Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (9): 1958-1968.DOI: 10.3969/j.issn.1004-1524.20240542
• Food Science • Previous Articles Next Articles
LI Huaxin1,2(
), YANG Xuankang1, CHEN Ying1,2, WU Xiaoting2, LIU Silian2, YANG Zhong3, ZHOU Chenggang3, GAO Dandan1,2,*(
)
Received:2024-06-22
Online:2025-09-25
Published:2025-10-15
Contact:
GAO Dandan
CLC Number:
LI Huaxin, YANG Xuankang, CHEN Ying, WU Xiaoting, LIU Silian, YANG Zhong, ZHOU Chenggang, GAO Dandan. Optimization of the preparation process and separation purification of antioxidant peptides from oat bran protein[J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1958-1968.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240542
| 水平 Levels | 各因素的设定值Setting value of factors | |||
|---|---|---|---|---|
| (A)燕麦麸皮蛋白质量分数 Mass fraction of oat bran protein/% | (B)pH值 pH value | (C)酶解温度 Enzymolysis temperature/℃ | (D)酶解时间 Enzymolysis time/h | |
| -1 | 5.0 | 7.0 | 40 | 4.0 |
| 0 | 6.0 | 7.5 | 45 | 4.5 |
| 1 | 7.0 | 8.0 | 50 | 5.0 |
Table 1 Response surface test factor levels
| 水平 Levels | 各因素的设定值Setting value of factors | |||
|---|---|---|---|---|
| (A)燕麦麸皮蛋白质量分数 Mass fraction of oat bran protein/% | (B)pH值 pH value | (C)酶解温度 Enzymolysis temperature/℃ | (D)酶解时间 Enzymolysis time/h | |
| -1 | 5.0 | 7.0 | 40 | 4.0 |
| 0 | 6.0 | 7.5 | 45 | 4.5 |
| 1 | 7.0 | 8.0 | 50 | 5.0 |
Fig.1 Effect of enzymolysis time on degree of hydrolysis and DPPH free radical scavenging rate The values marked without the same lowercase letter indicate the significant(p<0.05) difference. The same as below.
| 序号 Number | 各因素的水平Level of factors | DPPH自由基清除率 DPPH free radical scavenging rate/% | |||
|---|---|---|---|---|---|
| A | B | C | D | ||
| 1 | -1 | -1 | 0 | 0 | 66.52±0.63 |
| 2 | 1 | -1 | 0 | 0 | 67.24±0.72 |
| 3 | -1 | 1 | 0 | 0 | 65.13±0.89 |
| 4 | 1 | 1 | 0 | 0 | 64.31±0.74 |
| 5 | 0 | 0 | -1 | -1 | 60.13±0.66 |
| 6 | 0 | 0 | 1 | -1 | 67.39±0.88 |
| 7 | 0 | 0 | -1 | 1 | 65.82±0.81 |
| 8 | 0 | 0 | 1 | 1 | 63.09±0.79 |
| 9 | -1 | 0 | 0 | -1 | 62.89±0.81 |
| 10 | 1 | 0 | 0 | -1 | 65.47±0.74 |
| 11 | -1 | 0 | 0 | 1 | 66.89±0.77 |
| 12 | 1 | 0 | 0 | 1 | 63.24±0.69 |
| 13 | 0 | -1 | -1 | 0 | 68.35±0.89 |
| 14 | 0 | 1 | -1 | 0 | 60.26±0.85 |
| 15 | 0 | -1 | 1 | 0 | 63.09±0.87 |
| 16 | 0 | 1 | 1 | 0 | 69.81±0.68 |
| 17 | -1 | 0 | -1 | 0 | 64.47±0.73 |
| 18 | 1 | 0 | -1 | 0 | 63.66±0.76 |
| 19 | -1 | 0 | 1 | 0 | 65.05±0.65 |
| 20 | 1 | 0 | 1 | 0 | 66.21±0.87 |
| 21 | 0 | -1 | 0 | -1 | 66.45±0.81 |
| 22 | 0 | 1 | 0 | -1 | 63.29±0.85 |
| 23 | 0 | -1 | 0 | 1 | 66.03±0.64 |
| 24 | 0 | 1 | 0 | 1 | 64.28±0.63 |
| 25 | 0 | 0 | 0 | 0 | 73.24±0.74 |
| 26 | 0 | 0 | 0 | 0 | 73.89±0.79 |
| 27 | 0 | 0 | 0 | 0 | 74.31±0.84 |
| 28 | 0 | 0 | 0 | 0 | 73.26±0.82 |
| 29 | 0 | 0 | 0 | 0 | 72.80±0.75 |
Table 2 Response surface test design and test results
| 序号 Number | 各因素的水平Level of factors | DPPH自由基清除率 DPPH free radical scavenging rate/% | |||
|---|---|---|---|---|---|
| A | B | C | D | ||
| 1 | -1 | -1 | 0 | 0 | 66.52±0.63 |
| 2 | 1 | -1 | 0 | 0 | 67.24±0.72 |
| 3 | -1 | 1 | 0 | 0 | 65.13±0.89 |
| 4 | 1 | 1 | 0 | 0 | 64.31±0.74 |
| 5 | 0 | 0 | -1 | -1 | 60.13±0.66 |
| 6 | 0 | 0 | 1 | -1 | 67.39±0.88 |
| 7 | 0 | 0 | -1 | 1 | 65.82±0.81 |
| 8 | 0 | 0 | 1 | 1 | 63.09±0.79 |
| 9 | -1 | 0 | 0 | -1 | 62.89±0.81 |
| 10 | 1 | 0 | 0 | -1 | 65.47±0.74 |
| 11 | -1 | 0 | 0 | 1 | 66.89±0.77 |
| 12 | 1 | 0 | 0 | 1 | 63.24±0.69 |
| 13 | 0 | -1 | -1 | 0 | 68.35±0.89 |
| 14 | 0 | 1 | -1 | 0 | 60.26±0.85 |
| 15 | 0 | -1 | 1 | 0 | 63.09±0.87 |
| 16 | 0 | 1 | 1 | 0 | 69.81±0.68 |
| 17 | -1 | 0 | -1 | 0 | 64.47±0.73 |
| 18 | 1 | 0 | -1 | 0 | 63.66±0.76 |
| 19 | -1 | 0 | 1 | 0 | 65.05±0.65 |
| 20 | 1 | 0 | 1 | 0 | 66.21±0.87 |
| 21 | 0 | -1 | 0 | -1 | 66.45±0.81 |
| 22 | 0 | 1 | 0 | -1 | 63.29±0.85 |
| 23 | 0 | -1 | 0 | 1 | 66.03±0.64 |
| 24 | 0 | 1 | 0 | 1 | 64.28±0.63 |
| 25 | 0 | 0 | 0 | 0 | 73.24±0.74 |
| 26 | 0 | 0 | 0 | 0 | 73.89±0.79 |
| 27 | 0 | 0 | 0 | 0 | 74.31±0.84 |
| 28 | 0 | 0 | 0 | 0 | 73.26±0.82 |
| 29 | 0 | 0 | 0 | 0 | 72.80±0.75 |
| 变异源 Sources | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F value | p值 p value | 显著性 Significance |
|---|---|---|---|---|---|---|
| 总模型Model | 422.65 | 14 | 30.19 | 106.36 | <0.000 1 | ** |
| A | 0.056 | 1 | 0.056 | 0.20 | 0.663 6 | |
| B | 9.36 | 1 | 9.36 | 32.99 | <0.000 1 | ** |
| C | 11.90 | 1 | 11.90 | 41.92 | <0.000 1 | ** |
| D | 1.16 | 1 | 1.16 | 4.08 | 0.062 8 | |
| AB | 0.59 | 1 | 0.59 | 2.09 | 0.170 4 | |
| AC | 0.97 | 1 | 2.21 | 3.42 | 0.085 7 | |
| AD | 9.70 | 1 | 9.70 | 34.18 | <0.000 1 | ** |
| BC | 54.83 | 1 | 54.83 | 193.18 | <0.000 1 | ** |
| BD | 0.50 | 1 | 0.50 | 1.75 | 0.207 0 | |
| CD | 24.95 | 1 | 24.95 | 87.90 | <0.000 1 | ** |
| A2 | 107.78 | 1 | 107.78 | 379.71 | <0.000 1 | ** |
| B2 | 84.83 | 1 | 84.83 | 298.84 | <0.000 1 | ** |
| C2 | 133.99 | 1 | 133.99 | 472.06 | <0.000 1 | ** |
| D2 | 151.95 | 1 | 151.95 | 535.33 | <0.000 1 | ** |
| 残差Residual | 3.97 | 14 | 0.28 | |||
| 失拟项Lack of fit | 2.55 | 10 | 0.26 | 0.72 | 0.696 1 | |
| 误差项Pure error | 1.42 | 4 | 0.36 | |||
| 总和Cor total | 426.62 | 28 | ||||
| R2 | 0.990 7 | 0.981 4 |
Table 3 Results of variance analysis of quadratic multinomial simulation
| 变异源 Sources | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F value | p值 p value | 显著性 Significance |
|---|---|---|---|---|---|---|
| 总模型Model | 422.65 | 14 | 30.19 | 106.36 | <0.000 1 | ** |
| A | 0.056 | 1 | 0.056 | 0.20 | 0.663 6 | |
| B | 9.36 | 1 | 9.36 | 32.99 | <0.000 1 | ** |
| C | 11.90 | 1 | 11.90 | 41.92 | <0.000 1 | ** |
| D | 1.16 | 1 | 1.16 | 4.08 | 0.062 8 | |
| AB | 0.59 | 1 | 0.59 | 2.09 | 0.170 4 | |
| AC | 0.97 | 1 | 2.21 | 3.42 | 0.085 7 | |
| AD | 9.70 | 1 | 9.70 | 34.18 | <0.000 1 | ** |
| BC | 54.83 | 1 | 54.83 | 193.18 | <0.000 1 | ** |
| BD | 0.50 | 1 | 0.50 | 1.75 | 0.207 0 | |
| CD | 24.95 | 1 | 24.95 | 87.90 | <0.000 1 | ** |
| A2 | 107.78 | 1 | 107.78 | 379.71 | <0.000 1 | ** |
| B2 | 84.83 | 1 | 84.83 | 298.84 | <0.000 1 | ** |
| C2 | 133.99 | 1 | 133.99 | 472.06 | <0.000 1 | ** |
| D2 | 151.95 | 1 | 151.95 | 535.33 | <0.000 1 | ** |
| 残差Residual | 3.97 | 14 | 0.28 | |||
| 失拟项Lack of fit | 2.55 | 10 | 0.26 | 0.72 | 0.696 1 | |
| 误差项Pure error | 1.42 | 4 | 0.36 | |||
| 总和Cor total | 426.62 | 28 | ||||
| R2 | 0.990 7 | 0.981 4 |
Fig.5 Surface map of the interaction between mass fraction of oat bran protein(A), pH value(B), enzymolysis temperature(C) and enzymolysis time(D) on DPPH free radical scavenging rate a is the interaction curve graph between mass fraction of oat bran protein and pH value (AB); b is the interaction curve graph between mass fraction of oat bran protein and enzymolysis temperature (AC); c is the interaction curve graph between mass fraction of oat bran protein and enzymolysis time (AD); d is the interaction curve graph between pH value and enzymolysis temperature (BC); e is the interaction curve graph between pH value and enzymolysis time (BD); f is the interaction curve graph between enzymolysis temperature and enzymolysis time (CD).
| 组 Group | 自由基清除能力Free radical scavenging ability/% | ||
|---|---|---|---|
| DPPH自由基 DPPH radical | 羟基自由基 Hydroxyl radical | 超氧自由基 Superoxide radical | |
| F1 | 65.80±0.82 d | 45.90±0.94 d | 61.20±0.91 d |
| F2 | 72.60±0.62 c | 62.80±1.41 b | 68.90±1.24 b |
| F3 | 78.90±1.02 b | 75.30±0.47 a | 76.40±0.93 a |
| F4 | 81.50±1.08 a | 76.10±0.92 a | 76.40±0.47 a |
| F5 | 73.70±0.85 c | 59.40±0.95 c | 65.90±0.89 c |
Table 4 Antioxidant activity of ultrafiltration fractions and enzymatic digests
| 组 Group | 自由基清除能力Free radical scavenging ability/% | ||
|---|---|---|---|
| DPPH自由基 DPPH radical | 羟基自由基 Hydroxyl radical | 超氧自由基 Superoxide radical | |
| F1 | 65.80±0.82 d | 45.90±0.94 d | 61.20±0.91 d |
| F2 | 72.60±0.62 c | 62.80±1.41 b | 68.90±1.24 b |
| F3 | 78.90±1.02 b | 75.30±0.47 a | 76.40±0.93 a |
| F4 | 81.50±1.08 a | 76.10±0.92 a | 76.40±0.47 a |
| F5 | 73.70±0.85 c | 59.40±0.95 c | 65.90±0.89 c |
| [1] | 张亚琨, 张美莉, 郭新月. 微粉碎对燕麦麸皮功能性成分及抗氧化性的影响[J]. 中国食品学报, 2021, 21(11): 22-28. |
| ZHANG Y K, ZHANG M L, GUO X Y. Effect of micronization on the functional components and antioxidant properties in oat bran[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(11): 22-28. (in Chinese with English abstract) | |
| [2] | 李琳琳. 燕麦球蛋白的凝胶特性研究[D]. 福州: 福州大学, 2016. |
| LI L L. Study on gel properties of oat globulin[D]. Fuzhou: Fuzhou University, 2016. (in Chinese with English abstract) | |
| [3] | 师园园, 史海慧, 谭秀环, 等. 燕麦麸油提取工艺及功能特性的研究进展[J]. 粮食加工, 2018, 43(4): 64-67. |
| SHI Y Y, SHI H H, TAN X H, et al. Research progress on extraction technology and functional properties of oat bran oil[J]. Grain Processing, 2018, 43(4): 64-67. (in Chinese with English abstract) | |
| [4] | ZHONG L, MA N, WU Y L, et al. Gastrointestinal fate and antioxidation of β-carotene emulsion prepared by oat protein isolate-Pleurotus ostreatus β-glucan conjugate[J]. Carbohydrate Polymers, 2019, 221: 10-20. |
| [5] | 陈伟, 陈海燕, 黄开华, 等. 北冬虫夏草酒酿果冻制作工艺的研究[J]. 上海农业科技, 2017(2): 12-13. |
| CHEN W, CHEN H Y, HUANG K H, et al. Study on the processing technology of Cordyceps militaris fermented jelly[J]. Shanghai Agricultural Science and Technology, 2017(2): 12-13. (in Chinese) | |
| [6] | 张正哲. 林蛙油多肽的制备及其活性研究[D]. 长春: 吉林大学, 2018. |
| ZHANG Z Z. Study on preparation and activity of polypeptide from Rana chensinensis oil[D]. Changchun: Jilin University, 2018. (in Chinese with English abstract) | |
| [7] | LI Y, LI J R, CHENG C X, et al. Study on the in silico screening and characterization, inhibition mechanisms, zinc-chelate activity, and stability of ACE-inhibitory peptides identified in naked oat bran albumin hydrolysates[J]. Foods, 2023, 12(11): 2268. |
| [8] | 于笛, 周伟, 马萍, 等. 双酶分段水解制备燕麦麸蛋白肽工艺优化及抗炎活性研究[J]. 中国食品添加剂, 2018, 29(8): 157-165. |
| YU D, ZHOU W, MA P, et al. Optimization of oat bran peptide and anti-inflammatory activity prepared by dual enzyme segment hydrolysis[J]. China Food Additives, 2018, 29(8): 157-165. (in Chinese with English abstract) | |
| [9] | SUN C Z, SHAN Y W, TANG X, et al. Effects of enzymatic hydrolysis on physicochemical property and antioxidant activity of mulberry (Morus atropurpurea Roxb.) leaf protein[J]. Food Science & Nutrition, 2021, 9(10): 5379-5390. |
| [10] | 马洪鑫, 袁治浩, 刘洪海, 等. 比较不同方法提取藜麦蛋白[J]. 食品安全质量检测学报, 2021, 12(5): 1890-1898. |
| MA H X, YUAN Z H, LIU H H, et al. Comparison of different extraction methods of quinoa protein[J]. Journal of Food Safety & Quality, 2021, 12(5): 1890-1898. (in Chinese with English abstract) | |
| [11] | 赵梦潇, 张钰璇, 魏晨佳, 等. 碱性蛋白酶水解牛血清蛋白工艺研究[J]. 今日畜牧兽医, 2022, 38(8): 1-4. |
| ZHAO M X, ZHANG Y X, WEI C J, et al. Study on hydrolysis of bovine serum albumin by alkaline protease[J]. Today Animal Husbandry and Veterinary Medicine, 2022, 38(8): 1-4. (in Chinese) | |
| [12] | 王淑敏. 脱酰胺对小麦面筋蛋白酶解敏感性及热诱导凝胶性质的影响[D]. 合肥: 合肥工业大学, 2018. |
| WANG S M. Effect of deamidation on proteolysis sensitivity and heat-induced gel properties of wheat gluten[D]. Hefei: Hefei University of Technology, 2018. (in Chinese with English abstract) | |
| [13] | LIANG Y K, FAROOQ M U, HU Y J, et al. Study on stability and antioxidant activity of red anthocyanidin glucoside rich hybrid rice, its nutritional and physicochemical characteristics[J]. Food Science and Technology Research, 2018, 24(4): 687-696. |
| [14] | TAO J, ZHAO Y Q, CHI C F, et al. Bioactive peptides from cartilage protein hydrolysate of spotless smoothhound and their antioxidant activity in vitro[J]. Marine Drugs, 2018, 16(4): 100. |
| [15] | 柯义强. 发酵法制备牦牛乳酪蛋白抗氧化肽的研究[D]. 兰州: 西北民族大学, 2021. |
| KE Y Q. Study on preparation of antioxidant peptides from yak cheese protein by fermentation[D]. Lanzhou: Northwest University for Nationalities, 2021. (in Chinese with English abstract) | |
| [16] | 郭鹏辉, 高丹丹, 常生华, 等. 双酶法水解苜蓿蛋白制备ACE抑制肽的工艺条件优化[J]. 草业科学, 2020, 37(8): 1627-1637. |
| GUO P H, GAO D D, CHANG S H, et al. Optimizing double-enzymatic hydrolysis conditions of alfalfa protein for the preparation of ACE inhibitory peptides[J]. Pratacultural Science, 2020, 37(8): 1627-1637. (in Chinese with English abstract) | |
| [17] | 吴登宇, 李昕宇, 韦体, 等. 响应面法优化马铃薯蛋白水解工艺及其抗氧化活性研究[J]. 中国食品添加剂, 2023, 34(8): 61-69. |
| WU D Y, LI X Y, WEI T, et al. Optimization of potato protein hydrolysis process by response surface methodology and its antioxidant activity[J]. China Food Additives, 2023, 34(8): 61-69. (in Chinese with English abstract) | |
| [18] | 张梦雪, 叶静静, 高子鑫, 等. 双酶法制备条斑紫菜酶解液工艺优化及抗氧化、抗疲劳活性研究[J]. 中国调味品, 2023, 48(7): 7-13. |
| ZHANG M X, YE J J, GAO Z X, et al. Optimization of process of Porphyra yezoensis enzymatic hydrolysate prepared by double-enzyme method and study on its antioxidant and anti-fatigue activities[J]. China Condiment, 2023, 48(7): 7-13. (in Chinese with English abstract) | |
| [19] | 周雅情, 王莹, 王昱沣. 牛排菇多肽的酶解工艺优化[J]. 食品研究与开发, 2023, 44(14): 169-174. |
| ZHOU Y Q, WANG Y, WANG Y F. Optimization of enzymatic hydrolysis of fistulln Hepatica polypeptides[J]. Food Research and Development, 2023, 44(14): 169-174. (in Chinese with English abstract) | |
| [20] | 刘欣, 刘昆仑. 富硒花生降胆固醇活性肽的制备工艺优化及活性研究[J]. 中国油脂, 2024, 49(12):113-119. |
| LIU X, LIU K L. Optimization of preparation process and activity for selenium-enriched peanut peptides with cholesterol-lowering activity[J]. China Oils and Fats, 2024, 49(12):113-119. (in Chinese with English abstract) | |
| [21] | GAO D D, CHEN H, LI H X, et al. Extraction, structural characterization, and antioxidant activity of polysaccharides derived from Arctium lappa L[J]. Frontiers in Nutrition, 2023, 10: 1149137. |
| [22] | GUO P H, CHEN H, MA J P, et al. Enzyme-assisted extraction, characterization, and in vitro antioxidant activity of polysaccharides from Potentilla anserina L[J]. Frontiers in Nutrition, 2023, 10: 1216572. |
| [23] | 王昊乾, 刘怡婷, 张静雯, 等. 乳清蛋白水解产物中抗氧化肽的分离纯化及应用[J]. 中国食品学报, 2023, 23(4): 35-47. |
| WANG H Q, LIU Y T, ZHANG J W, et al. Isolation, purification and applications of antioxidant peptides from whey protein hydrolysis[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(4): 35-47. (in Chinese with English abstract) | |
| [24] | 张倩. 榛蘑肽的制备、分离纯化及其抗氧化活性研究[D]. 长春: 吉林农业大学, 2023. |
| ZHANG Q. Preparation, purification and antioxidant activity of hazelnut peptide[D]. Changchun: Jilin Agricultural University, 2023. (in Chinese with English abstract) | |
| [25] | 于梦怡, 刘世林, 黄志远, 等. 青刺果抗氧化肽的分离纯化、结构鉴定及其分子对接解析[J]. 食品科学技术学报, 2024, 42(2): 109-119. |
| YU M Y, LIU S L, HUANG Z Y, et al. Isolation, purification, structure identification and molecular docking analysis of antioxidant peptide from Prinsepia utilis Royle[J]. Journal of Food Science and Technology, 2024, 42(2): 109-119. (in Chinese with English abstract) | |
| [26] | 孙天颖, 程红, 张明站, 等. 玉米胚芽脱脂粕水解物的分离及抗氧化性质研究[J]. 中国调味品, 2020, 45(9): 25-28. |
| SUN T Y, CHENG H, ZHANG M Z, et al. Separation and antioxidant properties of hydrolysates from defatted corn germ meal[J]. China Condiment, 2020, 45(9): 25-28. (in Chinese with English abstract) | |
| [27] | 吴宝森. 诺邓火腿抗氧化肽分离纯化及其特性研究[D]. 昆明: 云南农业大学, 2017. |
| WU B S. Isolation, purification and characterization of antioxidant peptides from Nuodeng ham[D]. Kunming: Yunnan Agricultural University, 2017. (in Chinese with English abstract) | |
| [28] | 张恒慧, 张志军, 陈士国, 等. 紫苏粕蛋白抗氧化活性肽的制备、分离纯化及序列鉴定[J]. 中国食品学报, 2023, 23(9): 347-355. |
| ZHANG H H, ZHANG Z J, CHEN S G, et al. Preparation, isolation, purification and sequence identification of antioxidant peptide from Perilla meal protein[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(9): 347-355. (in Chinese with English abstract) | |
| [29] | 张丝甜. 玉米胚芽抗氧化肽的分离纯化与结构鉴定及体外模拟消化吸收的研究[D]. 长春: 吉林大学, 2019. |
| ZHANG S T. Isolation, purification, structural identification and simulated digestion and absorption of antioxidant peptides from corn germ[D]. Changchun: Jilin University, 2019. (in Chinese with English abstract) | |
| [30] | 赵侠, 李燕, 孙慧敏, 等. 脱脂南极磷虾粉中降血糖与抗氧化肽的分离纯化与鉴定[J]. 上海海洋大学学报, 2023, 32(6): 1155-1164. |
| ZHAO X, LI Y, SUN H M, et al. Purification and identification of antidiabetogenic and antioxidant peptide from defatted Antarctic krill powder hydrolysates[J]. Journal of Shanghai Ocean University, 2023, 32(6): 1155-1164. (in Chinese with English abstract) | |
| [31] | 岳阳. 大米抗氧化肽的制备及其抗衰老功能研究[D]. 杭州: 浙江大学, 2021. |
| YUE Y. Study on preparation and anti-aging function of antioxidant peptides from rice[D]. Hangzhou: Zhejiang University, 2021. (in Chinese with English abstract) |
| [1] | YANG Shen\|ming1, WANG Bo1, WANG Zhen\|ji1,2,*, LIU Qiang1. Optimization of extraction technology of total flavonoids in Parochetus communis and the antioxidative effects [J]. , 2015, 27(2): 278-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||