›› 2020, Vol. 32 ›› Issue (6): 1070-1081.DOI: 10.3969/j.issn.1004-1524.2020.06.15
• Environmental Science • Previous Articles Next Articles
SHI Chuanqi, HU Baozhong, YU Shaopeng*, MENG Bo, YANG Chunxue, LIU Jia, DING Junnan
Received:2019-12-27
Online:2020-06-25
Published:2020-06-24
CLC Number:
SHI Chuanqi, HU Baozhong, YU Shaopeng, MENG Bo, YANG Chunxue, LIU Jia, DING Junnan. Water purification effect of Ceratophyllum demersum L. and change of microbial community under different treatments[J]. , 2020, 32(6): 1070-1081.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2020.06.15
| [1] 李琳琳, 汤祥明, 高光, 等. 沉水植物生态修复对西湖细菌多样性及群落结构的影响[J]. 湖泊科学, 2013, 25(2): 188-198. LI L L, TANG X M, GAO G, et al.Influence of submerged vegetation restoration on bacterial diversity and community composition in West Lake[J]. [2] 中国植物志编委. 中国植物志:第27卷[M]. 北京: 科学出版社, 1979. [3] 王丹, 张银龙, 庞博. 金鱼藻对不同程度污染水体的水质净化效果[J]. 南京林业大学学报(自然科学版), 2010, 34(4): 83-86. WANG D, ZHANG Y L, PANG B.Study on the [4] FOROUGHI M, NAJAFI P, TOGHIANI A, et al.Analysis of pollution removal from wastewater by [5] 谭洪涛, 朱琳, 张馨文, 等. 浮萍和金鱼藻对生活污水的净化效果[J]. 安徽农业科学, 2016, 44(2): 146-149. TAN H T, ZHU L, ZHANG X W, et al.Purification effect of duckweed and hornwort on domestic sewage[J]. [6] 姜小玉, 赵闪闪, 褚一凡, 等. 氮浓度对铜绿微囊藻、大型溞和金鱼藻三者相互作用的影响[J]. 水生生物学报, 2019, 43(2): 439-447. JIANG X Y, ZHAO S S, CHU Y F, et al.Impacts of nitrogen concentration on the interactions among [7] CALHEIROS C S C, DUQUE A F, MOURA A, et al. Changes in the bacterial community structure in two-stage constructed wetlands with different plants for industrial wastewater treatment[J]. [8] FUERST J A, SAGULENKO E.Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function[J]. [9] 蔡小龙, 罗剑飞, 林炜铁, 等. 珠三角养殖水体中参与氮循环的微生物群落结构[J]. 微生物学报, 2012, 52(5): 645-653. CAI X L, LUO J F, LIN W T, et al.Microbial community in nitrogen cycle of aquaculture water of the Pearl River Delta[J]. [10] 王浩, 李正魁, 张一品, 等. 伊乐藻-高效脱氮微生物协同作用对污染水体氮素脱除机制的影响[J]. 环境科学, 2017, 38(11): 4615-4622. WANG H, LI Z K, ZHANG Y P, et al.Effect of [11] 敬双怡, 李岩, 于玲红, 等. SMBBR工艺处理生活污水脱氮效能及其微生物多样性[J]. 应用与环境生物学报, 2019, 25(1): 206-214. JING S Y, LI Y, YU L H, et al.Denitrification efficiency of the special moving-bed biofilm reactor (SMBBR) process for domestic sewage treatment and its microbial diversity[J]. [12] WANG Y H, INAMORI R, KONG H N, et al.Influence of plant species and wastewater strength on constructed wetland methane emissions and associated microbial populations[J]. [13] WEI B, YU X, ZHANG S T, et al.Comparison of the community structures of [14] KIEREK-PEARSON K, KARATAN E.Biofilm development in bacteria[J]. [15] GAGNON V, CHAZARENC F, COMEAU Y, et al.Influence of macrophyte species on microbial density and activity in constructed wetlands[J]. [16] PAERL H W, PINCKNEY J L.A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling[J]. [17] BATTIN T J, KAPLAN L A, DENIS NEWBOLD J, et al.Contributions of microbial biofilms to ecosystem processes in stream mesocosms[J]. [18] SRIVASTAVA J K, CHANDRA H, KALRA S J S, et al. Plant-microbe interaction in aquatic system and their role in the management of water quality: a review[J]. [19] HAHN M W.The microbial diversity of inland waters[J]. [20] SAEED T, SUN G Z.A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media[J]. [21] 易乃康, 彭开铭, 陆丽君, 等. 人工湿地植物对脱氮微生物活性的影响机制研究进展[J]. 水处理技术, 2016, 42(4): 12-16. YI N K, PENG K M, LU L J, et al.Research advances on the influence mechanism of wetland plants on microbial activity in nitrogen removal[J]. [22] CRUMP B C, KOCH E W.Attached bacterial populations shared by four species of aquatic angiosperms[J]. [23] 王新, 汤江武, 吴逸飞, 等. 基于混合培养和PCR-变性梯度凝胶电泳的复合净水功能菌群构建[J]. 浙江农业学报, 2019, 31(11): 1896-1902. WANG X, TANG J W, WU Y F, et al.Construction of compound bacteria for polluted water purification based on mixed culture and PCR-denaturing gradient gel electrophoresis[J]. [24] TRUU M, JUHANSON J, TRUU J.Microbial biomass, activity and community composition in constructed wetlands[J]. [25] 张敏, 尹传宝, 张翠英, 等. 植物-微生物组合式生态沉床对地表水体生态修复效果研究[J]. 节水灌溉, 2015(3): 55-58. ZHANG M, YIN C B, ZHANG C Y, et al.Surface water ecological restoration effect of plant-microbial combined ecological heavy bed[J]. [26] 谭雅懿, 王烜, 王育礼. 中国寒区湿地研究进展[J]. 冰川冻土, 2011, 33(1): 197-204. TAN Y Y, WANG X, WANG Y L.Progress of wetland researches in cold regions of China[J]. [27] 全为民, 严力蛟. 农业面源污染对水体富营养化的影响及其防治措施[J]. 生态学报, 2002, 22(3): 291-299. QUAN W M, YAN L J.Effects of agricultural non-point source pollution on eutrophication of water body and its control measure[J]. [28] VYMAZAL J.The use of constructed wetlands for nitrogen removal from agricultural drainage: a review[J]. [29] 王晓莹, 张明珍, 严攀, 等. 美人蕉(Canna indica)内生细菌促生能力及其强化水体的净化作用[J]. 湖泊科学, 2019, 31(6): 1582-1591. WANG X Y, ZHANG M Z, YAN P, et al.Growth promoting ability and enhanced effects on water purification of endophytic bacteria from [30] 邓鸿杨, 傅斌, 韦杰, 等. 不同植物组合对水体氮磷的去除效果[J]. 浙江农业科学, 2018, 59(10): 1925-1928. DENG H Y, FU B, WEI J, et al.Effect of different plants combinations on the removal of nitrogen and phosphorus in water[J]. [31] 白雪梅, 何连生, 李必才, 等. 利用水生植物组合净化白洋淀富营养化水体研究[J]. 湿地科学, 2013, 11(4): 495-498. BAI X M, HE L S, LI B C, et al.Application of combined aquatic plants to control eutrophic water in Baiyangdian lake[J]. [32] 周玥, 韩玉国, 张梦, 等. 4种不同生活型湿地植物对富营养化水体的净化效果[J]. 应用生态学报, 2016, 27(10): 3353-3360. ZHOU Y, HAN Y G, ZHANG M, et al.Purification efficiency of four different ecotypes of wetland plants on eutrophic water body[J]. [33] 郭贵林, 邢启妍. 黑龙江省植物检索表[M]. 哈尔滨: 黑龙江人民出版社, 1990. [34] 张萌, 李雄清, 邹新, 等. 典型沉水植物修复富营养水体的最优种植密度[J]. 湖北农业科学, 2016, 55(20): 5218-5224. ZHANG M, LI X Q, ZOU X, et al.The optimal planting density on water quality improvement by tolerant submersed macrophytes[J]. [35] 梁威, 吴振斌. 人工湿地对污水中氮磷的去除机制研究进展[J]. 环境科学动态, 2000, 25(3): 32-37. LIANG W, WU Z B.Research progress on removal mechanism of nitrogen and phosphorus from wastewater by constructed wetlands[J]. [36] 韩永和. 脱氮除磷微生物的分离鉴定及与植物联合处理含氮磷废水的研究[D]. 福州: 福建师范大学, 2013. HAN Y H.Study on isolation and identification of the denitrifying and dephosphorizating microorganisms and their combined-treatment with plant for nitrogen and phosphorus from wastewater[D]. Fuzhou: Fujian Normal University, 2013.(in Chinese with English abstract) [37] COTNER J B, BIDDANDA B A.Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems[J]. [38] KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. [39] 雷静, 年夫喜, 冯国栋, 等. 富营养化水体清淤后的微生物脱氮技术应用[J]. 环境工程学报, 2016, 10(7): 3949-3955. LEI J, NIAN F X, FENG G D, et al.Application of microbial removal of nitrogen in dredged eutrophic water[J]. [40] PELISSARI C, ÁVILA C, TREIN C M, et al.Nitrogen transforming bacteria within a full-scale partially saturated vertical subsurface flow constructed wetland treating urban wastewater[J]. [41] 蒋春, 蒋薇薇, 周鹏, 等. 水生植物修复富营养化水体的机制[J]. 安徽农业科学, 2014, 42(35): 12614-12615. JIANG C, JIANG W W, ZHOU P, et al.Mechanisms of hydrophytes remediation for eutrophic waterbody[J]. [42] 李琳, 岳春雷, 张华, 等. 不同沉水植物净水能力与植株体细菌群落组成相关性[J]. 环境科学, 2019, 40(11): 4962-4970. LI L, YUE C L, ZHANG H, et al.Correlation between water purification capacity and bacterial community composition of different submerged macrophytes[J]. [43] LEE C G, FLETCHER T D, SUN G Z.Nitrogen removal in constructed wetland systems[J]. [44] NGUYEN H T T, LE V Q, HANSEN A A, et al. High diversity and abundance of putative polyphosphate-accumulating [45] 沈益, 胡南. 多种修复技术对城市内河水质及微生物群落的影响[J]. 水资源保护, 2017, 33(6): 167-174. SHEN Y, HU N.Effects of various remediation technologies on water quality and microbial community in urban inland rivers[J]. [46] 廖晓敬, 杨璐溪, BUCE H, 等. 几株新鞘氨醇杆菌的趋化性及其相关基因组成特点[J]. 微生物学报, 2017, 57(3): 399-410. LIAO X J, YANG L X, BUCE H, et al.Chemotaxis and characteristics of chemotactic genes in [47] VAN TAI T, BINH T N, ANH N N, et al.曝气结合投加微生物法去除河水氨氮效果研究[J]. 绿色科技, 2017(6): 5-9. VAN TAI T, BINH T N, ANH N N, et al.Study on removal of ammonia nitrogen from river water by aeration combined with adding microorganism[J]. |
| [1] | WAN Hefeng, LIU Guohua, WU Yuxiang, JIANG Juan, ZHANG Zhenming, LIU Yong. Influence of initial substrate pH value on physicochemical properties and microbial community during composting [J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2165-2178. |
| [2] | LIU Wenwen, HU Lianqing, ZHOU Wanhai, WEI Qin, FENG Ruizhang, ZHAO Xin, CHE Litao, CHEN Jinyu. Effects of different contents of Camphora longepaniculata leaves in diets on intestinal pH, cecal fermentation and cecal microbiota of meat rabbits [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1279-1289. |
| [3] | ZHANG Hongfang, QIAN Tao, JIN Ting, XIE Xiaoling, WU Choufei, XIAO Yingping, MA Lingyan. Gut microbial profiles and its developmental changes of grass carp (Ctenopharyngodon idella) [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 780-789. |
| [4] | LYU Qian, LUO Qiao, LUO Xue, CHEN Jiubing, MA Li, LUO Zhengzhong, YAO Xueping, YU Shumin, SHEN Liuhong, CAO Suizhong. Analysis of microbial community difference between sand and rubber bedding in dairy farm by high throughput sequencing technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1377-1385. |
| [5] | YUAN Wenya, KANG Yichen, YANG Xinyu, ZHNAG Ruyan, ZHOU Chuntao, WANG Yong, CHEN Xipeng, YU Huifang, QIN Shuhao. Effects of rhizosphere soil extract of Qingshui alfalfa (Medicago sativa L.) on enzyme activities and microbial communities in rhizosphere soil of continuous cropping potato [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 240-247. |
| [6] | GAO Zhiyuan, YANG Shuna, WANG Zhaoli, WANG Zhihao, XI Xinyan, HE Juan, JIA Huijuan. Effects of different fumigation on continuous cropping soil in peach orchard [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2251-2258. |
| [7] | JIN Yanan, ZHANG Baifa, HAO Yun, WU Jianhong, LYU Jun. Dynamic analysis of river nitrogen and phosphorus pollution based on LOADEST model and wavelet transform [J]. , 2020, 32(9): 1692-1701. |
| [8] | YANG Hongyun, LUO Jianjun, SUN Aizhen, WAN Ying, YI Wenlong. Study on estimation model of total nitrogen content in rice leaves based on image characteristics [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2232-2243. |
| [9] | LUO Longzao, LIN Xiaoai, ZHU Feng, ZENG Fanjian, ZHANG Bangxi, LIU Ye, TIAN Guangming. Effect of aeration with carbon dioxide on growth of Desmodesmus sp. CHX1 in wastewater with high concentration of ammonium nitrogen [J]. , 2019, 31(9): 1541-1548. |
| [10] | GUI Guohong, YANG Hua, ZHU Jiangqun, ZHU Jianfeng, XIAO Yingping, XU E. Study on microbial community structure in chilled chicken during cold storage [J]. , 2019, 31(1): 47-55. |
| [11] | XU Wei-hui, WU Feng-zhi. Response of soil enzymes activities and microorganism in rhizosphere of watermelon to wheat as companion crop [J]. , 2016, 28(9): 1588-1594. |
| [12] | HAN Li-na, DING Zhe-li, ZENG Hui-cai, ZHENG Wei, HE Ying-dui, GE Yu. Effect of functional organic fertilizer on growth of Chinese cabbage [J]. , 2016, 28(10): 1718-1723. |
| [13] | GUI Ping\|jing1, WANG Feng1, LI Shan\|pu1, ZHOU Xi2, ZOU Li\|kou2, FAN Liang\|qian1,*. Estimation and evaluation of agricultural non\|point source pollution load by stage export coefficient model: A case study in Sichuan Province [J]. , 2016, 28(1): 110-. |
| [14] | MAO Wei\|hua1, WU San\|ling1,ZHANG Xu2. Establish and application of the high throughput sequencing method for soil microbial 16S rDNA using Ion Torrent PGM [J]. , 2015, 27(12): 2165-. |
| [15] | YU You-ping;CAI Xin-zhong;ZHU Xiao-xiang;*. Comparative analysis of microbial community structures in soils from rice-upland crop rotation fields by PLFA profile technique [J]. , 2013, 25(5): 0-1061. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||