Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (4): 687-694.DOI: 10.3969/j.issn.1004-1524.2022.04.04
• Animal Science • Previous Articles Next Articles
LI Jingshang1,2(), ZHANG Xiaojun3, CHEN Shengchang1, JIANG Jinhua4, XIANG Yun3, TU Pingguang3, LOU Fangfang3, YANG Hua2, XIAO Yingping2,*(
)
Received:
2021-04-12
Online:
2022-04-25
Published:
2022-04-28
Contact:
XIAO Yingping
CLC Number:
LI Jingshang, ZHANG Xiaojun, CHEN Shengchang, JIANG Jinhua, XIANG Yun, TU Pingguang, LOU Fangfang, YANG Hua, XIAO Yingping. Developmental changes of amino acid profiles in muscle and serum and their correlation with muscle growth of Jinhua pigs[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 687-694.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.04.04
Fig.1 Ribeye areas of Jinhua pig at different growth stages Bars marked without the same letters indicated significant difference within treatments at P<0.05.
项目Item | D45 | D90 | D150 | D270 |
---|---|---|---|---|
组氨酸Histidine* | 0.91±0.06 ab | 1.14±0.02 a | 0.62±0.08 c | 0.88±0.12 b |
苏氨酸Threonine* | 1.09±0.03 | 1.14±0.01 | 1.07±0.03 | 1.10±0.02 |
精氨酸Arginine* | 1.36±0.06 bc | 1.53±0.12 ab | 1.16±0.05 c | 1.70±0.13 a |
缬氨酸Valine* | 1.13±0.06 c | 1.40±0.03 ab | 1.29±0.05 b | 1.50±0.05 a |
异亮氨酸Isoleucine* | 1.05±0.06 b | 1.28±0.02 a | 1.16±0.06 ab | 1.17±0.02 ab |
亮氨酸Leucine* | 1.81±0.09 b | 2.17±0.04 a | 2.01±0.12 ab | 2.21±0.05 a |
赖氨酸Lysine* | 2.06±0.10 b | 2.35±0.05 a b | 2.16±0.17 b | 2.58±0.08 a |
甲硫氨酸Methionine* | 1.59±0.12 b | 2.87±0.12 a | 3.14±0.03 a | 0.56±0.02 c |
苯丙氨酸Phenylalanine* | 0.97±0.04 c | 1.15±0.02 ab | 1.00±0.05 b | 1.23±0.08 a |
天冬氨酸Aspartic acid | 2.10±0.10 b | 2.53±0.05 a | 2.21±0.11 b | 2.52±0.07 a |
谷氨酸Glutamic acid | 3.62±0.18 b | 4.34±0.09 a | 3.84±0.22 ab | 4.23±0.12 a |
丝氨酸Serine | 0.90±0.04 b | 1.07±0.02 a | 0.94±0.05 b | 1.06±0.02 a |
甘氨酸Glycine | 0.97±0.05 b | 1.16±0.02 a | 1.11±0.09 ab | 0.99±0.02 ab |
丙氨酸Alanine | 1.34±0.05 c | 1.54±0.03 a | 1.40±0.07 bc | 1.49±0.03 ab |
酪氨酸Tyrosine | 0.55±0.04 b | 0.73±0.03 a | 0.57±0.02 b | 0.68±0.02 a |
脯氨酸Proline | 0.89±0.04 | 0.97±0.02 | 0.83±0.05 | 1.17±0.25 |
半胱氨酸Cysteine | 0.05±0.01 | 0.05±0.01 | 0.04±0.01 | 0.05±0.01 |
必需氨基酸Essential amino acids | 11.95±0.46 c | 15.02±0.33 a | 13.60±0.46 b | 12.92±0.09 bc |
非必需氨基酸Nonessential amino acids | 10.41±0.50 b | 12.37±0.26 a | 10.94±0.54 b | 12.17±0.06 a |
总氨基酸Total amino acids | 22.36±0.93 c | 27.39±0.59 a | 24.53±0.97 bc | 25.08±0.10 b |
Table 1 Developmental changes of amino acids in longissimus dorsi of Jinhua pigs at different growth stages %
项目Item | D45 | D90 | D150 | D270 |
---|---|---|---|---|
组氨酸Histidine* | 0.91±0.06 ab | 1.14±0.02 a | 0.62±0.08 c | 0.88±0.12 b |
苏氨酸Threonine* | 1.09±0.03 | 1.14±0.01 | 1.07±0.03 | 1.10±0.02 |
精氨酸Arginine* | 1.36±0.06 bc | 1.53±0.12 ab | 1.16±0.05 c | 1.70±0.13 a |
缬氨酸Valine* | 1.13±0.06 c | 1.40±0.03 ab | 1.29±0.05 b | 1.50±0.05 a |
异亮氨酸Isoleucine* | 1.05±0.06 b | 1.28±0.02 a | 1.16±0.06 ab | 1.17±0.02 ab |
亮氨酸Leucine* | 1.81±0.09 b | 2.17±0.04 a | 2.01±0.12 ab | 2.21±0.05 a |
赖氨酸Lysine* | 2.06±0.10 b | 2.35±0.05 a b | 2.16±0.17 b | 2.58±0.08 a |
甲硫氨酸Methionine* | 1.59±0.12 b | 2.87±0.12 a | 3.14±0.03 a | 0.56±0.02 c |
苯丙氨酸Phenylalanine* | 0.97±0.04 c | 1.15±0.02 ab | 1.00±0.05 b | 1.23±0.08 a |
天冬氨酸Aspartic acid | 2.10±0.10 b | 2.53±0.05 a | 2.21±0.11 b | 2.52±0.07 a |
谷氨酸Glutamic acid | 3.62±0.18 b | 4.34±0.09 a | 3.84±0.22 ab | 4.23±0.12 a |
丝氨酸Serine | 0.90±0.04 b | 1.07±0.02 a | 0.94±0.05 b | 1.06±0.02 a |
甘氨酸Glycine | 0.97±0.05 b | 1.16±0.02 a | 1.11±0.09 ab | 0.99±0.02 ab |
丙氨酸Alanine | 1.34±0.05 c | 1.54±0.03 a | 1.40±0.07 bc | 1.49±0.03 ab |
酪氨酸Tyrosine | 0.55±0.04 b | 0.73±0.03 a | 0.57±0.02 b | 0.68±0.02 a |
脯氨酸Proline | 0.89±0.04 | 0.97±0.02 | 0.83±0.05 | 1.17±0.25 |
半胱氨酸Cysteine | 0.05±0.01 | 0.05±0.01 | 0.04±0.01 | 0.05±0.01 |
必需氨基酸Essential amino acids | 11.95±0.46 c | 15.02±0.33 a | 13.60±0.46 b | 12.92±0.09 bc |
非必需氨基酸Nonessential amino acids | 10.41±0.50 b | 12.37±0.26 a | 10.94±0.54 b | 12.17±0.06 a |
总氨基酸Total amino acids | 22.36±0.93 c | 27.39±0.59 a | 24.53±0.97 bc | 25.08±0.10 b |
Fig.2 PCA score chart of amino acids in longissimus dorsi of Jinhua pigs at different growth stages D45, D90, D150, D270 indicates 45, 90, 150, 270 days of age. The same as below.
项目Item | D45 | D90 | D150 | D270 |
---|---|---|---|---|
组氨酸Histidine* | 14.32±1.04 ab | 14.02±1.19 b | 16.18±1.03 ab | 17.48±0.65 a |
苏氨酸Threonine* | 18.35±1.77 b | 19.57±0.86 b | 22.00±2.11 ab | 26.00±1.27 a |
精氨酸Arginine* | 24.64±2.37 b | 30.48±0.82 ab | 32.95±3.41 a | 37.93±2.65 a |
缬氨酸Valine* | 29.58±3.16 bc | 25.69±1.21 c | 35.96±1.98 b | 47.63±2.41 a |
异亮氨酸Isoleucine* | 15.66±0.57 b | 14.76±1.57 b | 18.61±2.02 ab | 22.40±1.34 a |
亮氨酸Leucine* | 28.02±1.57 bc | 26.07±1.35 c | 30.99±0.67 b | 37.29±1.91 a |
赖氨酸Lysine* | 33.26±2.86 ab | 25.57±2.65 b | 27.03±3.66 b | 35.92±0.94 a |
甲硫氨酸Methionine* | 7.13±0.28 b | 7.94±0.58 ab | 8.15±0.39 ab | 8.70±0.29 a |
苯丙氨酸Phenylalanine* | 19.12±4.03 | 15.42±1.24 | 18.52±1.28 | 20.86±0.98 |
天冬氨酸Aspartic acid | 8.65±1.05 ab | 6.08±0.26 b | 5.79±0.35 b | 11.45±1.82 a |
谷氨酸Glutamic acid | 86.61±4.26 b | 59.91±5.35 c | 70.44±2.09 bc | 112.08±8.82 a |
丝氨酸Serine | 40.84±4.08 a | 22.41±2.41 b | 21.14±1.55 b | 21.31±0.82 b |
甘氨酸Glycine | 68.25±1.94 a | 42.50±3.53 b | 65.37±5.46 a | 62.01±3.09 a |
丙氨酸Alanine | 51.79±3.91 | 52.03±4.62 | 58.84±3.81 | 61.86±5.85 |
酪氨酸Tyrosine | 14.68±0.75 b | 16.21±0.97 b | 18.47±0.24 a | 18.23±0.33 a |
脯氨酸Proline | 34.20±3.01 ab | 36.65±1.36 a | 39.44±3.87 a | 26.86±1.66 b |
半胱氨酸Cysteine | 0.02±0.02 | 0.07±0.06 | 0.35±0.13 | 0.71±0.41 |
必需氨基酸Essential amino acids | 190.07±11.02 b | 179.52±3.09 b | 210.60±14.19 b | 254.20±8.13 a |
非必需氨基酸 | 305.03±5.20 a | 235.85±14.09 b | 279.84±4.67 a | 314.50±18.06 a |
Nonessential amino acids | ||||
总氨基酸Total amino acids | 495.10±11.79 b | 415.36±16.17 c | 490.44±9.56 b | 568.70±26.11 a |
Table 2 Developmental changes of serum free amino acids of Jinhua pigs at different growth stages μg·mL-1
项目Item | D45 | D90 | D150 | D270 |
---|---|---|---|---|
组氨酸Histidine* | 14.32±1.04 ab | 14.02±1.19 b | 16.18±1.03 ab | 17.48±0.65 a |
苏氨酸Threonine* | 18.35±1.77 b | 19.57±0.86 b | 22.00±2.11 ab | 26.00±1.27 a |
精氨酸Arginine* | 24.64±2.37 b | 30.48±0.82 ab | 32.95±3.41 a | 37.93±2.65 a |
缬氨酸Valine* | 29.58±3.16 bc | 25.69±1.21 c | 35.96±1.98 b | 47.63±2.41 a |
异亮氨酸Isoleucine* | 15.66±0.57 b | 14.76±1.57 b | 18.61±2.02 ab | 22.40±1.34 a |
亮氨酸Leucine* | 28.02±1.57 bc | 26.07±1.35 c | 30.99±0.67 b | 37.29±1.91 a |
赖氨酸Lysine* | 33.26±2.86 ab | 25.57±2.65 b | 27.03±3.66 b | 35.92±0.94 a |
甲硫氨酸Methionine* | 7.13±0.28 b | 7.94±0.58 ab | 8.15±0.39 ab | 8.70±0.29 a |
苯丙氨酸Phenylalanine* | 19.12±4.03 | 15.42±1.24 | 18.52±1.28 | 20.86±0.98 |
天冬氨酸Aspartic acid | 8.65±1.05 ab | 6.08±0.26 b | 5.79±0.35 b | 11.45±1.82 a |
谷氨酸Glutamic acid | 86.61±4.26 b | 59.91±5.35 c | 70.44±2.09 bc | 112.08±8.82 a |
丝氨酸Serine | 40.84±4.08 a | 22.41±2.41 b | 21.14±1.55 b | 21.31±0.82 b |
甘氨酸Glycine | 68.25±1.94 a | 42.50±3.53 b | 65.37±5.46 a | 62.01±3.09 a |
丙氨酸Alanine | 51.79±3.91 | 52.03±4.62 | 58.84±3.81 | 61.86±5.85 |
酪氨酸Tyrosine | 14.68±0.75 b | 16.21±0.97 b | 18.47±0.24 a | 18.23±0.33 a |
脯氨酸Proline | 34.20±3.01 ab | 36.65±1.36 a | 39.44±3.87 a | 26.86±1.66 b |
半胱氨酸Cysteine | 0.02±0.02 | 0.07±0.06 | 0.35±0.13 | 0.71±0.41 |
必需氨基酸Essential amino acids | 190.07±11.02 b | 179.52±3.09 b | 210.60±14.19 b | 254.20±8.13 a |
非必需氨基酸 | 305.03±5.20 a | 235.85±14.09 b | 279.84±4.67 a | 314.50±18.06 a |
Nonessential amino acids | ||||
总氨基酸Total amino acids | 495.10±11.79 b | 415.36±16.17 c | 490.44±9.56 b | 568.70±26.11 a |
项目Item | D45 | D90 | D150 | D270 |
---|---|---|---|---|
γ-氨基正丁酸γ-aminobutyric acid | 0.09±0.01 a | 0.08±0.01 a | 0.10±0.01 a | 0.01±0.01 b |
牛磺酸Taurine | 31.76±2.04 b | 25.81±2.34 b | 29.75±2.00 b | 42.92±3.40 a |
α-氨基己二酸α-aminoadipic acid | 12.54±2.59 a | 9.12±1.04 ab | 7.17±0.53 b | 9.46±1.49 ab |
瓜氨酸Citrulline | 9.12±0.65 b | 9.82±0.63 b | 13.80±1.21 a | 11.40±1.46 ab |
鸟氨酸Ornithine | 16.08±1.24 a | 10.80±1.60 b | 13.12±0.94 ab | 12.59±0.96 ab |
胱硫醚Cystathionine | 2.03±0.18 | 1.99±0.32 | 1.84±0.19 | 2.18±0.08 |
α-氨基正丁酸α-aminobutyric acid | 1.71±0.34 | 1.68±0.22 | 1.69±0.17 | 3.17±0.85 |
β-丙氨酸β-alanine | 1.70±0.23 a | 1.68±0.07 a | 1.07±0.03 b | 0.89±0.15 b |
β-氨基异丁酸β-aminoisobutyric acid | 0.01±0.01 | 0.01±0.01 | 0.01±0.01 | 0.32±0.26 |
肌肽Carnosine | 4.62±0.48 | 4.41±0.29 | 5.02±0.49 | 4.17±0.62 |
乙醇胺Ethanolamine | 2.28±0.10 ab | 2.10±0.19 b | 2.08±0.21 b | 2.71±0.09 a |
羟脯氨酸Hydroxyproline | 10.32±1.15 a | 6.94±0.49 b | 6.78±0.35 b | 3.77±0.81 c |
1-甲基组氨酸1-methylhistidine | 2.45±0.30 a | 1.66±0.18 b | 1.16±0.09 b | 0.39±0.24 c |
3-甲基组氨酸3-methylhistidine | 1.48±0.12 ab | 1.37±0.16 ab | 1.20±0.09 b | 1.66±0.16 a |
磷酸丝氨酸Phosphoserine | 2.01±0.12 b | 1.50±0.14 c | 1.55±0.05 c | 3.16±0.23 a |
尿素Urea | 103.33±17.57 c | 190.10±10.18 b | 239.03±5.50 ab | 249.41±25.86 a |
Table 3 Developmental changes of serum amino acids derivatives of Jinhua pigs at different growth stages μg·mL-1
项目Item | D45 | D90 | D150 | D270 |
---|---|---|---|---|
γ-氨基正丁酸γ-aminobutyric acid | 0.09±0.01 a | 0.08±0.01 a | 0.10±0.01 a | 0.01±0.01 b |
牛磺酸Taurine | 31.76±2.04 b | 25.81±2.34 b | 29.75±2.00 b | 42.92±3.40 a |
α-氨基己二酸α-aminoadipic acid | 12.54±2.59 a | 9.12±1.04 ab | 7.17±0.53 b | 9.46±1.49 ab |
瓜氨酸Citrulline | 9.12±0.65 b | 9.82±0.63 b | 13.80±1.21 a | 11.40±1.46 ab |
鸟氨酸Ornithine | 16.08±1.24 a | 10.80±1.60 b | 13.12±0.94 ab | 12.59±0.96 ab |
胱硫醚Cystathionine | 2.03±0.18 | 1.99±0.32 | 1.84±0.19 | 2.18±0.08 |
α-氨基正丁酸α-aminobutyric acid | 1.71±0.34 | 1.68±0.22 | 1.69±0.17 | 3.17±0.85 |
β-丙氨酸β-alanine | 1.70±0.23 a | 1.68±0.07 a | 1.07±0.03 b | 0.89±0.15 b |
β-氨基异丁酸β-aminoisobutyric acid | 0.01±0.01 | 0.01±0.01 | 0.01±0.01 | 0.32±0.26 |
肌肽Carnosine | 4.62±0.48 | 4.41±0.29 | 5.02±0.49 | 4.17±0.62 |
乙醇胺Ethanolamine | 2.28±0.10 ab | 2.10±0.19 b | 2.08±0.21 b | 2.71±0.09 a |
羟脯氨酸Hydroxyproline | 10.32±1.15 a | 6.94±0.49 b | 6.78±0.35 b | 3.77±0.81 c |
1-甲基组氨酸1-methylhistidine | 2.45±0.30 a | 1.66±0.18 b | 1.16±0.09 b | 0.39±0.24 c |
3-甲基组氨酸3-methylhistidine | 1.48±0.12 ab | 1.37±0.16 ab | 1.20±0.09 b | 1.66±0.16 a |
磷酸丝氨酸Phosphoserine | 2.01±0.12 b | 1.50±0.14 c | 1.55±0.05 c | 3.16±0.23 a |
尿素Urea | 103.33±17.57 c | 190.10±10.18 b | 239.03±5.50 ab | 249.41±25.86 a |
[1] |
ENGELEN M P K J, TEN HAVE G A M, THADEN J J, et al. New advances in stable tracer methods to assess whole-body protein and amino acid metabolism[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2019, 22(5): 337-346.
DOI URL |
[2] | TABE Y, LORENZI P L, KONOPLEVA M. Amino acid metabolism in hematologic malignancies and the era of targeted therapy[J]. Blood, 2019, 134(13): 1014-1023. |
[3] |
MURRAY P J. Amino acid auxotrophy as a system of immunological control nodes[J]. Nature Immunology, 2016, 17(2): 132-139.
DOI URL |
[4] | 肖英平, 陈安国, 代兵, 等. 早期断奶仔猪血浆氨基酸代谢谱动态变化研究[J]. 动物营养学报, 2015, 27(12): 3846-3853. |
XIAO Y P, CHEN A G, DAI B, et al. Dynamic change of plasma amino acid profiles in early weaned piglets[J]. Chinese Journal of Animal Nutrition, 2015, 27(12): 3846-3853. (in Chinese with English abstract) | |
[5] |
KRALL A S, XU S, GRAEBER T G, et al. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor[J]. Nature Communications, 2016, 7: 11457.
DOI URL |
[6] |
KITAJIMA Y, TAKAHASHI H, AKIYAMA T, et al. Supplementation with branched-chain amino acids ameliorates hypoalbuminemia, prevents sarcopenia, and reduces fat accumulation in the skeletal muscles of patients with liver cirrhosis[J]. Journal of Gastroenterology, 2018, 53(3): 427-437.
DOI URL |
[7] |
HOLEČEK M, VODENIČAROVOVÁ M. Muscle wasting and branched-chain amino acid, alpha-ketoglutarate, and ATP depletion in a rat model of liver cirrhosis[J]. International Journal of Experimental Pathology, 2018, 99(6): 274-281.
DOI URL |
[8] |
RIBEIRO D M, MADEIRA M S, KILMINSTER T, et al. Amino acid profiles of muscle and liver tissues of Australian Merino, Damara and Dorper lambs under restricted feeding[J]. Journal of Animal Physiology and Animal Nutrition, 2019, 103(5): 1295-1302.
DOI URL |
[9] |
CHEN J S, SU W X, KANG B J, et al. Supplementation with α-ketoglutarate to a low-protein diet enhances amino acid synthesis in tissues and improves protein metabolism in the skeletal muscle of growing pigs[J]. Amino Acids, 2018, 50(11): 1525-1537.
DOI URL |
[10] | 肖英平, 王军军, 李天天, 等. 金华猪和长白猪粪便微生物移植小鼠的肠道古菌结构分析[J]. 动物营养学报, 2017, 29(6): 1895-1903. |
XIAO Y P, WANG J J, LI T T, et al. Intestinal Archaea community structure analysis of mice transplanted with Jinhua and Landrace pig feces[J]. Chinese Journal of Animal Nutrition, 2017, 29(6): 1895-1903. (in Chinese with English abstract) | |
[11] |
YANG H, XIAO Y P, WANG J J, et al. Core gut microbiota in Jinhua pigs and its correlation with strain, farm and weaning age[J]. Journal of Microbiology (Seoul, Korea), 2018, 56(5): 346-355.
DOI URL |
[12] |
XIAO Y P, WU T X, SUN J M, et al. Response to dietary L-glutamine supplementation in weaned piglets: a serum metabolomic comparison and hepatic metabolic regulation analysis[J]. Journal of Animal Science, 2012, 90(12): 4421-4430.
DOI URL |
[13] | 朱晓艳, 吕先召, 邱晓东, 等. 苜蓿草粉对育肥猪肉品质、肌肉氨基酸和脂肪酸含量的影响[J]. 动物营养学报, 2018, 30(9): 3473-3482. |
ZHU X Y, LYU X Z, QIU X D, et al. Effects of alfalfa meal on meat quality, muscle amino acids and fatty acids contents of finishing pigs[J]. Chinese Journal of Animal Nutrition, 2018, 30(9): 3473-3482. (in Chinese with English abstract) | |
[14] | 程娜, 牛元力, 李志勋, 等. 大河乌猪MSTN基因第3外显子多态性与眼肌面积的关联分析[J]. 家畜生态学报, 2020, 41(11): 24-28. |
CHENG N, NIU Y L, LI Z X, et al. Association between polymorphism of exon 3 of MSTN gene and eye muscle area in Dahewu pig[J]. Journal of Domestic Animal Ecology, 2020, 41(11): 24-28. (in Chinese with English abstract) | |
[15] |
WANG Y, SHENG H F, HE Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags[J]. Applied and Environmental Microbiology, 2012, 78(23): 8264-8271.
DOI URL |
[16] | WU G Y. Amino acids: metabolism, functions, and nutrition[J]. Amino Acids, 2009, 37(1): 1-17. |
[17] |
HOFFER L J. Human protein and amino acid requirements[J]. Journal of Parenteral and Enteral Nutrition, 2016, 40(4): 460-474.
DOI URL |
[18] | SUMMERMATTER S, BOUZAN A, PIERREL E, et al. Blockade of metallothioneins 1 and 2 increases skeletal muscle mass and strength[J]. Molecular and Cellular Biology, 2017, 37(5): e00305-e00316. |
[19] |
FRONTERA W R, OCHALA J. Skeletal muscle: a brief review of structure and function[J]. Calcified Tissue International, 2015, 96(3): 183-195.
DOI URL |
[20] |
SURYAWAN A, TORRAZZA R M, GAZZANEO M C, et al. Enteral leucine supplementation increases protein synthesis in skeletal and cardiac muscles and visceral tissues of neonatal pigs through mTORC1-dependent pathways[J]. Pediatric Research, 2012, 71(1): 324-331.
DOI URL |
[21] | 布丽君, 解华东, 钟正泽, 等. 荣昌猪不同生长阶段肌肉营养品质的变化规律[J]. 食品工业科技, 2016, 37(7): 75-79. |
BU L J, XIE H D, ZHONG Z Z, et al. Nutritional quality variation of Rongchang pigs at different growth period[J]. Science and Technology of Food Industry, 2016, 37(7): 75-79. (in Chinese with English abstract) | |
[22] |
WEN C, CHEN Y P, WU P, et al. MSTN, mTOR and FoxO4 are involved in the enhancement of breast muscle growth by methionine in broilers with lower hatching weight[J]. PLoS One, 2014, 9(12): e114236.
DOI URL |
[23] |
ZEITZ J O, MOHRMANN S, KÄDING S C, et al. Effects of methionine on muscle protein synthesis and degradation pathways in broilers[J]. Journal of Animal Physiology and Animal Nutrition, 2019, 103(1): 191-203.
DOI URL |
[24] |
ZEITZ J O, KÄDING S C, NIEWALDA I R, et al. Effects of leucine supplementation on muscle protein synthesis and degradation pathways in broilers at constant dietary concentrations of isoleucine and valine[J]. Archives of Animal Nutrition, 2019, 73(2): 75-87.
DOI URL |
[25] |
ZHANG X Y, LIU X T, JIA H M, et al. Valine supplementation in a reduced protein diet regulates growth performance partially through modulation of plasma amino acids profile, metabolic responses, endocrine, and neural factors in piglets[J]. Journal of Agricultural and Food Chemistry, 2018, 66(12): 3161-3168.
DOI URL |
[26] |
DUAN Y H, GUO Q P, WEN C Y, et al. Free amino acid profile and expression of genes implicated in protein metabolism in skeletal muscle of growing pigs fed low-protein diets supplemented with branched-chain amino acids[J]. Journal of Agricultural and Food Chemistry, 2016, 64(49): 9390-9400.
DOI URL |
[27] |
VOLPI E, KOBAYASHI H, SHEFFIELD-MOORE M, et al. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults[J]. The American Journal of Clinical Nutrition, 2003, 78(2): 250-258.
DOI URL |
[28] |
ROSE A J. Amino acid nutrition and metabolism in health and disease[J]. Nutrients, 2019, 11(11): 2623.
DOI URL |
[29] | ESCOBAR J, FRANK J W, SURYAWAN A, et al. Amino acid availability and age affect the leucine stimulation of protein synthesis and eIF4F formation in muscle[J]. American Journal of Physiology Endocrinology and Metabolism, 2007, 293(6): E1615-E1621. |
[30] |
CHEN X L, GUO Y F, JIA G, et al. Arginine promotes skeletal muscle fiber type transformation from fast-twitch to slow-twitch via Sirt1/AMPK pathway[J]. The Journal of Nutritional Biochemistry, 2018, 61: 155-162.
DOI URL |
[31] |
CHEN X L, GUO Y F, JIA G, et al. Arginine promotes slow myosin heavy chain expression via Akirin2 and the AMP-activated protein kinase signaling pathway in porcine skeletal muscle satellite cells[J]. Journal of Agricultural and Food Chemistry, 2018, 66(18): 4734-4740.
DOI URL |
[32] |
HU C J, LI F N, DUAN Y H, et al. Leucine alone or in combination with glutamic acid, but not with arginine, increases biceps femoris muscle and alters muscle AA transport and concentrations in fattening pigs[J]. Journal of Animal Physiology and Animal Nutrition, 2019, 103(3): 791-800.
DOI URL |
[33] |
YIN Y L, YAO K, LIU Z J, et al. Supplementing L-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs[J]. Amino Acids, 2010, 39(5): 1477-1486.
DOI URL |
[1] | CHU Xiao-hong;HU Jin-ping;WENG Jing-qiang;XU Ru-hai;HUANG Shao-zhen. Cloning and mapping of PYY gene in Jinhua pigs [J]. , 2009, 21(05): 0-445. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||