[1] 陈庆富. 荞麦属植物科学[M]. 北京: 科学出版社, 2012: 5-55. [2] WEISSKOPF A, FULLER D Q. Buckwheat: Origins and development[M]// Encyclopedia of Global Archaeology. New York: Springer, 2014: 1025-1028. [3] 赵佐成, 周明德, 王中仁, 等. 中国苦荞麦及其近缘种的遗传多样性研究[J]. 遗传学报, 2002, 29(8): 723-734. ZHAO Z C, ZHOU M D,WANG Z R. Genetic diversity and differentiation of Fagopyrum tataricum and its related species in China[J]. Acta Genetica Sinica , 2002, 29(8): 723-734. (in Chinese with English abstract) [4] AHMED A, KHALID N, AHMED A, et al. Phytochemicals and biofunctional properties of buckwheat: a review[J]. The Journal of Agricultural Science , 2014, 152(3): 349-369. [5] 林汝法. 苦荞举要[M]. 北京: 中国农业科技出版社, 2013, 142-261. [6] JACQUEMART A L, LEDENT J F O, QUINET M, et al. Is buckwheat ( Fagopyrum esculentum Moench) still a valuable crop today?[J]. European Journal of Plant Science & Biotechnology , 2012, 6(Special issue 2): 1-10. [7] TOMOTAKE H, KAYASHITA J, KATO N. Hypolipidemic activity of common ( Fagopyrum esculentum Moench) and tartary ( Fagopyrum tataricum Gaertn.) buckwheat[J]. Journal of the Science of Food and Agriculture , 2014, 95(10): 1963-1967. [8] ORCIC D, SVIR㊣EV E, MIMICA-DUKIC N, et al. Phenolic profile and antioxidant activity of buckwheat ( Fagopyrum esculentum ) herb and root extracts[J]. Planta Medica , 2012, 78(11): L14. [9] LACHMANN S, ADACHI T. Studies on the influence of photoperiod and temperature on floral traits in buckwheat ( Fagopyrum esculentum Moench) under controlled stress conditions[J]. Plant Breeding , 1990, 105(3): 248-253. [10] NAKAGAMI H, PITZSCHKE A, HIRT H. Emerging MAP kinase pathways in plant stress signalling[J]. Trends in Plant Science , 2005, 10(7): 339-346. [11] 肖文娟, 宾金华, 武波. 植物体中的MAPK[J]. 植物学通报, 2004, 21(2): 205-215. XIAO W J, BING J H, WU B. MAPKs in plant[J]. Chinese Bulletin of Botany , 2004, 21(2): 205-215. (in Chinese with English abstract) [12] 龚小卫, 姜勇. 丝裂原活化蛋白激酶(MAPK)生物学功能的结构基础[J]. 中国生物化学与分子生物学报, 2003, 19(1): 5-11. GONG X W, JIANG Y. The structural basis of biological function of mitogen-activated protein kinases[J]. Chinese Journal of Biochemistry and Molecular Biology , 2003, 19(1): 5-11. (in Chinese with English abstract) [13] 张茂迎, 宗晓娟, 李德全. 植物MAPK级联途径参与调控ABA信号转导[J]. 生命科学, 2010, 22(8): 736-737. ZHANG M Y, ZONG X J, LI D Q. Mitogen-activated protein kinase cascade is involved in abscisic acid signal transduction in plant[J]. Chinese Bulletin of Life Sciences , 2010, 22(8): 736-737. (in Chinese with English abstract) [14] 赵琳琳, 徐启江, 姜勇, 等. 生物和非生物胁迫下的植物细胞中丝裂原活化蛋白激酶(MAPK)信号转导[J]. 植物生理学通讯, 2008, 44(1): 169-174. ZHAO L L, XU Q J, JIANG Y, et al. The mitogen-activated protein kinase signal transduction in plant cell under biotic and abiotic stress conditions[J]. Plant Physiology Communications , 2008, 44(1): 169-174. (in Chinese with English abstract) [15] 陈娅斐,冯斌,赵小明,等. MAPK级联途径在植物信号转导中的研究进展[J]. 植物学通报, 2005, 22(3): 357-365. CHEN Y F, FENG B, ZHAO X M, et al. Progress of study on MAPK cascades of plant signal transduction[J]. Chinese Bulletin of Botany , 2005, 22(3): 357-365. (in Chinese with English abstract) [16] 梁卫红, 毕佳佳, 彭威风, 等. 水稻促分裂原活化蛋白激酶基因 OsMPK 14的克隆及表达分析[J]. 中国水稻科学, 2010, 24(2): 125-130. LIANG W H, BI J J, PENG W F, et al. Cloning and expression analysis of a mitogen activated protein kinase gene OsMPK 14 from rice[J]. Chinese Journal of Rice Science , 2010, 24(2): 125-130. (in Chinese with English abstract) [17] CHEN Q. A study of resources of Fagopyrum (Polygonaceae) native to China[J]. Botanical Journal of the Linnean Society , 1999, 130(1): 53-64. [18] YAMANE K, OHNISHI O. Phylogenetic relationships among natural populations of perennial buckwheat, Fagopyrum cymosum Meisn., revealed by allozyme variation[J]. Genetic Resources and Crop Evolution , 2001, 48(1): 69-77. [19] 张以忠, 李艳娟, 邓琳琼, 等. 荞麦过氧化物酶同工酶研究[J]. 种子, 2011, 30(2): 52-54. ZHANG Y Z, LI Y J, DENG L Q, et al. Study on peroxide isozyme of buckwheat[J]. Seed , 2011, 30(2): 52-54. (in Chinese with English abstract) [20] LI J, CHEN Q, ZELLER F J. Variation in seed protein subunits among species of the genus Fagopyrum Mill[J]. Plant Systematics and Evolution , 2008, 274(3-4): 193-202. [21] TANG Z, HUANG L, GOU J, et al. Genetic relationships among buckwheat ( Fagopyrum ) species from southwest China based on chloroplast and nuclear SSR markers[J]. Journal of Genetics , 2014, 93(3): 849-853. [22] 陈晴晴, 石桃雄, 陈庆富. 荞麦不同种问BW10KD过敏蛋白基因序列比较[J]. 广东农业科学, 2013, 40(9): 133-139. CHEN Q Q, SHI T X, CHEN Q F. Comparison of BW10KD allergen protein gene sequences among different buckwheat species[J]. Guangdong Agricultural Sciences , 2013, 40(9): 133-139. (in Chinese with English abstract) [23] 陆翔, 张益锋. 金荞麦叶保护酶与保护物质对增强UV-B辐射及干旱胁迫的响应[J]. 浙江农业学报, 2013, 25(3): 450-455. LU X, ZHANG Y F. Response of the protective enzymes and protective substances of Fagopyrum dibotrys under enhanced UV-B radiation and drought stress[J]. Acta Agriculturae Zhejiangensis , 2013, 25(3): 450-455. (in Chinese with English abstract) [24] 李凤梅. 植物丝裂原活化蛋白激酶激酶的生物信息学分析[J]. 北方园艺, 2010(3): 196-199. LI F M. Bioinformatics analysis of plant MAPKK[J]. Northern Horticulture , 2010(3): 196-199. (in Chinese with English abstract) [25] ZHOU M, WANG C, WANG D, et al. Phylogenetic relationship of four new species related to southwestern Sichuan Fagopyrum based on morphological and molecular characterization[J]. Biochemical Systematics and Ecology , 2014, 57: 403-409. [26] 郑亚迪. 西南地区荞麦属植物分子系统发育研究[D]. 雅安:四川农业大学, 2012. DENG Y D. Analysis of phylogenetic relationships of Fagopyrum Mill based on ITS, matK and psbA-trnH sequences[D]. Ya’an: Sichuan Agricultural University, 2012. (in Chinese with English abstract) [27] 史建强, 李艳琴, 张宗文, 等. 荞麦及其野生种遗传多样性分析[J]. 植物遗传资源学报, 2015, 16(3): 443-450. SHI J Q, LI Y Q, ZHANG Z W, et al. Genetic diversity of buckwheat and its wild species[J]. Journal of Plant Genetic Resources , 2015, 16(3): 443-450. (in Chinese with English abstract) |