Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (4): 695-705.DOI: 10.3969/j.issn.1004-1524.2022.04.05
• Animal Science • Previous Articles Next Articles
YU Yanling1(), LUO Honglin1, LUO Hui2, FENG Pengfei1, PAN Chuanyan1, SONG Manling1, XIAO Rui1, ZHANG Yongde1,*(
)
Received:
2020-10-13
Online:
2022-04-25
Published:
2022-04-28
Contact:
ZHANG Yongde
CLC Number:
YU Yanling, LUO Honglin, LUO Hui, FENG Pengfei, PAN Chuanyan, SONG Manling, XIAO Rui, ZHANG Yongde. Genome-wide identification and expression of MRF gene family in embryonic development of Trachinotus ovatus[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 695-705.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.04.05
引物名称Primer | 上游引物Forward primer (5'-3') | 下游引物Reverse primer (5'-3') |
---|---|---|
MyoD1 | AACGCCATCAGCTACATCGAG | ACAGGTGGGGCCGTTAAAATC |
MyoD2 | CGGCCTACTGAAGCCCGAA | CTCATGGTTGCTGCTTTTCTCC |
Myf5 | AAGAACGAGAGTTTGGGCGA | AGGACGTGGTATATGGGCCT |
Myf6 | TCAGCTACATCGAGCGGTT | TCCAGTGGTACTCATGACCG |
MyoG | CTTCTACGAGGGAGGGGACA | GCTGGATGGAGAGGCTTTGT |
18S rRNA | GACTCGGGGAGGTAGTGACG | AGATACGCTATTGGAGCTGGAA |
Table 1 qRT-PCR primers used for T. ovatus MRF family genes
引物名称Primer | 上游引物Forward primer (5'-3') | 下游引物Reverse primer (5'-3') |
---|---|---|
MyoD1 | AACGCCATCAGCTACATCGAG | ACAGGTGGGGCCGTTAAAATC |
MyoD2 | CGGCCTACTGAAGCCCGAA | CTCATGGTTGCTGCTTTTCTCC |
Myf5 | AAGAACGAGAGTTTGGGCGA | AGGACGTGGTATATGGGCCT |
Myf6 | TCAGCTACATCGAGCGGTT | TCCAGTGGTACTCATGACCG |
MyoG | CTTCTACGAGGGAGGGGACA | GCTGGATGGAGAGGCTTTGT |
18S rRNA | GACTCGGGGAGGTAGTGACG | AGATACGCTATTGGAGCTGGAA |
蛋白质名称 Protein name | 蛋白质编号 Locus ID | 蛋白质长度 Size/aa | 相对分子质量 Molecular weight/u | 等电点 Pi | 不稳定指数 Instability index | 疏水性均值 GRAVY |
---|---|---|---|---|---|---|
ToMyoD1 | EVM0022498 | 297 | 32 206.38 | 5.33 | 71.51 | -0.591 |
ToMyoD2 | EVM0018159 | 263 | 28 731.83 | 5.87 | 66.57 | -0.634 |
ToMyf5 | EVM0020882 | 240 | 26 187.14 | 6.23 | 89.12 | -0.594 |
ToMyf6 | EVM0005068 | 231 | 25 542.27 | 5.93 | 65.35 | -0.849 |
ToMyoG | EVM0008148 | 250 | 27 421.64 | 6.33 | 65.97 | -0.650 |
Table 2 Physicochemical properties of MRF family proteins in T. ovatus
蛋白质名称 Protein name | 蛋白质编号 Locus ID | 蛋白质长度 Size/aa | 相对分子质量 Molecular weight/u | 等电点 Pi | 不稳定指数 Instability index | 疏水性均值 GRAVY |
---|---|---|---|---|---|---|
ToMyoD1 | EVM0022498 | 297 | 32 206.38 | 5.33 | 71.51 | -0.591 |
ToMyoD2 | EVM0018159 | 263 | 28 731.83 | 5.87 | 66.57 | -0.634 |
ToMyf5 | EVM0020882 | 240 | 26 187.14 | 6.23 | 89.12 | -0.594 |
ToMyf6 | EVM0005068 | 231 | 25 542.27 | 5.93 | 65.35 | -0.849 |
ToMyoG | EVM0008148 | 250 | 27 421.64 | 6.33 | 65.97 | -0.650 |
Fig.3 Domain and conserved motif of MRF gene family in T.ovatus a, Domain and conserved motif position of MRF family genes; b, Conserved motif composition of MRF family genes.
物种 Species | 分类 Taxonomy | 基因名称 Gene name | 蛋白质编号 Locus ID | 蛋白质长度 Size/aa |
---|---|---|---|---|
高体鰤 | 鲹形目Carangiformes; | SdMyoD1 | ENSSDUP00000023227 | 298 |
S. dumerili | 鲹科Carangidae; | SdMyoD2 | ENSSDUP00000025164 | 262 |
鰤属Seriola | SdMyf5 | ENSSDUP00000025182 | 240 | |
SdMyf6 | ENSSDUP00000025208 | 238 | ||
SdMyoG | ENSSDUP00000002433 | 250 | ||
黄尾鰤 | 鲹形目Carangiformes; | SlMyoD1 | ENSSLDP00000028917 | 298 |
S. lalandi dorsalis | 鲹科Carangidae; | SlMyoD2 | ENSSLDP00000027557 | 263 |
鰤属Seriola | SlMyf5 | ENSSLDP00000024335 | 240 | |
SlMyf6 | ENSSLDP00000024364 | 239 | ||
SlMyoG | ENSSLDP00000009264 | 250 | ||
半滑舌鳎 | 鲽形目Pleuronectiformes; | CsMyoD1 | ENSCSEP00000003405 | 296 |
C. semilaevis | 舌鳎科Cynoglossidae; | CsMyoD2 | ENSCSEP00000016973 | 214 |
舌鳎属Cynoglossus | CsMyf5 | ENSCSEP00000006862 | 246 | |
CsMyf6 | ENSCSEP00000006878 | 241 | ||
CsMyoG | ENSCSEP00000007229 | 243 | ||
大菱鲆 | 鲽形目Pleuronectiformes; | SmMyoD1 | ENSSMAP00000005978 | 297 |
S. maximus | 菱鲆科Scophthalmidae; | SmMyoD2 | ENSSMAP00000010597 | 265 |
菱鲆属 Scophthalmus | SmMyf5 | ENSSMAP00000007369 | 297 | |
SmMyf6 | ENSSMAP00000007390 | 269 | ||
SmMyoG | ENSSMAP00000010312 | 246 |
Table 3 Information of the MRF family genes in four fish species
物种 Species | 分类 Taxonomy | 基因名称 Gene name | 蛋白质编号 Locus ID | 蛋白质长度 Size/aa |
---|---|---|---|---|
高体鰤 | 鲹形目Carangiformes; | SdMyoD1 | ENSSDUP00000023227 | 298 |
S. dumerili | 鲹科Carangidae; | SdMyoD2 | ENSSDUP00000025164 | 262 |
鰤属Seriola | SdMyf5 | ENSSDUP00000025182 | 240 | |
SdMyf6 | ENSSDUP00000025208 | 238 | ||
SdMyoG | ENSSDUP00000002433 | 250 | ||
黄尾鰤 | 鲹形目Carangiformes; | SlMyoD1 | ENSSLDP00000028917 | 298 |
S. lalandi dorsalis | 鲹科Carangidae; | SlMyoD2 | ENSSLDP00000027557 | 263 |
鰤属Seriola | SlMyf5 | ENSSLDP00000024335 | 240 | |
SlMyf6 | ENSSLDP00000024364 | 239 | ||
SlMyoG | ENSSLDP00000009264 | 250 | ||
半滑舌鳎 | 鲽形目Pleuronectiformes; | CsMyoD1 | ENSCSEP00000003405 | 296 |
C. semilaevis | 舌鳎科Cynoglossidae; | CsMyoD2 | ENSCSEP00000016973 | 214 |
舌鳎属Cynoglossus | CsMyf5 | ENSCSEP00000006862 | 246 | |
CsMyf6 | ENSCSEP00000006878 | 241 | ||
CsMyoG | ENSCSEP00000007229 | 243 | ||
大菱鲆 | 鲽形目Pleuronectiformes; | SmMyoD1 | ENSSMAP00000005978 | 297 |
S. maximus | 菱鲆科Scophthalmidae; | SmMyoD2 | ENSSMAP00000010597 | 265 |
菱鲆属 Scophthalmus | SmMyf5 | ENSSMAP00000007369 | 297 | |
SmMyf6 | ENSSMAP00000007390 | 269 | ||
SmMyoG | ENSSMAP00000010312 | 246 |
Fig.7 Expression pattern of MRF family genes in different developmental stages of T. ovatus embryos The bars without the same letters meant the significant difference (P<0.05).
[1] |
RAJESH M, KAMALAM B S, CIJI A, et al. Molecular characterisation and transcriptional regulation of muscle growth regulatory factors myogenin and myogenic factor 6 in the Trans-Himalayan cyprinid fish Schizothorax richardsonii[J]. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 231: 188-200.
DOI URL |
[2] | ZAMMIT P S. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis[J]. Seminars in Cell & Developmental Biology, 2017, 72: 19-32. |
[3] |
BUCKINGHAM M, RIGBY P W J. Gene regulatory networks and transcriptional mechanisms that control myogenesis[J]. Developmental Cell, 2014, 28(3): 225-238.
DOI URL |
[4] | HERNÁNDEZ-HERNÁNDEZ J M, GARCÍA-GONZÁLEZ E G, BRUN C E, et al. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration[J]. Seminars in Cell & Developmental Biology, 2017, 72: 10-18. |
[5] | BENTZINGER C F, WANG Y X, RUDNICKI M A. Building muscle: molecular regulation of myogenesis[J]. Cold Spring Harbor Perspectives in Biology, 2012, 4(2): a008342. |
[6] |
ZHAO X, YU Q, HUANG L, et al. Patterns of positive selection of the myogenic regulatory factor gene family in vertebrates[J]. PLoS One, 2014, 9(3): e92873.
DOI URL |
[7] |
ASFOUR H A, ALLOUH M Z, SAID R S. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery[J]. Experimental Biology and Medicine (Maywood, N J), 2018, 243(2): 118-128.
DOI URL |
[8] |
OZERNYUK N D, MYUGE N S. Evolutional principles of homology in regulatory genes of myogenesis[J]. Biology Bulletin, 2012, 39(4): 316-322.
DOI URL |
[9] |
MASSARI M E, MURRE C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms[J]. Molecular and Cellular Biology, 2000, 20(2): 429-440.
DOI URL |
[10] |
FONG A P, YAO Z Z, ZHONG J W, et al. Genetic and epigenetic determinants of neurogenesis and myogenesis[J]. Developmental Cell, 2012, 22(4): 721-735.
DOI URL |
[11] |
FONG A P, YAO Z Z, ZHONG J W, et al. Conversion of MyoD to a neurogenic factor: binding site specificity determines lineage[J]. Cell Reports, 2015, 10(12): 1937-1946.
DOI URL |
[12] | 刘宁, 邓雪娟, 王建平, 等. 生肌调节因子及肌生成调控因素研究进展[J]. 中国畜牧兽医, 2015, 42(10): 2644-2649. |
LIU N, DENG X J, WANG J P, et al. Research progress on regulation factors of myogenic regulatory factors and myogenesis[J]. China Animal Husbandry & Veterinary Medicine, 2015, 42(10): 2644-2649. (in Chinese with English abstract) | |
[13] | 陈洪强, 夏惠, 王进, 等. 葡萄STS基因家族的鉴定与表达分析[J]. 浙江农业学报, 2019, 31(3): 401-407. |
CHEN H Q, XIA H, WANG J, et al. Identification and expression analysis of STS gene family in grape[J]. Acta Agriculturae Zhejiangensis, 2019, 31(3): 401-407. (in Chinese with English abstract) | |
[14] |
CHEN X J, ZHANG X Q, HUANG S, et al. Selection of reference genes for quantitative real-time RT-PCR on gene expression in golden pompano (Trachinotus ovatus)[J]. Polish Journal of Veterinary Sciences, 2017, 20(3): 583-594.
DOI URL |
[15] | FUJITA R, CRIST C. Translational control of the myogenic program in developing, regenerating, and diseased skeletal muscle[J]. Current Topics in Developmental Biology, 2018, 126: 67-98. |
[16] |
CAMPOS C, VALENTE L M P, CONCEIÇÃO L E C, et al. Incubation temperature induces changes in muscle cellularity and gene expression in Senegalese sole (Solea senegalensis)[J]. Gene, 2013, 516(2): 209-217.
DOI URL |
[17] |
CAMPOS C, VALENTE L, CONCEIÇÃO L, et al. Temperature affects methylation of the myogenin putative promoter, its expression and muscle cellularity in Senegalese sole larvae[J]. Epigenetics, 2013, 8(4): 389-397.
DOI URL |
[18] | LIN Y, ZHOU J, LI R, et al. MRF gene family in Schizothorax prenanti: molecular cloning, tissue expression, and mRNA expression in muscle development[J]. Turkish Journal of Fisheries & Aquatic Sciences, 2016, 16(2):461-467. |
[19] |
CHUROVA M V, MESHCHERYAKOVA O V, RUCHEV M, et al. Age-and stage-dependent variations of muscle-specific gene expression in brown trout Salmo trutta L[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2017, 211: 16-21.
DOI URL |
[20] | 陈敦学. 黄鳝生肌调节因子(MRFs)家族基因的克隆与营养调控及进化分析[D]. 武汉: 华中农业大学, 2015. |
CHEN D X. Cloning and expression of the MRFs in the monoptepus albus and analysis the evolutionary relationship based on complete mitochondrial DNA[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese with English abstract) | |
[21] | 沈伟良, 钱宝英, 薛良义. 饥饿和复投喂对大黄鱼(Larimichthys crocea) IGF-Ⅰ、mTOR、MyoD和MHC基因表达的影响[J]. 海洋与湖沼, 2019, 50(4): 894-902. |
SHEN W L, QIAN B Y, XUE L Y. Effects of starvation and refeeding on the expression of IGF-Ⅰ, mTOR, MyoD, and MHC in large yellow croaker Larimichthys crocea[J]. Oceanologia et Limnologia Sinica, 2019, 50(4): 894-902. (in Chinese with English abstract) | |
[22] |
ZHANG D C, GUO L, GUO H Y, et al. Chromosome-level genome assembly of golden pompano (Trachinotus ovatus) in the family Carangidae[J]. Scientific Data, 2019, 6: 216.
DOI URL |
[23] |
CARVAJAL J J, KEITH A, RIGBY P W J. Global transcriptional regulation of the locus encoding the skeletal muscle determination genes Mrf4 and Myf5[J]. Genes & Development, 2008, 22(2): 265-276.
DOI URL |
[24] |
AASE-REMEDIOS M E, COLL-LLADÓ C, FERRIER D E K. More than one-to-four via 2R: evidence of an independent amphioxus expansion and two-gene ancestral vertebrate state for MyoD-related myogenic regulatory factors (MRFs)[J]. Molecular Biology and Evolution, 2020, 37(10): 2966-2982.
DOI URL |
[25] |
OLIANI L C, LIDANI K C F, GABRIEL J E. Differentiated evolutionary relationships among chordates from comparative alignments of multiple sequences of MyoD and MyoG myogenic regulatory factors[J]. Genetics and Molecular Research, 2015, 14(4): 12561-12566.
DOI URL |
[26] | 冀云燕, 薛霖莉, 曹靖, 等. 小鼠不同生长阶段骨骼肌组织中Myf5的表达[J]. 山西农业科学, 2019, 47(9): 1532-1536. |
JI Y Y, XUE L L, CAO J, et al. Expression of Myf in skeletal muscle tissues of mice at different growth stages[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(9): 1532-1536. (in Chinese with English abstract) | |
[27] | 李虹辉, 黄雪晴, 高鹏, 等. MRFs家族基因在翘嘴鳜成体不同组织及器官中的表达特征[J]. 基因组学与应用生物学, 2019, 38(1): 51-55. |
LI H H, HUANG X Q, GAO P, et al. Expression characteristics of myogenic regulatory factors in different tissues and organs of adult mandarin fish(Siniperca chuatsi)[J]. Genomics and Applied Biology, 2019, 38(1): 51-55. (in Chinese with English abstract) | |
[28] |
ZHU X, LI Y L, LIU L, et al. Molecular characterization of Myf5 and comparative expression patterns of myogenic regulatory factors in Siniperca chuatsi[J]. Gene Expression Patterns, 2016, 20(1): 1-10.
DOI URL |
[29] |
GANASSI M, BADODI S, ORTUSTE QUIROGA H P, et al. Myogenin promotes myocyte fusion to balance fibre number and size[J]. Nature Communications, 2018, 9(1): 4232.
DOI URL |
[30] | 杨建, 佟广香, 郑先虎, 等. 肌间刺缺失突变对斑马鱼胚胎发育过程中肌肉发育的影响[J]. 中国水产科学, 2019, 26(2): 296-303. |
YANG J, TONG G X, ZHENG X H, et al. Comparative analysis of embryonic muscle development in wildtype zebrafish and its intermuscular bone deficiency mutant[J]. Journal of Fishery Sciences of China, 2019, 26(2): 296-303. (in Chinese with English abstract)
DOI URL |
|
[31] |
WEI S, DAI M M, LIU Z T, et al. The guanine nucleotide exchange factor Net1 facilitates the specification of dorsal cell fates in zebrafish embryos by promoting maternal β-catenin activation[J]. Cell Research, 2017, 27(2): 202-225.
DOI URL |
[32] |
ARNOLD S J, ROBERTSON E J. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo[J]. Nature Reviews Molecular Cell Biology, 2009, 10(2): 91-103.
DOI URL |
[33] | KOJIMA Y, TAM O H, TAM P P L. Timing of developmental events in the early mouse embryo[J]. Seminars in Cell & Developmental Biology, 2014, 34: 65-75. |
[34] |
SOLNICA-KREZEL L, SEPICH D S. Gastrulation: making and shaping germ layers[J]. Annual Review of Cell and Developmental Biology, 2012, 28: 687-717.
DOI URL |
[35] |
PENG G D, SUO S B, CHEN J, et al. Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo[J]. Developmental Cell, 2016, 36(6): 681-697.
DOI URL |
[36] |
OSORNO R, TSAKIRIDIS A, WONG F, et al. The developmental dismantling of pluripotency is reversed by ectopic Oct 4 expression[J]. Development (Cambridge, England), 2012, 139(13): 2288-2298.
DOI URL |
[37] |
OSBORN D P S, LI K Y, CUTTY S J, et al. Fgf-driven Tbx protein activities directly induce myf5 and myod to initiate zebrafish myogenesis[J]. bioRxiv, 2019, DOI: 10.1101/766501.
DOI |
[1] | LIU Tongjin, XU Mingjie, WANG Jinglei, LIU Liangfeng, CUI Qunxiang, BAO Chonglai, WANG Changyi. Genome-wide identification and expression analysis of ALMT gene family in radish [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 746-755. |
[2] | FAN Youcun, ZHANG Hongyan, YANG Xusheng, HAN Qian, LIU Yujiao, WU Xuexia. Cloning, bioinformatics analysis and gene expression pattern of VfHKT1; 1 in Vicia faba L. [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 756-765. |
[3] | WANG Qiankun, ZHANG Xiaohui, PANG Youzhi, QI Yanxia, LEI Ying, BAI Junyan, HU Yunqi, ZHAO Yiwei, YUAN Zhiwen, WANG Tao. Screening of genes related to auto-sexing on feather color based on RNA-seq technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 498-506. |
[4] | YAN Ning, ZHANG Han, DONG Hongtu, KANG Kai, LUO Bin. Wheat variety recognition method based on same position segmentation of transmitted light and reflected light images [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 590-598. |
[5] | JIA Liqiang, ZHAO Qiufang, CHEN Shu, DING Bo. Expression analysis of bZIP G subfamily genes in maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 221-231. |
[6] | ZHAO Guofu, YAN Yaqin, WANG Jinglei, WEI Qingzhen, BAO Chonglai. Genome-wide identification and expression analysis of LOX gene family in eggplant (Solanum melongena) [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1025-1034. |
[7] | ZHU Zhiwei, CHEN Xiaoyu, YU Fuxian, ZHANG Liang, HUANG Jing, WANG Zhigang, LAI Jianbing, SHEN Shunxin, YIN Wenbin, PAN Jianzhi. Effect of fixed-time artificial insemination on earlier embryonic development and reproduction performance in gilts [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 794-800. |
[8] | YANG Xinxia, ZHANG Bin. Identification of soybean LAZ1 gene family and functional analysis of GmLAZ1-9 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 586-594. |
[9] | HUANG Yongming, SONG Fang, WANG Ce, YAO Jinglei, WANG Zhijing, HE Ligang, WU Liming, JIANG Yingchun. Effects of root pruning on growth and expression of related genes in Poncirus trifoliata [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 270-277. |
[10] | BAI Hao, LI Xiaofan, ZHONG Li, SONG Qianqian, JIANG Yong, ZHANG Yang, WANG Zhixiu, XU Qi, CHANG Guobin, CHEN Guohong. Study on depositions of mineral elements and expression levels of key genes in different tissues of Liancheng white ducks [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2264-2274. |
[11] | DU Jinliang, CAO Liping, JIA Rui, GU Zhengyan, HE Qin, XU Pao, JENEY Galina, MA Yuzhong, YIN Guojun. Protective effects of Glycyrrhiza total flavones on liver injury of tilapia (Oreochromis niloticus) under high fat condition [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1826-1835. |
[12] | YANG Haijian, ZHANG Yungui, ZHOU Xinzhi, HONG Lin, YANG Lei, PENG Fangfang, WANG Wu. Analysis of anthocyanin synthesis and related gene expression in blood orange peel under different PE materials shading during fruit coloring period [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1861-1869. |
[13] | XU Xiuhong, LIU Jinliang, LI Dongcheng, LIU Renxiang. Analysis of nicotine content and related gene expression in different types of tobacco germplasm [J]. , 2020, 32(9): 1555-1563. |
[14] | LIU Kunju, ZHANG Xiaohui, PANG Youzhi, ZHAO Shujuan, QI Yanxia, WANG Qiankun. Relationship of plumage color with expression and polymorphism of GNAS gene in Korean quail [J]. , 2020, 32(8): 1369-1377. |
[15] | YUE Jianhua, DONG Yan, LI Wenyang, LI Meng, ZHANG Yan. Effects of pH on physiological characters in somatic embryo induction stage of Agapanthus praecox [J]. , 2020, 32(8): 1405-1414. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||