Springiness | 可溶性膳食纤维含量 Soluble dietary fiber content/% | 不溶性膳食纤维含量 Insoluble dietary fiber content/% |
---|---|---|---|---|---|---|
100 | 69.00±3.00 d | 913.89±20.28 d | 530.20±14.80 e | 0.76±0.01 b | 5.77±0.17 b | 6.86±0.13 c |
120 | 81.67±0.58 c | 1 118.16±39.30 c | 749.91±4.30 c | 0.76±0.01 b | 5.92±0.19 ab | 6.91±0.12 c |
140 | 88.67±0.58 a | 1 432.16±16.85 a | 972.51±9.94 a | 0.87±0.01 a | 6.26±0.14 a | 6.44±0.20 d |
160 | 85.00±1.00 b | 1 229.29±14.71 b | 828.21±13.94 b | 0.85±0.02 a | 5.02±0.18 c | 7.69±0.11 b |
180 | 80.67±0.58 c | 920.62±41.84 d | 597.62±7.48 d | 0.85±0.01 a | 3.51±0.08 d | 8.93±0.22 a |
螺杆转速 Screw speed/ (r·min-1) | 感官评分 Sensory score | 硬度 Hardness/g | 咀嚼性 Chewiness/g | 弹性 Springiness | 可溶性膳食纤维含量 Soluble dietary fiber content/% | 不溶性膳食纤维含量 Insoluble dietary fiber content/% |
---|---|---|---|---|---|---|
140 | 75.00±2.65 c | 800.54±23.76 e | 793.43±18.86 e | 0.76±0.02 d | 5.31±0.21 c | 7.52±0.24 a |
150 | 80.67±1.53 b | 913.25±8.01 c | 911.67±6.37 c | 0.82±0.01 b | 5.76±0.11 b | 7.02±0.17 ab |
160 | 88.67±0.58 a | 1 432.16±16.85 a | 972.51±9.94 a | 0.87±0.01 a | 6.26±0.14 a | 6.44±0.20 b |
170 | 77.00±2.65 bc | 1 039.78±14.57 b | 942.51±11.45 b | 0.86±0.01 a | 5.82±0.21 b | 6.79±0.22 b |
180 | 67.00±4.58 d | 847.93±15.98 d | 894.77±13.65 d | 0.79±0.01 c | 5.57±0.11 bc | 6.87±0.27 b |
Table 7 Effect of screw speed on sensory score, texture characteristics and dietary fiber content of oat chickpea compound rice
螺杆转速 Screw speed/ (r·min-1) | 感官评分 Sensory score | 硬度 Hardness/g | 咀嚼性 Chewiness/g | 弹性 Springiness | 可溶性膳食纤维含量 Soluble dietary fiber content/% | 不溶性膳食纤维含量 Insoluble dietary fiber content/% |
---|---|---|---|---|---|---|
140 | 75.00±2.65 c | 800.54±23.76 e | 793.43±18.86 e | 0.76±0.02 d | 5.31±0.21 c | 7.52±0.24 a |
150 | 80.67±1.53 b | 913.25±8.01 c | 911.67±6.37 c | 0.82±0.01 b | 5.76±0.11 b | 7.02±0.17 ab |
160 | 88.67±0.58 a | 1 432.16±16.85 a | 972.51±9.94 a | 0.87±0.01 a | 6.26±0.14 a | 6.44±0.20 b |
170 | 77.00±2.65 bc | 1 039.78±14.57 b | 942.51±11.45 b | 0.86±0.01 a | 5.82±0.21 b | 6.79±0.22 b |
180 | 67.00±4.58 d | 847.93±15.98 d | 894.77±13.65 d | 0.79±0.01 c | 5.57±0.11 bc | 6.87±0.27 b |
水分含量 Moisture content/% | 感官评分 Sensory score | 硬度 Hardness/g | 咀嚼性 Chewiness/g | 弹性 Springiness | 可溶性膳食纤维含量 Soluble dietary fiber content/% | 不溶性膳食纤维含量 Insoluble dietary fiber content/% |
---|---|---|---|---|---|---|
20 | 77.67±1.15 e | 913.89±10.28 d | 631.44±9.53 e | 0.74±0.01 b | 5.53±0.17 c | 7.10±0.11 a |
24 | 81.33±0.58 d | 1 385.98±3.89 c | 916.76±15.05 c | 0.85±0.03 a | 6.13±0.12 b | 6.65±0.20 ab |
28 | 88.67±0.58 b | 1 432.16±16.85 b | 972.51±9.94 b | 0.87±0.01 a | 6.26±0.14 b | 6.44±0.20 b |
32 | 91.33±1.53 a | 1 606.59±14.92 a | 1 032.40±8.42 a | 0.88±0.01 a | 6.86±0.18 a | 5.85±0.18 c |
36 | 84.67±1.53 c | 1 609.90±16.03 a | 824.04±3.99 d | 0.68±0.04 c | 6.37±0.23 b | 6.26±0.21 bc |
Table 8 Effect of moisture content on sensory score, texture characteristics and dietary fiber content of oat chickpea compound rice
水分含量 Moisture content/% | 感官评分 Sensory score | 硬度 Hardness/g | 咀嚼性 Chewiness/g | 弹性 Springiness | 可溶性膳食纤维含量 Soluble dietary fiber content/% | 不溶性膳食纤维含量 Insoluble dietary fiber content/% |
---|---|---|---|---|---|---|
20 | 77.67±1.15 e | 913.89±10.28 d | 631.44±9.53 e | 0.74±0.01 b | 5.53±0.17 c | 7.10±0.11 a |
24 | 81.33±0.58 d | 1 385.98±3.89 c | 916.76±15.05 c | 0.85±0.03 a | 6.13±0.12 b | 6.65±0.20 ab |
28 | 88.67±0.58 b | 1 432.16±16.85 b | 972.51±9.94 b | 0.87±0.01 a | 6.26±0.14 b | 6.44±0.20 b |
32 | 91.33±1.53 a | 1 606.59±14.92 a | 1 032.40±8.42 a | 0.88±0.01 a | 6.86±0.18 a | 5.85±0.18 c |
36 | 84.67±1.53 c | 1 609.90±16.03 a | 824.04±3.99 d | 0.68±0.04 c | 6.37±0.23 b | 6.26±0.21 bc |
序号 Number | A/ (r·min-1) | B/℃ | C/% | D/% | Y |
---|---|---|---|---|---|
1 | 160 | 140 | 32 | 15 | 76.64 |
2 | 155 | 135 | 30 | 20 | 34.94 |
3 | 165 | 135 | 30 | 20 | 39.09 |
4 | 155 | 145 | 30 | 10 | 43.52 |
5 | 160 | 140 | 32 | 15 | 75.49 |
6 | 160 | 140 | 28 | 15 | 38.92 |
7 | 165 | 145 | 34 | 10 | 51.23 |
8 | 160 | 140 | 32 | 15 | 72.15 |
9 | 165 | 135 | 30 | 10 | 36.98 |
10 | 160 | 140 | 36 | 15 | 70.06 |
11 | 160 | 140 | 32 | 15 | 68.38 |
12 | 165 | 145 | 34 | 20 | 66.34 |
13 | 160 | 140 | 32 | 25 | 62.04 |
14 | 160 | 140 | 32 | 15 | 71.53 |
15 | 155 | 145 | 30 | 20 | 40.82 |
16 | 170 | 140 | 32 | 15 | 43.79 |
17 | 155 | 135 | 30 | 10 | 38.67 |
18 | 160 | 130 | 32 | 15 | 53.62 |
19 | 165 | 135 | 34 | 10 | 50.11 |
20 | 160 | 150 | 32 | 15 | 60.07 |
21 | 165 | 145 | 30 | 10 | 41.17 |
22 | 150 | 140 | 32 | 15 | 46.31 |
23 | 155 | 135 | 34 | 20 | 44.17 |
24 | 160 | 140 | 32 | 5 | 53.58 |
25 | 155 | 135 | 34 | 10 | 60.18 |
26 | 160 | 140 | 32 | 15 | 77.46 |
27 | 165 | 135 | 34 | 20 | 60.53 |
28 | 155 | 145 | 34 | 10 | 60.23 |
29 | 160 | 140 | 32 | 15 | 74.13 |
30 | 160 | 140 | 32 | 15 | 69.69 |
31 | 160 | 140 | 32 | 15 | 70.73 |
32 | 160 | 140 | 32 | 15 | 76.98 |
33 | 155 | 145 | 34 | 20 | 59.26 |
34 | 160 | 140 | 32 | 15 | 74.36 |
35 | 165 | 145 | 30 | 20 | 45.61 |
36 | 160 | 140 | 32 | 15 | 77.07 |
Table 9 Results of response surface test
序号 Number | A/ (r·min-1) | B/℃ | C/% | D/% | Y |
---|---|---|---|---|---|
1 | 160 | 140 | 32 | 15 | 76.64 |
2 | 155 | 135 | 30 | 20 | 34.94 |
3 | 165 | 135 | 30 | 20 | 39.09 |
4 | 155 | 145 | 30 | 10 | 43.52 |
5 | 160 | 140 | 32 | 15 | 75.49 |
6 | 160 | 140 | 28 | 15 | 38.92 |
7 | 165 | 145 | 34 | 10 | 51.23 |
8 | 160 | 140 | 32 | 15 | 72.15 |
9 | 165 | 135 | 30 | 10 | 36.98 |
10 | 160 | 140 | 36 | 15 | 70.06 |
11 | 160 | 140 | 32 | 15 | 68.38 |
12 | 165 | 145 | 34 | 20 | 66.34 |
13 | 160 | 140 | 32 | 25 | 62.04 |
14 | 160 | 140 | 32 | 15 | 71.53 |
15 | 155 | 145 | 30 | 20 | 40.82 |
16 | 170 | 140 | 32 | 15 | 43.79 |
17 | 155 | 135 | 30 | 10 | 38.67 |
18 | 160 | 130 | 32 | 15 | 53.62 |
19 | 165 | 135 | 34 | 10 | 50.11 |
20 | 160 | 150 | 32 | 15 | 60.07 |
21 | 165 | 145 | 30 | 10 | 41.17 |
22 | 150 | 140 | 32 | 15 | 46.31 |
23 | 155 | 135 | 34 | 20 | 44.17 |
24 | 160 | 140 | 32 | 5 | 53.58 |
25 | 155 | 135 | 34 | 10 | 60.18 |
26 | 160 | 140 | 32 | 15 | 77.46 |
27 | 165 | 135 | 34 | 20 | 60.53 |
28 | 155 | 145 | 34 | 10 | 60.23 |
29 | 160 | 140 | 32 | 15 | 74.13 |
30 | 160 | 140 | 32 | 15 | 69.69 |
31 | 160 | 140 | 32 | 15 | 70.73 |
32 | 160 | 140 | 32 | 15 | 76.98 |
33 | 155 | 145 | 34 | 20 | 59.26 |
34 | 160 | 140 | 32 | 15 | 74.36 |
35 | 165 | 145 | 30 | 20 | 45.61 |
36 | 160 | 140 | 32 | 15 | 77.07 |
Fig.1 Response surface of effect of extrusion temperature, screw speed, moisture content and chickpea addition amount on comprehensive score of oat chickpea compound rice a, Effect of extrusion temperature and screw speed on comprehensive score; b, Effect of moisture content and screw speed on comprehensive score; c, Effect of moisture content and extrusion temperature on comprehensive score; d, Effect of chickpea addition amount and screw speed on comprehensive score; e, Effect of chickpea addition amount and moisture content on comprehensive score; f, Effect of chickpea addition amount and extrusion temperature on comprehensive score.
样品 Sample | 硬度 Hardness/g | 咀嚼性 Chewiness/g | 弹性 Springiness | 黏聚性 Cohesiveness | 回复性 Resilience |
---|---|---|---|---|---|
复配米Compound rice | 1 432.16±36.85 b | 972.51±19.94 a | 0.87±0.01 a | 0.73±0.02 a | 0.36±0.02 a |
对照挤压米Extruded rice as control | 1 178.50±14.51 c | 577.02±10.27 c | 0.59±0.02 c | 0.63±0.06 b | 0.25±0.01 d |
市售米Commercial rice | 1 453.37±20.20 b | 645.93±6.24 b | 0.64±0.02 b | 0.60±0.02 b | 0.26±0.01 c |
市售糙米Commercial brown rice | 2 631.26±60.33 a | 992.02±16.46 a | 0.43±0.02 d | 0.45±0.02 c | 0.30±0.02 b |
Table 10 Comparison on texture characteristics of compound rice and other products
样品 Sample | 硬度 Hardness/g | 咀嚼性 Chewiness/g | 弹性 Springiness | 黏聚性 Cohesiveness | 回复性 Resilience |
---|---|---|---|---|---|
复配米Compound rice | 1 432.16±36.85 b | 972.51±19.94 a | 0.87±0.01 a | 0.73±0.02 a | 0.36±0.02 a |
对照挤压米Extruded rice as control | 1 178.50±14.51 c | 577.02±10.27 c | 0.59±0.02 c | 0.63±0.06 b | 0.25±0.01 d |
市售米Commercial rice | 1 453.37±20.20 b | 645.93±6.24 b | 0.64±0.02 b | 0.60±0.02 b | 0.26±0.01 c |
市售糙米Commercial brown rice | 2 631.26±60.33 a | 992.02±16.46 a | 0.43±0.02 d | 0.45±0.02 c | 0.30±0.02 b |
[1] | SLAVIN J L, SANDERS L M, STALLINGS V A. Opportunities to increase whole grain intake within the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC)[J]. Cereal Chemistry, 2023, 100(2): 268-276. |
[2] | KASHINO I, EGUCHI M, MIKI T, et al. Prospective association between whole grain consumption and hypertension: the furukawa nutrition and health study[J]. Nutrients, 2020, 12(4): 902. |
[3] | 谭斌, 翟小童. 我国全谷物产业发展背景、现状与未来[J]. 粮油食品科技, 2024, 32(1): 1-11. |
TAN B, ZHAI X T. The background, development status and its prospect of the industry of whole grain in China[J]. Science and Technology of Cereals, Oils and Foods, 2024, 32(1): 1-11. (in Chinese with English abstract) | |
[4] | 燕声. 水果、全谷物、蔬菜吃得少居前三[N]. 保健时报, 2023-05-18(15). |
[5] | 程景民, 贾彬彬, 贾慧敏, 等. 基于计划行为理论的居民全谷物食品消费意愿影响因素分析[J]. 护理研究, 2023, 37(9): 1517-1521. |
CHENG J M, JIA B B, JIA H M, et al. Analysis of influencing factors of residents' willingness to consume whole grain food based on planned behavior theory[J]. Chinese Nursing Research, 2023, 37(9): 1517-1521. (in Chinese with English abstract) | |
[6] | 刘芬, 周仕慧. 全谷物食品的营养与健康研究[J]. 食品安全导刊, 2023(2): 121-124. |
LIU F, ZHOU S H. Study on nutrition and health of whole grain food[J]. China Food Safety Magazine, 2023(2): 121-124. (in Chinese with English abstract) | |
[7] | 杨书林, 伞惟琳, 任晨刚, 等. 全谷物风味、口感及货架期提升关键技术研究进展[J]. 粮食与饲料工业, 2022(4): 3-6. |
YANG S L, SAN W L, REN C G, et al. Research progress on key technologies for improving flavor, taste and shelf life of whole grains[J]. Cereal & Feed Industry, 2022(4): 3-6. (in Chinese with English abstract) | |
[8] | YU X S, WANG L S, ZHANG J J, et al. Effects of screw speed on the structure and physicochemical properties of extruded reconstituted rice composed of rice starch and glutelin[J]. Food Structure, 2023, 36: 100313. |
[9] | WANG L S, DUAN Y M, TONG L F, et al. Effect of extrusion parameters on the interaction between rice starch and glutelin in the preparation of reconstituted rice[J]. International Journal of Biological Macromolecules, 2023, 225: 277-285. |
[10] | 杜冰, 梁淑如, 程燕锋, 等. 挤压膨化加工过程参数及其影响[J]. 食品与机械, 2008, 24(5): 133-136. |
DU B, LIANG S R, CHENG Y F, et al. Discussion about the extrusion process parameters and their effects[J]. Food & Machinery, 2008, 24(5): 133-136. (in Chinese with English abstract) | |
[11] | 伞惟琳, 杨书林, 任晨刚, 等. 全谷物食品安全、营养功能提升关键技术研究进展[J]. 粮食与饲料工业, 2022(5): 25-28. |
SAN W L, YANG S L, REN C G, et al. Research progress on key technologies for improving whole grain food safety and nutritional function[J]. Cereal & Feed Industry, 2022(5): 25-28. (in Chinese with English abstract) | |
[12] | 刘淑婷, 王颖, 沈琰, 等. 豆基杂粮米稀挤压膨化工艺优化[J]. 食品与机械, 2019, 35(10): 218-222. |
LIU S T, WANG Y, SHEN Y, et al. Optimization of extruded process for bean-based multigrain rice paste[J]. Food & Machinery, 2019, 35(10): 218-222. (in Chinese with English abstract) | |
[13] | 刘艳香, 汪丽萍, 谭斌, 等. 麸胚挤压稳定化处理对全麦挂面品质特性的影响[J]. 食品科学, 2019, 40(19): 156-163. |
LIU Y X, WANG L P, TAN B, et al. Effect of extrusion stabilization of wheat bran and embryo on the properties of whole wheat noodles[J]. Food Science, 2019, 40(19): 156-163. (in Chinese with English abstract) | |
[14] | 李林轩, 李硕, 王晓芳, 等. 碎米综合利用技术探讨[J]. 粮食加工, 2018, 43(1): 30-33. |
LI L X, LI S, WANG X F, et al. Discussion on comprehensive utilization technology of broken rice[J]. Grain Processing, 2018, 43(1): 30-33. (in Chinese) | |
[15] | 孙芝杨, 田其英, 汪菊萍, 等. 鹰嘴豆燕麦饼干的研制[J]. 食品工业, 2023, 44(9): 94-98. |
SUN Z Y, TIAN Q Y, WANG J P, et al. Research of chickpea oat biscuits[J]. The Food Industry, 2023, 44(9): 94-98. (in Chinese with English abstract) | |
[16] | 戚家慧, 陈善峰, 闫玉红, 等. 马齿苋复配米工艺优化及抗氧化活性研究[J]. 食品与机械, 2022, 38(5): 184-190. |
QI J H, CHEN S F, YAN Y H, et al. Optimization of process parameters and antioxidant activity of purslane compound rice[J]. Food & Machinery, 2022, 38(5): 184-190. (in Chinese with English abstract) | |
[17] | 郝威, 许辉, 武青丰, 等. 燕麦中可溶及不可溶膳食纤维含量测定方法的研究[J]. 内蒙古农业大学学报(自然科学版), 2016, 37(4): 136-140. |
HAO W, XU H, WU Q F, et al. Study on the method of trace oats dietary fiber[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2016, 37(4): 136-140. (in Chinese with English abstract) | |
[18] | 高帅. 碎米重组米研制及其对肠道菌群影响的研究[D]. 哈尔滨: 哈尔滨商业大学, 2021. |
GAO S. Study on preparation of reformed broken rice and its effect on intestinal flora[D]. Harbin: Harbin University of Commerce, 2021. (in Chinese with English abstract) | |
[19] | ZHANG S S, YUE M H, YU X W, et al. Interaction between potato starch and barley β-glucan and its influence on starch pasting and gelling properties[J]. International Journal of Biological Macromolecules, 2023, 253: 126840. |
[20] | LI H Y, GILBERT R G. Starch molecular structure: the basis for an improved understanding of cooked rice texture[J]. Carbohydrate Polymers, 2018, 195: 9-17. |
[21] | 王筝, 李梦琴, 林顺顺, 等. 鹰嘴豆全麦粉酥性饼干研制及品质分析表征[J]. 食品安全质量检测学报, 2022, 13(10): 3352-3358. |
WANG Z, LI M Q, LIN S S, et al. Development and quality analysis and characterization of chickpea whole wheat flour crisp biscuit[J]. Journal of Food Safety & Quality, 2022, 13(10): 3352-3358. (in Chinese with English abstract) | |
[22] | MA Q W, YU Y, ZHOU Z K, et al. Effects of different treatments on composition, physicochemical and biological properties of soluble dietary fiber in buckwheat bran[J]. Food Bioscience, 2023, 53: 102517. |
[23] | QIAO C C, ZENG F K, WU N N, et al. Functional, physicochemical and structural properties of soluble dietary fiber from rice bran with extrusion cooking treatment[J]. Food Hydrocolloids, 2021, 121: 107057. |
[24] | ARRIBAS C, CABELLOS B, CUADRADO C, et al. Extrusion effect on proximate composition, starch and dietary fibre of ready-to-eat products based on rice fortified with carob fruit and bean[J]. LWT, 2019, 111: 387-393. |
[25] | QIAO H Z, SHAO H M, ZHENG X J, et al. Modification of sweet potato (Ipomoea batatas Lam.) residues soluble dietary fiber following twin-screw extrusion[J]. Food Chemistry, 2021, 335: 127522. |
[26] | 肖志刚, 元沅, 高岩, 等. 不同处理方式对豆渣可溶性膳食纤维得率及理化特性的影响[J]. 食品安全质量检测学报, 2023, 14(21): 35-43. |
XIAO Z G, YUAN Y, GAO Y, et al. Effects of different treated methods on the soluble dietary fiber yield and physicochemical properties of soybean residue[J]. Journal of Food Safety & Quality, 2023, 14(21): 35-43. (in Chinese with English abstract) | |
[27] | ALTAF U, HUSSAIN S Z, QADRI T, et al. Investigation on mild extrusion cooking for development of snacks using rice and chickpea flour blends[J]. Journal of Food Science and Technology, 2021, 58(3): 1143-1155. |
[28] | DAS A B, GOUD V V, DAS C. Influence of extrusion cooking on phytochemical, physical and sorption isotherm properties of rice extrudate infused with microencapsulated anthocyanin[J]. Food Science and Biotechnology, 2020, 30(1): 65-76. |
[29] | 戚家慧. 马齿苋复配米加工工艺及品质研究[D]. 淄博: 山东理工大学, 2022. |
QI J H. Study on processing technology and quality of purslane compound rice[D]. Zibo: Shandong University of Technology, 2022. (in Chinese with English abstract) | |
[30] | 李宗泽, 靳学远, 段君, 等. 双螺杆挤压对灰枣枣渣膳食纤维理化及结构特性的影响[J]. 中国食品添加剂, 2022, 33(10): 47-51. |
LI Z Z, JIN X Y, DUAN J, et al. Effect of twin-screw extrusion modification on physical, chemical and structural characteristics of dietary fiber from Ziziphus jujuba cv.Huizao pomace[J]. China Food Additives, 2022, 33(10): 47-51. (in Chinese with English abstract) | |
[31] | HU Y Y, LI C M, TAN Y B, et al. Insight of rheology, water distribution and in vitro digestive behavior of starch based-emulsion gel: impact of potato starch concentration[J]. Food Hydrocolloids, 2022, 132: 107859. |
[32] | MARBOH V, MAHANTA C L. Rheological and textural properties of sohphlang (Flemingia vestita) starch gels as affected by heat moisture treatment and annealing[J]. Food Chemistry Advances, 2023, 3: 100542. |
[33] | HE H Z, ZHANG Y Y, HONG Y, et al. Effects of hydrocolloids on corn starch retrogradation[J]. Starch, 2015, 67(3/4): 348-354. |
[34] | HAN X, LIANG Q F, RASHID A, et al. The effects of different hydrocolloids on lotus root starch gelatinization and gels properties[J]. International Journal of Biological Macromolecules, 2024, 257: 128562. |
[1] | ZHU Yuanyuan, HAN Yanchao, LIU Ruiling, DENG Shanggui, CHEN Huizhi, FANG Xiangjun, WU Weijie, GAO Haiyan. Process optimization and quality analysis of crab flavor sausage [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 920-933. |
[2] | QIAO Huiru, FANG Xiangjun, WU Weijie, LIU Ruiling, CHEN Hangjun, DENG Shanggui, SHA Hao, GAO Haiyan. Process optimization and quality analysis of composite lactic acid bacteria fermented beverage with blueberries and Dendrobium officinale leaves [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 654-666. |
[3] | LIU Xun, XIA Qile, LI Yanpo, WANG Yangguang, LU Shengmin. Optimization of extraction process for soluble and insoluble dietary fibers from Ougan (Citrus suavissima Hort. ex Tanaka) pomace and the differences between their physicochemical properties and functional characteristics [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 189-202. |
[4] | ZHAO Xiaoliang, LU Yun, KANG Xingxing, LONG Zeyu, ZHENG Xiaojie. Extraction, structural characterization and antioxidant activity of polysaccharide from Dendrobium officinale in Yandang Mountain, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1898-1908. |
[5] | YANG Zihan, WU Weijie, GAO Yuan, LIU Ruiling, SHENTU Xuping, GAO Haiyan, CHEN Hangjun. Preparation and efficacy evaluation of lotus root relieving alcoholism functional gel fudge [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 404-415. |
[6] | ZHANG Xiwen, GUO Xiaonong, WANG Zexing, WANG Yaling. Optimization of fermentation process of quinoa straw fermented feed with different compound probiotics [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2818-2829. |
[7] | PAN Xujie, LIU Ruiling, DENG Shanggui, WU Weijie, CHEN Hangjun, GAO Haiyan. Optimization of process conditions and volatile flavor components analysis of bayberry pulp fermented by lactic acid bacteria [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1502-1512. |
[8] | ZHOU Qiang, HAN Yanchao, WU Weijie, DING Yuting, SHAO Ping, TONG Chuan, GAO Haiyan. Optimization of preparation process of walnut (Carya cathayensis Sarg.) oil gel [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2390-2396. |
[9] | LU Wenjing, CHEN Di, YE Qin, CHEN Yidan, ZHAO Wensheng, XIAO Chaogeng. Development of dietary fiber pork floss for children [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2137-2144. |
[10] | WU Weicheng, DAI Jianbo, CAO Yan, XIA Qile, CHEN Jianbing, MENG Xianghe. Effects of physical modification on content, polysaccharide composition and structure of dietary fiber in sweet potato peels [J]. , 2020, 32(3): 490-498. |
[11] | CAO Yan, FAN Ming, TONG Chuang, LU Shengmin, YANG Ying, XING Jianrong, ZHENG Meiyu, TANG Weimin, LIU Zhe. Improving soluble dietary fiber content of citrus peel and pomace by fermentation with mixed strains combined with two-stage temperature control [J]. , 2019, 31(3): 474-479. |
[12] | FAN Ming, XIANG Lu, LIU Zhe, LU Shengmin. Optimization of ultrasonic-assisted technology on mulberry residue extracts with in vitro hypoglycemic activity [J]. , 2019, 31(3): 480-486. |
[13] | LU Guo-ying;ZHANG Zuo-fa;PAN Hui-juan;FAN Lei-fa*. Research advances on mushroom dietary fiber [J]. , 2011, 23(2): 0-426. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||