Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (2): 270-277.DOI: 10.3969/j.issn.1004-1524.2021.02.10
• Horticultural Science • Previous Articles Next Articles
HUANG Yongming(), SONG Fang, WANG Ce, YAO Jinglei, WANG Zhijing, HE Ligang, WU Liming, JIANG Yingchun*(
)
Received:
2020-05-18
Online:
2021-02-25
Published:
2021-02-25
Contact:
JIANG Yingchun
CLC Number:
HUANG Yongming, SONG Fang, WANG Ce, YAO Jinglei, WANG Zhijing, HE Ligang, WU Liming, JIANG Yingchun. Effects of root pruning on growth and expression of related genes in Poncirus trifoliata[J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 270-277.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.02.10
引物名称 Primer name | 引物序列 Primer sequences(5'-3') |
---|---|
IAA11-F | TGTTCCACCAGCCAACAACT |
IAA11-R | AGCCAAGAAACATGCCCCAT |
IAA13-F | ACTGGGCTTGAGTCTTGGTG |
IAA13-R | ACTAGGTCTCCTCCCAGCAG |
CYP2-F | GTTCTTCGTCTGTACGGCCA |
CYP2-R | GAGCTGGACCCCACTTTCTC |
HOX1-F | AAGCCCAAGAAGCGGTATCC |
HOX1-R | ATCAACGGTTGGCTCCCATT |
eIF1α-F | CCCCAAAGAATCAGAAACCAT |
eIF1α-R | TGCCGAGCATACGAAGGAC |
Table 1 Primer sequences
引物名称 Primer name | 引物序列 Primer sequences(5'-3') |
---|---|
IAA11-F | TGTTCCACCAGCCAACAACT |
IAA11-R | AGCCAAGAAACATGCCCCAT |
IAA13-F | ACTGGGCTTGAGTCTTGGTG |
IAA13-R | ACTAGGTCTCCTCCCAGCAG |
CYP2-F | GTTCTTCGTCTGTACGGCCA |
CYP2-R | GAGCTGGACCCCACTTTCTC |
HOX1-F | AAGCCCAAGAAGCGGTATCC |
HOX1-R | ATCAACGGTTGGCTCCCATT |
eIF1α-F | CCCCAAAGAATCAGAAACCAT |
eIF1α-R | TGCCGAGCATACGAAGGAC |
检测年份 Detection year | 根系修剪处理 Root prunning treatments | 株高 Plant height/cm | 茎粗 Stem diameter/cm | 鲜重Fresh weight/g | |
---|---|---|---|---|---|
地上部Shoot | 根系Root | ||||
2018 | RP0 | 17.01±2.25 ab | 0.28±0.03 ab | 0.64±0.03 b | 1.27±0.24 b |
RP1 | 18.38±1.88 a | 0.26±0.01 b | 0.65±0.62 ab | 1.11±0.91 ab | |
RP2 | 18.37±1.36 a | 0.31±0.04 a | 0.72±0.20 a | 1.44±0.17 a | |
RP3 | 15.04±1.63 b | 0.28±0.06 ab | 0.48±0.09 b | 0.84±0.10 c | |
2019 | RP0 | 16.15±2.15 bc | 0.27±0.05 b | 0.59±0.18 b | 1.05±0.12 b |
RP1 | 18.07±1.86 a | 0.25±0.01 c | 0.59±0.15 b | 0.94±0.23 bc | |
RP2 | 18.23±1.45 a | 0.31±0.04 a | 0.65±0.18 a | 1.15±0.13 a | |
RP3 | 15.48±1.80 c | 0.28±0.02 ab | 0.54±0.11 b | 0.86±0.24 c |
Table 2 The growth of Poncirus trifoliata seedlings under different root pruning treatments
检测年份 Detection year | 根系修剪处理 Root prunning treatments | 株高 Plant height/cm | 茎粗 Stem diameter/cm | 鲜重Fresh weight/g | |
---|---|---|---|---|---|
地上部Shoot | 根系Root | ||||
2018 | RP0 | 17.01±2.25 ab | 0.28±0.03 ab | 0.64±0.03 b | 1.27±0.24 b |
RP1 | 18.38±1.88 a | 0.26±0.01 b | 0.65±0.62 ab | 1.11±0.91 ab | |
RP2 | 18.37±1.36 a | 0.31±0.04 a | 0.72±0.20 a | 1.44±0.17 a | |
RP3 | 15.04±1.63 b | 0.28±0.06 ab | 0.48±0.09 b | 0.84±0.10 c | |
2019 | RP0 | 16.15±2.15 bc | 0.27±0.05 b | 0.59±0.18 b | 1.05±0.12 b |
RP1 | 18.07±1.86 a | 0.25±0.01 c | 0.59±0.15 b | 0.94±0.23 bc | |
RP2 | 18.23±1.45 a | 0.31±0.04 a | 0.65±0.18 a | 1.15±0.13 a | |
RP3 | 15.48±1.80 c | 0.28±0.02 ab | 0.54±0.11 b | 0.86±0.24 c |
检测年份 Detection year | 根系修剪处理 Root prunning treatments | 每株侧根数 Lateral root number per plant | 根系总长度 Total root length/cm | 表面积 Surface area/cm2 | 平均长度 Average length/cm |
---|---|---|---|---|---|
2018 | RP0 | 148±18 b | 254.37±49.02 b | 21.35±3.08 b | 1.14±0.19 a |
RP1 | 164±21 b | 235.59±38.41 b | 20.06±2.08 b | 1.21±0.0.9 a | |
RP2 | 250±19 a | 355.54±28.34 a | 33.86±3.53 a | 1.31±0.08 a | |
RP3 | 181±23 b | 202.63±16.26 b | 16.83±1.39 b | 1.06±0.13 a | |
2019 | RP0 | 135±11 b | 255.20±6.27 b | 20.67±0.69 b | 1.15±0.12 b |
RP1 | 155±10 b | 230.02±11.16 b | 20.05±0.41 b | 1.18±0.10 b | |
RP2 | 237±23 a | 368.73±14.86 a | 35.43±2.16 a | 1.32±0.06 a | |
RP3 | 179±16 ab | 215.65±17.05 b | 18.75±2.08 b | 1.03±0.08 b |
Table 3 The root architecture system parameters of Poncirus trifoliata seedlings under different root pruning treatments
检测年份 Detection year | 根系修剪处理 Root prunning treatments | 每株侧根数 Lateral root number per plant | 根系总长度 Total root length/cm | 表面积 Surface area/cm2 | 平均长度 Average length/cm |
---|---|---|---|---|---|
2018 | RP0 | 148±18 b | 254.37±49.02 b | 21.35±3.08 b | 1.14±0.19 a |
RP1 | 164±21 b | 235.59±38.41 b | 20.06±2.08 b | 1.21±0.0.9 a | |
RP2 | 250±19 a | 355.54±28.34 a | 33.86±3.53 a | 1.31±0.08 a | |
RP3 | 181±23 b | 202.63±16.26 b | 16.83±1.39 b | 1.06±0.13 a | |
2019 | RP0 | 135±11 b | 255.20±6.27 b | 20.67±0.69 b | 1.15±0.12 b |
RP1 | 155±10 b | 230.02±11.16 b | 20.05±0.41 b | 1.18±0.10 b | |
RP2 | 237±23 a | 368.73±14.86 a | 35.43±2.16 a | 1.32±0.06 a | |
RP3 | 179±16 ab | 215.65±17.05 b | 18.75±2.08 b | 1.03±0.08 b |
检测年份 Detection year | 根系修剪处理 Root pruning treatments | 大量元素含量 Macro-element content/% | 中量元素含量 Secondary element content/% | 微量元素含量 Trace-element content/(mg·kg-1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | B | Fe | Na | Zn | ||
2018 | RP0 | 1.72 ±0.51 c | 0.50 ±0.07 b | 1.46 ±0.27 c | 3.96 ±0.37 c | 1.25 ±0.04 c | 25.37 ±3.96 c | 82.68 ±3.92 c | 73.51 ±21.81 c | 8.39 ±4.17 c |
RP1 | 2.16 ±0.26 ab | 0.59 ±0.07 b | 2.08 ±0.87 b | 4.60 ±1.00 bc | 1.42 ±0.18 bc | 44.61 ±4.34 a | 89.06 ±4.99 bc | 90.38 ±13.75 b | 10.19 ±7.00 bc | |
RP2 | 1.99 ±0.05 b | 0.78 ±0.11 a | 2.67 ±1.08 ab | 7.17 ±0.34 a | 1.61 ±0.21 b | 41.57 ±1.92 ab | 125.17 ±5.18 a | 108.25 ±7.76 a | 19.85 ±3.64 ab | |
RP3 | 2.26 ±0.15 a | 0.72 ±0.04 ab | 3.68 ±0.28 a | 5.95 ±1.24 ab | 1.94 ±0.05 a | 26.85 ±1.96 bc | 114.41 ±6.43 ab | 85.91 ±4.99 bc | 25.19 ±2.02 a | |
2019 | RP0 | 1.91 ±0.02 b | 0.60 ±0.04 c | 2.73 ±1.22 b | 5.49 ±1.24 c | 1.52 ±0.21 b | 28.11 ±6.44 b | 80.50 ±29.82 b | 53.24 ±8.70 b | 11.88 ±6.67 c |
RP1 | 2.23 ±0.02 ab | 0.82 ±0.05 a | 3.07 ±0.19 ab | 6.93 ±1.08 ab | 1.68 ±0.37 ab | 34.36 ±1.11 ab | 87.34 ±15.41 b | 64.35 ±15.65 b | 14.85 ±8.46 bc | |
RP2 | 2.16 ±0.19 b | 0.76 ±0.02 ab | 3.11 ±0.67 a | 7.09 ±0.44 a | 1.70 ±0.10 ab | 40.38 ±2.93 a | 147.03 ±24.8 a | 90.37 ±13.75 a | 27.01 ±3.75 a | |
RP3 | 2.32 ±0.03 a | 0.74 ±0.05 b | 3.17 ±0.71 a | 6.46 ±1.10 bc | 1.80 ±0.18 a | 28.72 ±3.66 b | 98.57 ±12.81 b | 79.38 ±3.51 b | 25.18 ±2.02 ab |
Table 4 The contents of nutrient elements in roots of Poncirus trifoliata seedlings under different root pruning treatments
检测年份 Detection year | 根系修剪处理 Root pruning treatments | 大量元素含量 Macro-element content/% | 中量元素含量 Secondary element content/% | 微量元素含量 Trace-element content/(mg·kg-1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | B | Fe | Na | Zn | ||
2018 | RP0 | 1.72 ±0.51 c | 0.50 ±0.07 b | 1.46 ±0.27 c | 3.96 ±0.37 c | 1.25 ±0.04 c | 25.37 ±3.96 c | 82.68 ±3.92 c | 73.51 ±21.81 c | 8.39 ±4.17 c |
RP1 | 2.16 ±0.26 ab | 0.59 ±0.07 b | 2.08 ±0.87 b | 4.60 ±1.00 bc | 1.42 ±0.18 bc | 44.61 ±4.34 a | 89.06 ±4.99 bc | 90.38 ±13.75 b | 10.19 ±7.00 bc | |
RP2 | 1.99 ±0.05 b | 0.78 ±0.11 a | 2.67 ±1.08 ab | 7.17 ±0.34 a | 1.61 ±0.21 b | 41.57 ±1.92 ab | 125.17 ±5.18 a | 108.25 ±7.76 a | 19.85 ±3.64 ab | |
RP3 | 2.26 ±0.15 a | 0.72 ±0.04 ab | 3.68 ±0.28 a | 5.95 ±1.24 ab | 1.94 ±0.05 a | 26.85 ±1.96 bc | 114.41 ±6.43 ab | 85.91 ±4.99 bc | 25.19 ±2.02 a | |
2019 | RP0 | 1.91 ±0.02 b | 0.60 ±0.04 c | 2.73 ±1.22 b | 5.49 ±1.24 c | 1.52 ±0.21 b | 28.11 ±6.44 b | 80.50 ±29.82 b | 53.24 ±8.70 b | 11.88 ±6.67 c |
RP1 | 2.23 ±0.02 ab | 0.82 ±0.05 a | 3.07 ±0.19 ab | 6.93 ±1.08 ab | 1.68 ±0.37 ab | 34.36 ±1.11 ab | 87.34 ±15.41 b | 64.35 ±15.65 b | 14.85 ±8.46 bc | |
RP2 | 2.16 ±0.19 b | 0.76 ±0.02 ab | 3.11 ±0.67 a | 7.09 ±0.44 a | 1.70 ±0.10 ab | 40.38 ±2.93 a | 147.03 ±24.8 a | 90.37 ±13.75 a | 27.01 ±3.75 a | |
RP3 | 2.32 ±0.03 a | 0.74 ±0.05 b | 3.17 ±0.71 a | 6.46 ±1.10 bc | 1.80 ±0.18 a | 28.72 ±3.66 b | 98.57 ±12.81 b | 79.38 ±3.51 b | 25.18 ±2.02 ab |
Fig.2 The expression profiles of lateral root growth and development related genes of Poncirus trifoliata under different root prunning treatments Different lowercase letters above the columns represent statistically significant (P<0.05) differences among treatments
[1] |
孙敏红, 卢晓鹏, 曹雄军, 等. 不同氮素形态对枳橙幼苗根系生长及氮素吸收动力学特性的影响[J]. 林业科学, 2015,51(12):113-120.
DOI URL |
SUN M H, LU X P, CAO X J, et al. Effect of different nitrogen forms on root growth and dynamic kinetics characteristics for Citrus sinensis × Poncirus trifoliata[J]. Scientia Silvae Sinicae, 2015,51(12):113-120.(in Chinese with English abstract) | |
[2] | 杨喜田, 陈久美, 唐妍, 等. 侧柏幼苗切根后根系内源激素含量的变化[J]. 河南农业大学学报, 2011,45(1):66-70. |
YANG X T, CHEN J M, TANG Y, et al. Changes of endogenous phytohormone contents in Platycladus orientalis roots after root-cutting[J]. Journal of Henan Agricultural University, 2011,45(1):66-70.(in Chinese with English abstract) | |
[3] |
VILCHES-BARRO A, MAIZEL A. Talking through walls: mechanisms of lateral root emergence in Arabidopsis thaliana[J]. Current Opinion in Plant Biology, 2015,23:31-38.
DOI URL PMID |
[4] |
DE SMET I, WHITE P J, BENGOUGH A G, et al. Analyzing lateral root development: how to move forward[J]. The Plant Cell, 2012,24(1):15-20.
DOI URL PMID |
[5] | 邢国芳, 冯万军, 牛旭龙, 等. 植物激素调控侧根发育的生理机制[J]. 植物生理学报, 2015,51(12):2101-2108. |
XING G F, FENG W J, NIU X L, et al. Physiological mechanisms in phytohormone regulation of plant lateral root development[J]. Plant Physiology Journal, 2015,51(12):2101-2108.(in Chinese with English abstract) | |
[6] |
MUCHA J, JAGODZINSKI A M, BULAJ B, et al. Functional response of Quercus robur L. to taproot pruning: a 5-year case study[J]. Annals of Forest Science, 2018,75(1):1-12.
DOI URL |
[7] | 张肖凌, 赵永平. 葡萄试管苗根系修剪及药剂处理对其移栽成活率的影响[J]. 北方园艺, 2010(24):59-60. |
ZHANG X L, ZHAO Y P. Effects of root system pruning and chemical treatment on transplanting survival rate of grape plantlets in vitro[J]. Northern Horticulture, 2010(24):59-60.(in Chinese with English abstract) | |
[8] | 许建兰, 马瑞娟, 俞明亮, 等. 不同断根方式对桃胚培苗移栽的影响[J]. 江西农业学报, 2016,28(9):23-26. |
XU J L, MA R J, YU M L, et al. Effects of different root-cutting modes on transplanting of embryo-culture peach seedlings[J]. Acta Agriculturae Jiangxi, 2016,28(9):23-26.(in Chinese with English abstract) | |
[9] | 吴娇娇, 张谦, 刘士平, 等. 细胞周期因子与植物根系发育[J]. 植物生理学通讯, 2008,44(4):621-629. |
WU J J, ZHANG Q, LIU S P, et al. Cell cycle factors and plant root development[J]. Plant Physiology Communications, 2008,44(4):621-629.(in Chinese with English abstract) | |
[10] |
TWORKOSKI T, MILLER S, SCORZA R. Relationship of pruning and growth morphology with hormone ratios in shoots of pillar and standard peach trees[J]. Journal of Plant Growth Regulation, 2006,25(2):145-155.
DOI URL |
[11] |
VYSOTSKAYA L B, TIMERGALINA L N, SIMONYAN M V, et al. Growth rate, IAA and cytokinin content of wheat seedling after root pruning[J]. Plant Growth Regulation, 2001,33(1):51-57.
DOI URL |
[12] |
MENG F N, XIANG D, ZHU J S, et al. Molecular mechanisms of root development in rice[J]. Rice, 2019,12(1):1-10.
DOI URL PMID |
[13] |
ZHU Z X, LIU Y, LIU S J, et al. A gain-of-function mutation in OsIAA11 affects lateral root development in rice[J]. Molecular Plant, 2012,5(1):154-161.
DOI URL |
[14] |
KITOMI Y, INAHASHI H, TAKEHISA H, et al. OsIAA13-mediated auxin signaling is involved in lateral root initiation in rice[J]. Plant Science, 2012,190:116-122.
DOI URL |
[15] |
KANG B, ZHANG Z C, WANG L L, et al. OsCYP2, a chaperone involved in degradation of auxin-responsive proteins, plays crucial roles in rice lateral root initiation[J]. The Plant Journal, 2013,74(1):86-97.
DOI URL PMID |
[16] |
GUO K, XIA K, YANG Z M. Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide[J]. Journal of Experimental Botany, 2008,59(12):3443-3452.
DOI URL PMID |
[17] |
HAN B, XU S, XIE Y J, et al. ZmHO-1, a maize haem oxygenase-1 gene, plays a role in determining lateral root development[J]. Plant Science, 2012,184:63-74.
DOI URL |
[18] |
MARHAVYP, MONTESINOS J C, ABUZEINEH A, et al. Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root initiation[J]. Genes & Development, 2016,30(4):471-483.
DOI URL PMID |
[19] |
FUKAKI H, TASAKA M. Hormone interactions during lateral root formation[J]. Plant Molecular Biology, 2009,69(4):437-449.
DOI URL |
[20] |
LAVENUS J, GOH T, ROBERTS I, et al. Lateral root development in Arabidopsis: fifty shades of auxin[J]. Trends in Plant Science, 2013,18(8):450-458.
DOI URL PMID |
[21] |
LASKOWSKI M, TEN TUSSCHER K H . Periodic lateral root priming: what makes it tick?[J]. The Plant Cell, 2017,29(3):432-444.
DOI URL PMID |
[22] | 井大炜, 王明友, 马海林, 等. 断根对杨树切口处细根序级结构与形态特征的影响[J]. 应用与环境生物学报, 2018,24(5):1146-1151. |
JING D W, WANG M Y, MA H L, et al. Effect of root pruning on the architecture and morphological characteristics of different fine root orders in the incision of poplar trees[J]. Chinese Journal of Applied and Environmental Biology, 2018,24(5):1146-1151.(in Chinese with English abstract) | |
[23] | 刘方春, 马海林, 杜振宇, 等. 杨树切口处不同根序细根内源激素与氮代谢关键酶对断根的响应[J]. 生态环境学报, 2018,27(12):2234-2242. |
LIU F C, MA H L, DU Z Y, et al. Response of endogenous hormones and key enzyme of nitrogen metabolism among different branch orders of fine root in the incision of poplar to root pruning[J]. Ecology and Environmental Sciences, 2018,27(12):2234-2242.(in Chinese with English abstract) | |
[24] |
SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative Ct method[J]. Nature Protocols, 2008,3(6):1101.
DOI URL PMID |
[25] |
PFAFFL M W. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research, 2001,29(9):e45.
DOI URL PMID |
[26] | 易健明, 屈武斌, 张成岗. 实时荧光定量PCR的数据分析方法[J]. 生物技术通讯, 2015,26(1):140-145. |
YI J M, QU W B, ZHANG C G. Data analysis methods of real-time fluorescent quantitative PCR[J]. Letters in Biotechnology, 2015,26(1):140-145.(in Chinese with English abstract) | |
[27] | 郝向春, 贾军, 韩丽君, 等. 断根处理对丽豆幼苗生长及根系的影响[J]. 山西林业科技, 2015,44(2):20-22. |
HAO X C, JIA J, HAN L J, et al. Influence of root cutting on growth and root of Calophaca sinica[J]. Shanxi Forestry Science and Technology, 2015,44(2):20-22.(in Chinese with English abstract) | |
[28] |
ZHANG R, PENG F R, YAN P, et al. Effects of root pruning on germinated pecan seedlings[J]. Hortscience, 2015,50(10):1549-1552.
DOI URL |
[29] |
LIU J J, BLOOMBERG M, LI G L, et al. Effects of copper root pruning and radicle pruning on first-season field growth and nutrient status of Chinese cork oak seedlings[J]. New Forests, 2016,47(5):715-729.
DOI URL |
[30] |
BUDIARTO R, POERWANTO R, SANTOSA E, et al. A review of root pruning to regulate Citrus growth[J]. Journal of Tropical Crop Science, 2019,6(1):1-7.
DOI URL |
[31] |
XU P, ZHAO P X, CAI X T, et al. Integration of jasmonic acid and ethylene into auxin signaling in root development[J]. Frontiers in Plant Science, 2020,11:271.
DOI URL PMID |
[32] |
BRÉDA N, HUC R, GRANIER, A, et al. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences[J]. Annals of Forest Science, 2006,63(6):625-644.
DOI URL |
[33] |
XUAN W, ZHU F Y, XU S, et al. The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process[J]. Plant Physiology, 2008,148(2):881-893.
DOI URL PMID |
[34] |
CHEN Y H, CHAO Y Y, HSU Y Y, et al. Heme oxygenase is involved in nitric oxide-and auxin-induced lateral root formation in rice[J]. Plant Cell Reports, 2012,31(6):1085-1091.
DOI URL |
[35] |
HSU Y Y, CHAO Y Y, KAO C H. Methyl jasmonate-induced lateral root formation in rice: the role of heme oxygenase and calcium[J]. Journal of Plant Physiology, 2013,170(1):63-69.
DOI URL PMID |
[36] | JING H W, YANG X L, ZHANG J, et al. Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling[J]. Nature Communications, 6(1):7395. |
[1] | XU Xiuhong, LIU Jinliang, LI Dongcheng, LIU Renxiang. Analysis of nicotine content and related gene expression in different types of tobacco germplasm [J]. , 2020, 32(9): 1555-1563. |
[2] | LIU Kunju, ZHANG Xiaohui, PANG Youzhi, ZHAO Shujuan, QI Yanxia, WANG Qiankun. Relationship of plumage color with expression and polymorphism of GNAS gene in Korean quail [J]. , 2020, 32(8): 1369-1377. |
[3] | LI Qiuling, QI Ying, WANG Chen, ZHANG Yiming, WANG Xinyu, SHANG Xiaolan, JIA Yonghong, LI Meiru, CHU Mingxing. Effect of heat stress on gene expressions and signaling pathways of mammary gland in Chinese Holstein [J]. , 2020, 32(5): 770-778. |
[4] | LU Yi, GAO Youling, WANG Shuitao, HE Shengsheng. Effects of microRNA-499 on lipid metabolism-related gene expression in Pelodiscus sinensis [J]. , 2020, 32(5): 798-803. |
[5] | LI Weifang, WANG Chunlei, WANG Ni, DENG Yuzheng, YAO Yandong, WEI Lijuan, LIAO Weibiao. Research progress on effect of nitric oxide on adventitious root formation in plants [J]. , 2020, 32(4): 742-752. |
[6] | QIN Ling, ZHANG Xin, RONG Chunxiao, MO Chuanyuan, FAN Lu, YAN Jie, MENG Ying, ZHANG Manrang. Identification and expression analysis of polyamine oxidase (PAO) gene family in apple [J]. , 2020, 32(2): 262-273. |
[7] | ZHANG Zheng, WANG Xiaorong, QIAN Hong, ZHANG Lan, YAN Peng, ZHANG Liping, ZHANG Xinfu, LI Xin, HAN Wenyan. Effects of anthracnose disease on photosynthetic characteristics in tea leaves (Camellia sinensis L.) [J]. , 2020, 32(11): 2020-2026. |
[8] | ZHANG Aiju, LIU Shili, LIU Jindian, ZHANG Genfang, ZHOU Zhiming. Cloning, characterization, and expression patterns of one sarco/endoplasmic reticulum calcium ATPase isoform from freshwater mussel Hyriopsis cumingii [J]. , 2019, 31(4): 545-555. |
[9] | CHEN Hongqiang, XIA Hui, WANG Jin, DENG Qunxian, LIANG Dong, LYU Xiulan, TANG Liping. Identification and expression analysis of STS gene family in grape [J]. , 2019, 31(3): 401-407. |
[10] | XIN Shijie, WANG Xiaohui, DAI Guojun, AN Tingting, ZHANG Tao, ZHANG Genxi, XIE Kaizhou, WANG Jinyu, WANG Hongsheng. Effect and correlation analysis of Eimeria tenella infection on IL-6, IL-8 and CCLi2 genes expression in spleen and caecum of Jinghai Yellow Chicken (Gallus gallus) [J]. , 2019, 31(1): 39-46. |
[11] | NING Qiuyan, FAN Kai, WANG Min, SHI Yuanzhi. Responses of Expansins and XTHs to different aluminum concentrationa in roots of tea plant [Camellia sinensis (L.) O. Kuntze] [J]. , 2018, 30(6): 961-969. |
[12] | BAI Qi, LU Yanhui, ZHENG Xusong, LYU Zhongxian. Spatiotemporal expression profiling of two P450 genes, CYP4M38 and CYP4M39, in rice stem borer, Chilo suppressalis (Lepidoptera: Crambidae) [J]. , 2018, 30(4): 521-527. |
[13] | LU Liming, ZENG Xiaomin, GU Huizhan, ZHANG Qili, YU Xiao, WANG Dong, HE Jixian, LI Liqin. Effects of nitrogen application on key enzymes gene expression and yield of nitrogen metabolism in flue-cured tobacco [J]. , 2018, 30(3): 454-460. |
[14] | CAO Xing, ZHANG Xiusheng, HOU Dong, SUI Juanjuan, MU Hongmei, GAO Xiangbin, LYU Futang, GUO Shangjing, WANG Guiqing. Cloning and characterization of LlMBF1a in lily induced by gray mold pathogen [J]. , 2018, 30(12): 2024-2030. |
[15] | ZHANG Lizhi, FAN Sheng, AN Na, ZUO Xiya, GAO Cai, ZHANG Dong, HAN Mingyu. Identification and expression analysis of PAL gene family in apple [J]. , 2018, 30(12): 2031-2043. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||