Acta Agriculturae Zhejiangensis ›› 2020, Vol. 32 ›› Issue (12): 2218-2225.DOI: 10.3969/j.issn.1004-1524.2020.12.13
• Quality and Safety of Agriculturel Products • Previous Articles Next Articles
TANG Biao1,2(), CHEN Lingyun1,2, LUO Yi1,2,3, SHI Xingfen4, HU Ji2, CHEN Yifei1,2, QIAN Mingrong1,2, YANG Hua1,2,*(
)
Received:
2020-06-04
Online:
2020-12-25
Published:
2020-12-25
Contact:
YANG Hua
CLC Number:
TANG Biao, CHEN Lingyun, LUO Yi, SHI Xingfen, HU Ji, CHEN Yifei, QIAN Mingrong, YANG Hua. Antimicrobial resistance in Salmonella and Campylobacter isolated from Zhejiang and Fujian Province in 2019[J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2218-2225.
序号 ID | 耐药谱 Drug-resistant pattern | 个数 Number | 百分比 Percentage/% |
---|---|---|---|
1 | AMP-GEN-SPT-TET-FFC-SF-SXT-CEF-CAZ-ENR-OFL | 18 | 18.0 |
2 | — | 15 | 15.0 |
3 | AMP-SPT-TET-FFC-SF-SXT | 8 | 8.0 |
4 | AMP-TET-SF | 6 | 6.0 |
5 | TET-FFC-SF-SXT | 5 | 5.0 |
6 | AMP-GEN-SPT-TET-FFC-SF-SXT | 5 | 5.0 |
7 | TET-FFC | 5 | 5.0 |
8 | AMP-GEN-TET | 4 | 4.0 |
9 | AMP-GEN-TET-FFC-SF-SXT | 4 | 4.0 |
10 | AMP-A/C-GEN-SPT-TET-FFC-SF-SXT | 4 | 4.0 |
11 | AMP-GEN-TET-CL | 3 | 3.0 |
12 | AMP-SPT-FFC-SXT-CEF-ENR | 2 | 2.0 |
13 | AMP-SF-CL | 2 | 2.0 |
14 | AMP-TET-SF-CL | 2 | 2.0 |
15 | AMP-GEN-SPT-TET-FFC-SF-SXT-CEF-ENR-OFL | 2 | 2.0 |
16 | AMP-TET-FFC-SF-SXT | 2 | 2.0 |
17 | TET | 1 | 1.0 |
18 | AMP-A/C-SPT-TET-SXT-CL | 1 | 1.0 |
19 | SPT | 1 | 1.0 |
20 | AMP-GEN-TET-FFC | 1 | 1.0 |
21 | AMP-GEN-CL | 1 | 1.0 |
22 | AMP-TET | 1 | 1.0 |
23 | TET-SF-CL | 1 | 1.0 |
24 | AMP-SPT-SF-SXT-CL | 1 | 1.0 |
25 | AMP-A/C-SPT-TET-SF-CEF-CAZ-CL | 1 | 1.0 |
26 | AMP-TET-FFC-SF-ENR | 1 | 1.0 |
27 | SF | 1 | 1.0 |
28 | AMP-SPT-FFC-SF-SXT | 1 | 1.0 |
29 | TET-SF-ENR | 1 | 1.0 |
Table 1 Antibiotic resistance patterns of isolated Salmonella strains
序号 ID | 耐药谱 Drug-resistant pattern | 个数 Number | 百分比 Percentage/% |
---|---|---|---|
1 | AMP-GEN-SPT-TET-FFC-SF-SXT-CEF-CAZ-ENR-OFL | 18 | 18.0 |
2 | — | 15 | 15.0 |
3 | AMP-SPT-TET-FFC-SF-SXT | 8 | 8.0 |
4 | AMP-TET-SF | 6 | 6.0 |
5 | TET-FFC-SF-SXT | 5 | 5.0 |
6 | AMP-GEN-SPT-TET-FFC-SF-SXT | 5 | 5.0 |
7 | TET-FFC | 5 | 5.0 |
8 | AMP-GEN-TET | 4 | 4.0 |
9 | AMP-GEN-TET-FFC-SF-SXT | 4 | 4.0 |
10 | AMP-A/C-GEN-SPT-TET-FFC-SF-SXT | 4 | 4.0 |
11 | AMP-GEN-TET-CL | 3 | 3.0 |
12 | AMP-SPT-FFC-SXT-CEF-ENR | 2 | 2.0 |
13 | AMP-SF-CL | 2 | 2.0 |
14 | AMP-TET-SF-CL | 2 | 2.0 |
15 | AMP-GEN-SPT-TET-FFC-SF-SXT-CEF-ENR-OFL | 2 | 2.0 |
16 | AMP-TET-FFC-SF-SXT | 2 | 2.0 |
17 | TET | 1 | 1.0 |
18 | AMP-A/C-SPT-TET-SXT-CL | 1 | 1.0 |
19 | SPT | 1 | 1.0 |
20 | AMP-GEN-TET-FFC | 1 | 1.0 |
21 | AMP-GEN-CL | 1 | 1.0 |
22 | AMP-TET | 1 | 1.0 |
23 | TET-SF-CL | 1 | 1.0 |
24 | AMP-SPT-SF-SXT-CL | 1 | 1.0 |
25 | AMP-A/C-SPT-TET-SF-CEF-CAZ-CL | 1 | 1.0 |
26 | AMP-TET-FFC-SF-ENR | 1 | 1.0 |
27 | SF | 1 | 1.0 |
28 | AMP-SPT-FFC-SF-SXT | 1 | 1.0 |
29 | TET-SF-ENR | 1 | 1.0 |
序号 ID | 耐药谱 Drug-resistant pattern | 个数 Number | 百分比 Percentage/% | ||
---|---|---|---|---|---|
1 | CIP-NAL-TET | 21 | 21.0 | ||
2 | CIP-NAL-TET-CLI-ERY-AZM-TEL | 11 | 11.0 | ||
3 | CIP-TET-CLI-ERY-AZM-FFC | 11 | 11.0 | ||
4 | CIP-NAL-GEN-TET-CLI-ERY-AZM-TEL | 8 | 8.0 | ||
5 | CIP-NAL-GEN-TET-CLI-ERY-AZM-TEL-FFC | 7 | 7.0 | ||
6 | CIP-NAL-TET-CLI | 5 | 5.0 | ||
7 | CIP-NAL | 5 | 5.0 | ||
8 | CIP-NAL-TET-AZM | 3 | 3.0 | ||
9 | CIP-NAL-TET-FFC | 3 | 3.0 | ||
10 | CIP-NAL-CLI-AZM | 3 | 3.0 | ||
11 | CIP-NAL-TET-CLI-ERY-AZM-TEL-FFC | 3 | 3.0 | ||
12 | CIP-NAL-TET-CLI-AZM | 2 | 2.0 | ||
13 | CIP-NAL-TET-CLI-AZM-TEL | 2 | 2.0 | ||
14 | CIP-NAL-TET-CLI-AZM-TEL-FFC | 2 | 2.0 | ||
15 | CIP-NAL-GEN-CLI-ERY-AZM-TEL | 2 | 2.0 | ||
16 | CIP-NAL-GEN-TET-CLI-AZM-TEL-FFC | 2 | 2.0 | ||
17 | CIP-NAL-TET-TEL-FFC | 1 | 1.0 | ||
18 | CIP-NAL-TET-AZM-TEL | 1 | 1.0 | ||
19 | — | 1 | 1.0 | ||
20 | CIP-NAL-GEN-TET | 1 | 1.0 | ||
21 | CIP-NAL-GEN-TET-CLI-TEL | 1 | 1.0 | ||
22 | CIP-NAL-TET-CLI-TEL | 1 | 1.0 | ||
23 | CIP-NAL-GEN-TET-CLI | 1 | 1.0 | ||
24 | CIP-NAL-GEN-TET-CLI-ERY-AZM | 1 | 1.0 | ||
25 | CIP-NAL-TEL | 1 | 1.0 | ||
26 | CIP-NAL-CLI | 1 | 1.0 |
Table 2 Antibiotic resistance patterns of isolated Campylobacter strains
序号 ID | 耐药谱 Drug-resistant pattern | 个数 Number | 百分比 Percentage/% | ||
---|---|---|---|---|---|
1 | CIP-NAL-TET | 21 | 21.0 | ||
2 | CIP-NAL-TET-CLI-ERY-AZM-TEL | 11 | 11.0 | ||
3 | CIP-TET-CLI-ERY-AZM-FFC | 11 | 11.0 | ||
4 | CIP-NAL-GEN-TET-CLI-ERY-AZM-TEL | 8 | 8.0 | ||
5 | CIP-NAL-GEN-TET-CLI-ERY-AZM-TEL-FFC | 7 | 7.0 | ||
6 | CIP-NAL-TET-CLI | 5 | 5.0 | ||
7 | CIP-NAL | 5 | 5.0 | ||
8 | CIP-NAL-TET-AZM | 3 | 3.0 | ||
9 | CIP-NAL-TET-FFC | 3 | 3.0 | ||
10 | CIP-NAL-CLI-AZM | 3 | 3.0 | ||
11 | CIP-NAL-TET-CLI-ERY-AZM-TEL-FFC | 3 | 3.0 | ||
12 | CIP-NAL-TET-CLI-AZM | 2 | 2.0 | ||
13 | CIP-NAL-TET-CLI-AZM-TEL | 2 | 2.0 | ||
14 | CIP-NAL-TET-CLI-AZM-TEL-FFC | 2 | 2.0 | ||
15 | CIP-NAL-GEN-CLI-ERY-AZM-TEL | 2 | 2.0 | ||
16 | CIP-NAL-GEN-TET-CLI-AZM-TEL-FFC | 2 | 2.0 | ||
17 | CIP-NAL-TET-TEL-FFC | 1 | 1.0 | ||
18 | CIP-NAL-TET-AZM-TEL | 1 | 1.0 | ||
19 | — | 1 | 1.0 | ||
20 | CIP-NAL-GEN-TET | 1 | 1.0 | ||
21 | CIP-NAL-GEN-TET-CLI-TEL | 1 | 1.0 | ||
22 | CIP-NAL-TET-CLI-TEL | 1 | 1.0 | ||
23 | CIP-NAL-GEN-TET-CLI | 1 | 1.0 | ||
24 | CIP-NAL-GEN-TET-CLI-ERY-AZM | 1 | 1.0 | ||
25 | CIP-NAL-TEL | 1 | 1.0 | ||
26 | CIP-NAL-CLI | 1 | 1.0 |
[1] |
YANG W N, ZHANG M J, ZHOU J Y, et al. The molecular mechanisms of ciprofloxacin resistance in clinical Campylobacter jejuni and their genotyping characteristics in Beijing, China[J]. Foodborne Pathogens and Disease, 2017,14(7):386-392.
DOI URL PMID |
[2] |
HU Y J, FANNING S, GAN X, et al. Salmonella harbouring the mcr-1 gene isolated from food in China between 2012 and 2016[J]. Journal of Antimicrobial Chemotherapy, 2019,74(3):826-828.
DOI URL |
[3] |
LI Y, GU Y X, LV J, et al. Laboratory study on the gastroenteritis outbreak caused by a multidrug-resistant Campylobacter coli in China[J]. Foodborne Pathogens and Disease, 2020,17(3):187-193.
URL PMID |
[4] |
SUN J, CHEN C, CUI C Y, et al. Plasmid-encoded Tet(X) genes that confer high-level tigecycline resistance in Escherichia coli[J]. Nature Microbiology, 2019,4(9):1457-1464.
DOI URL PMID |
[5] |
HE T, WANG R, LIU D J, et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans[J]. Nature Microbiology, 2019,4(9):1450-1456.
DOI URL PMID |
[6] |
WANG Q J, SUN J, LI J, et al. Expanding landscapes of the diversified mcr-1-bearing plasmid reservoirs[J]. Microbiome, 2017,5(1):70.
DOI URL PMID |
[7] |
SUN J, YANG R S, ZHANG Q J, et al. Co-transfer of blaNDM-5 and mcr-1 by an IncX3-X4 hybrid plasmid in Escherichia coli[J]. Nature Microbiology, 2016,1:16176.
DOI URL PMID |
[8] |
SHEN Z Q, HU Y Y, SUN Q L, et al. Emerging carriage of NDM-5 and MCR-1 in Escherichia coli from healthy people in multiple regions in China: a cross sectional observational study[J]. EClinicalMedicine, 2018,6:11-20.
DOI URL PMID |
[9] |
ZHANG Z F, CAO C Y, LIU B, et al. Comparative study on antibiotic resistance and DNA profiles of Salmonella enterica serovar typhimurium isolated from humans, retail foods, and the environment in Shanghai, China[J]. Foodborne Pathogens and Disease, 2018,15(8):481-488.
DOI URL PMID |
[10] |
JIANG Z H, PAUDYAL N, XU Y H, et al. Antibiotic resistance profiles of Salmonella recovered from finishing pigs and slaughter facilities in Henan, China[J]. Frontiers in Microbiology, 2019,10:1513.
DOI URL PMID |
[11] |
ZHANG L Y, LI Y, SHAO Y Q, et al. Molecular characterization and antibiotic resistant profiles of Campylobacter species isolated from poultry and diarrheal patients in southeastern China 2017-2019[J]. Frontiers in Microbiology, 2020,11:1244.
DOI URL PMID |
[12] |
KOSTRZEWA M. Application of the MALDI biotyper to clinical microbiology: progress and potential[J]. Expert Review of Proteomics, 2018,15(3):193-202.
DOI URL PMID |
[13] |
TANG B, CHANG J, ZHANG L, et al. Carriage of distinct mcr-1-harboring plasmids by unusual serotypes of Salmonella[J]. Advanced Biosystems, 2020,4(3):1900219.
DOI URL |
[14] |
LU Y, ZHAO H Y, SUN J, et al. Characterization of multidrug-resistant Salmonella enterica serovars Indiana and Enteritidis from chickens in Eastern China[J]. PLoS One, 2014,9(5):e96050.
URL PMID |
[15] |
ZHANG W H, LIN X Y, XU L, et al. CTX-M-27 producing Salmonella enterica serotypes typhimurium and Indiana are prevalent among food-producing animals in China[J]. Frontiers in Microbiology, 2016,7:436.
URL PMID |
[16] |
JIA S Y, ZHANG X X, MIAO Y, et al. Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water[J]. Water Research, 2017,124:259-268.
URL PMID |
[17] | KUMAR K, GUPTA S C, CHANDER Y, et al. Antibiotic use in agriculture and its impact on the terrestrial environment[J]. Advances in Agronomy, 2005,87:1-54. |
[18] |
LANDONI M F, ALBARELLOS G. The use of antimicrobial agents in broiler chickens[J]. The Veterinary Journal, 2015,205(1):21-27.
URL PMID |
[19] | Ministry of Agriculture and Rural Affairs , P. R. China. Report on the use of veterinary antibiotics of China in 2018[J]. Official Veterinary Bulletin, 2019,21(8):57. |
[20] |
LIU Y, ZHANG H, ZHANG X Z, et al. Characterization of an NDM-19-producing Klebsiella pneumoniae strain harboring 2 resistance plasmids from China[J]. Diagnostic Microbiology and Infectious Disease, 2019,93(4):355-361.
URL PMID |
[21] |
TANG B, CHANG J, CAO L J, et al. Characterization of an NDM-5 carbapenemase-producing Escherichia coli ST156 isolate from a poultry farm in Zhejiang, China[J]. BMC Microbiology, 2019,19(1):82.
DOI URL PMID |
[22] |
LIU Y Y, WANG Y, WALSH T R, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study[J]. The Lancet. Infectious Diseases, 2016,16(2):161-168.
DOI URL PMID |
[23] |
WANG Y, XU C Y, ZHANG R, et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study[J]. The Lancet Infectious Diseases, 2020,20(10):1161-1171.
DOI URL PMID |
[24] |
ZHU Y G, ZHAO Y, LI B, et al. Continental-scale pollution of estuaries with antibiotic resistance genes[J]. Nature Microbiology, 2017,2(4):16270.
DOI URL |
[25] |
WANG R, DORP L V, SHAW L P, et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1[J]. Nature Communications, 2018,9(1):1179.
DOI URL PMID |
[1] | FAN Lihong, GUO Hongrui, WU Jiang, YI Jun, MA Xiaoping, GOU Liping, XIE Yue, YE Gang, ZUO Zhicai. Pathogenicity of Acinetobacter pittii from beef cattle in mice [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 230-238. |
[2] | TANG Biao, CHANG Jiang, HU Ji, QIAN Mingrong, XIA Xiaodong, YANG Hua. Structures and characteristics of 103 plasmids carrying mcr gene [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 43-51. |
[3] | XU Lihua, LAN Shengzhi, YU Bin, LI Junxing, ZHANG Pengchao, LI Baochen, SU Fei, YUAN Xiufang. Detection and genetic variation analysis of prevalent porcine circovirus type 2 strains in Zhejiang Province [J]. , 2020, 32(11): 1970-1977. |
[4] | YUN Tao, HUA Jionggang, YE Weicheng, NI Zheng, CHEN Liu, ZHANG Cun. Development and application of a one-step real-time TaqMan-MGB RT-PCR assay for detection of novel duck reovirus [J]. , 2020, 32(4): 571-576. |
[5] | AYIDING Aerzuguli, LU Meilin, LI Ziliang, HE Dan, QIAO Zilin, ABUDUREYIMU Aymuguri. Study on subculture stability and serum-free acclimation of Marc-145 cells in low serum adaptation culture [J]. , 2020, 32(3): 415-420. |
[6] | ZHANG Hongli, HUANG Jing, LIU Xia, WU Yunhong, FENG Xiaoxiao, WU Xuejun, XU Hui. Sequencing and analysis of several genes of a virulent duck enteritis virus strain ZJ2016 [J]. , 2020, 32(2): 226-233. |
[7] | NI Ligang, ZHAO Xuting, WANG Xiaoyan, SONG Chengyi, WU Xinsheng, GAN Yuan. MicroRNA sequencing and analysis of porcine lung of Jiangquhai pig response to Mycoplasma hyopneumoniae infection [J]. , 2019, 31(12): 1979-1986. |
[8] | ZHAO Yunxiang, YANG Wenpan, GAO Ning, PENG Xing, ZHANG Conglin, CHEN Yaosheng, LIU Xiaohong. Genetic correlation analysis between the longevity and first parity reproduction traits of Large White sows [J]. , 2019, 31(11): 1812-1818. |
[9] | XU Xiaofeng, GUO Cheng. Changes of rumen bacterial flora after starch induced milk fat depression in dairy cows [J]. , 2019, 31(10): 1591-1598. |
[10] | DEXI Cuomu, WANG Yin, YANG Zexiao, YAO Xueping, LUO Yan, LIAO Changyu, ZHANG Pengfei, JIANG Dike, XIANG Mingyuan, JIANG Ruijiao, SONG Yong. Epidemiological investigation of porcine epidemic diarrhea virus and sequence analysis of ORF3 and S1 genes in Sichuan from 2016 to 2018 [J]. , 2019, 31(9): 1423-1428. |
[11] | ZENG Xueqin, LIU Chenjian, YANG Xue, LI Xiaoran. Microbial community structure and diversity of mastitis cows by 16S rRNA high-throughput sequencing [J]. , 2019, 31(9): 1437-1445. |
[12] | YUN Tao, HUA Jionggang, YE Weicheng, NI Zheng, CHEN Liu, ZHANG Cun. Proliferative characteristics of novel duck reovirus strain JDM10 in DF-1 cells [J]. , 2019, 31(5): 716-721. |
[13] | SHAN Ying, XU Weicheng, SHI Xingfen, LIU Ziqi, CHEN Cong, LUO Hao, LIU Yajie, FANG Weihuan, LI Xiaoliang. Establishment of one-step Taqman quantitative PCR detection method and molecular S gene characterization analysis of porcine deltacoronavirus [J]. , 2018, 30(2): 220-227. |
[14] | YAO Kechang, LIU Yueyue, YOU Guojin, LI Shuyun, XIA Jing, HE Xiao, LI Wenwen, DU Lijing, HAN Xinfeng, HUANG Yong. Pathogenicity and epidemiological investigation of outbreaks of fowl adenovirus subpopulation Ⅰ infection in chickens in parts of southwestern China [J]. , 2017, 29(11): 1809-1818. |
[15] | MA Xiaoping, YANG Tianyi, ZHANG Zhihe, YU Yan, WANG Chengdong, GU Yu. Study on biological characteristics of Lactobacillus from giant panda vagina [J]. , 2017, 29(7): 1093-1102. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1642
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 845
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||