Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (4): 706-712.DOI: 10.3969/j.issn.1004-1524.2022.04.06
• Animal Science • Previous Articles Next Articles
CHEN Jiubing1(
), GENGSHANG Jingchao1,2, WANG Fangguo1,2, CHEN Yating1, ZHOU Jinwei3, LUO Qiao1, MA Li1, YAO Xueping1, YU Shumin1, SHEN Liuhong1, CHU Yuefeng2, CAO Suizhong1,*(
)
Received:2020-10-10
Online:2022-04-25
Published:2022-04-28
Contact:
CAO Suizhong
CLC Number:
CHEN Jiubing, GENGSHANG Jingchao, WANG Fangguo, CHEN Yating, ZHOU Jinwei, LUO Qiao, MA Li, YAO Xueping, YU Shumin, SHEN Liuhong, CHU Yuefeng, CAO Suizhong. qPCR detection of bacterial pathogens of respiratory diseases in calves of a dairy farm from Sichuan[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 706-712.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.04.06
| 病原 Pathogen | 目标基因 Target gene | 引物、探针 Primer, probe (5'-3') | 片段大小 Fragment size/bp |
|---|---|---|---|
| Pm | kmt-1 | F: GGGCTTGTCGGTAGTCTTT | 148[ |
| R: CGGCAAATAACAATAAGCTGAGTA P: FAM-CGGCGCAACTGATTGGACGTTATT-TAMRA | |||
| Hs | 16S-rRNA | F: AAGGCCTTCGGGTTGTAAAG | 93[ |
| R: CCGGTGCTTCTTCTGTGATTAT P: FAM-CGGTGATGAGGAAGGCGATTAG-TAMRA | |||
| Mb | oppD | F: TCAAGGAACCCCACCAGAT | 71[ |
| R: AGGCAAAGTCATTTCTAGGTGCAA P: FAM-TGGCAAACTTACCTATCGGTGACCCT-TAMRA | |||
| Tp | plolysin | F: ATCAACAATCCCACGAAGAG | 99[ |
| R: TTGCAGCATGGTCAGGATAC P: FAM-TCGACGGTTGGATTCAGCGCAATA-TAMRA | |||
| Mh | sodA | F: ATTAGTGGGTTGTCCTGGTTAG | 144[ |
| R: GCGTGATTTCGGTTCAGTTG P: FAM-CTGAACCAACACGAGTAGTCGCTGC-TAMRA |
Table 1 Primer probe sets for qPCR detection
| 病原 Pathogen | 目标基因 Target gene | 引物、探针 Primer, probe (5'-3') | 片段大小 Fragment size/bp |
|---|---|---|---|
| Pm | kmt-1 | F: GGGCTTGTCGGTAGTCTTT | 148[ |
| R: CGGCAAATAACAATAAGCTGAGTA P: FAM-CGGCGCAACTGATTGGACGTTATT-TAMRA | |||
| Hs | 16S-rRNA | F: AAGGCCTTCGGGTTGTAAAG | 93[ |
| R: CCGGTGCTTCTTCTGTGATTAT P: FAM-CGGTGATGAGGAAGGCGATTAG-TAMRA | |||
| Mb | oppD | F: TCAAGGAACCCCACCAGAT | 71[ |
| R: AGGCAAAGTCATTTCTAGGTGCAA P: FAM-TGGCAAACTTACCTATCGGTGACCCT-TAMRA | |||
| Tp | plolysin | F: ATCAACAATCCCACGAAGAG | 99[ |
| R: TTGCAGCATGGTCAGGATAC P: FAM-TCGACGGTTGGATTCAGCGCAATA-TAMRA | |||
| Mh | sodA | F: ATTAGTGGGTTGTCCTGGTTAG | 144[ |
| R: GCGTGATTTCGGTTCAGTTG P: FAM-CTGAACCAACACGAGTAGTCGCTGC-TAMRA |
| 质粒 Plasmid | 序列 Sequence |
|---|---|
| Pm | CGGCAAATAACAATAAGCTGAGTAATAAATAACGTCCAATCAGTTGCGCGGTTGTCAAGGAAGCAGATTGGCTCAAAACAC- CAAACTCTGCCCAACAAAACTGTGCTTTTCTTTGCCACAAGCCAAATAAAAGACTACCGACAAGCCC |
| Hs | ATCAACAATCCCACGAAGAGTTCCGTGACTCAAGGACTGAACGGCCTTCTCGACGGTTGGATTCAGCGCAATAGCAAGTATCC- TGACCATGCTGCAA |
| Mb | TCAAGGAACCCCACCAGATATGGCAAACTTACCTATCGGTGACCCTTTTGCACCTAGAAATGACTTTGCCT |
| Tp | AAGGCCTTCGGGGTTGTAAAGTTCTTTCGGTCTTTCGGTGATGAGGAAGGCGATTAGTTTAAGAGATTAATTGATTGACGATAA- TCACAGAAGAAGCACCGG |
| Mh | GCGTGATTTCGGTTCAGTTGAAGCTTTCCAATCAGAATTTGAAAAAGCAGCGACTACTCGTGTTGGTTCAGGCTGGGCGTGGTTA- GTATTAGAAGAGGGTAAATTAGCCGTTGTTTCAACCGCTAACCAGGACAACCCACTAAT |
Table 2 Target gene sequences
| 质粒 Plasmid | 序列 Sequence |
|---|---|
| Pm | CGGCAAATAACAATAAGCTGAGTAATAAATAACGTCCAATCAGTTGCGCGGTTGTCAAGGAAGCAGATTGGCTCAAAACAC- CAAACTCTGCCCAACAAAACTGTGCTTTTCTTTGCCACAAGCCAAATAAAAGACTACCGACAAGCCC |
| Hs | ATCAACAATCCCACGAAGAGTTCCGTGACTCAAGGACTGAACGGCCTTCTCGACGGTTGGATTCAGCGCAATAGCAAGTATCC- TGACCATGCTGCAA |
| Mb | TCAAGGAACCCCACCAGATATGGCAAACTTACCTATCGGTGACCCTTTTGCACCTAGAAATGACTTTGCCT |
| Tp | AAGGCCTTCGGGGTTGTAAAGTTCTTTCGGTCTTTCGGTGATGAGGAAGGCGATTAGTTTAAGAGATTAATTGATTGACGATAA- TCACAGAAGAAGCACCGG |
| Mh | GCGTGATTTCGGTTCAGTTGAAGCTTTCCAATCAGAATTTGAAAAAGCAGCGACTACTCGTGTTGGTTCAGGCTGGGCGTGGTTA- GTATTAGAAGAGGGTAAATTAGCCGTTGTTTCAACCGCTAACCAGGACAACCCACTAAT |
Fig.1 The detection of clinical samples by TaqMan-PCR method The abscissa indicated the detection rate of each bacteria. The vertical coordinate represented the infection rate, and each circles represented the corresponding bacteria on the left side of the row (the gray circle was not representative, and the color of circle did not refer to a particular bacteria), that corresponding ordinate was the infection rate, and the connection of two or more circles indicated the mixed infection among the corresponding bacteria.
| 时间 Time | 数量 Quantity | 病原Pathogen | ||||
|---|---|---|---|---|---|---|
| Pm/% | Hs/% | Mb/% | Tp/% | Mh/% | ||
| 2019-04 | 18 | 44.44 | 44.44 ab | 33.33 A | 16.67 | 22.22 a |
| 2019-11 | 17 | 58.82 | 58.82 a | 23.53 A | 17.65 | 5.88 ab |
| 2020-04 | 40 | 62.50 | 27.50 b | 0 B | 7.50 | 2.50 b |
Table 3 The results of qPCR at different sampling times
| 时间 Time | 数量 Quantity | 病原Pathogen | ||||
|---|---|---|---|---|---|---|
| Pm/% | Hs/% | Mb/% | Tp/% | Mh/% | ||
| 2019-04 | 18 | 44.44 | 44.44 ab | 33.33 A | 16.67 | 22.22 a |
| 2019-11 | 17 | 58.82 | 58.82 a | 23.53 A | 17.65 | 5.88 ab |
| 2020-04 | 40 | 62.50 | 27.50 b | 0 B | 7.50 | 2.50 b |
| [1] |
SHOEMAKE B M, VANDER LEY B L, NEWCOMER B W, et al. Efficacy of oral administration of sodium iodide to prevent bovine respiratory disease complex[J]. Journal of Veterinary Internal Medicine, 2018, 32(1): 516-524.
DOI URL |
| [2] |
KISHIMOTO M, TSUCHIAKA S, RAHPAYA S S, et al. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex[J]. The Journal of Veterinary Medical Science, 2017, 79(3): 517-523.
DOI URL |
| [3] | 张晓宇. 奶牛犊牛主要呼吸道疾病流行病学调查及牛支体肺炎防治的研究[D]. 呼和浩特: 内蒙古农业大学, 2018. |
| ZHANG X Y. Investigation on pathogens of main respiratory infectious diseases in dairy cows in china and research on main pathogen control[D]. Hohhot: Inner Mongolia Agricultural University, 2018. (in Chinese with English abstract) | |
| [4] |
STANTON A L, KELTON D F, LEBLANC S J, et al. The effect of respiratory disease and a preventative antibiotic treatment on growth, survival, age at first calving, and milk production of dairy heifers[J]. Journal of Dairy Science, 2012, 95(9): 4950-4960.
DOI URL |
| [5] | 吴翠兰, 彭昊, 李军, 等. 2016-2017年广西牛呼吸道疾病综合征病原学的调查研究[J]. 中国畜牧兽医, 2018, 45(12):3535-3544. |
| WU C L, PENG H, LI J, et al. Investigation on the etiology of Guangxi cattle respiratory disease syndrome from 2016 to 2017[J]. Chinese Animal Husbandry and Veterinary Medicine, 2018, 45(12):3535-3544. (in Chinese with English abstract) | |
| [6] |
SACHSE K, SALAM H S H, DILLER R, et al. Use of a novel real-time PCR technique to monitor and quantitate Mycoplasma bovis infection in cattle herds with mastitis and respiratory disease[J]. The Veterinary Journal, 2010, 186(3): 299-303.
DOI URL |
| [7] | 翟肖辉, 王方国, 郝华芳, 等. 牛支原体TaqMan探针实时荧光定量PCR检测方法的建立及应用[J]. 畜牧与兽医, 2019, 51(8): 105-109. |
| ZHAI X H, WANG F G, HAO H F, et al. Establishment and application of a TaqMan real time quantitative PCR for detection of Mycoplasma bovis[J]. Animal Husbandry & Veterinary Medicine, 2019, 51(8): 105-109. (in Chinese with English abstract) | |
| [8] | 王方国. 青藏部分地区牦牛BRDC细菌病原分子检测与分析[D]. 成都: 四川农业大学, 2020. |
| WANG F G. Molecular detection and analysis of bacterial pathogens in yak BRDC in some areas of Qinghai and Tibet[D]. Chengdu: Sichuan Agricultural University, 2020 (in Chinese with English abstract) | |
| [9] |
AGNES J T, ZEKARIAS B, SHAO M, et al. Bovine respiratory syncytial virus and Histophilus somni interaction at the alveolar barrier[J]. Infection and Immunity, 2013, 81(7): 2592-2597.
DOI URL |
| [10] |
DABO S M, TAYLOR J D, CONFER A W. Pasteurella multocida and bovine respiratory disease[J]. Animal Health Research Reviews, 2007, 8(2): 129-150.
DOI URL |
| [11] | 楚会萌, 孙阳阳, 张亮, 等. 牛呼吸系统疾病研究进展[J]. 现代农业科技, 2019(17):219-220. |
| CHU H M, SUN Y Y, ZHANG L, et al. Research progress on bovine respiratory diseases[J]. Modern Agricultural Science and Technology, 2019(17):219-220. (in Chinese) | |
| [12] |
APLEY M. Bovine respiratory disease: pathogenesis, clinical signs, and treatment in lightweight calves[J]. The Veterinary Clinics of North America Food Animal Practice, 2006, 22(2): 399-411.
DOI URL |
| [13] |
CORBEIL L B. Histophilus somni host-parasite relationships[J]. Animal Health Research Reviews, 2007, 8(2): 151-160.
DOI URL |
| [14] |
HEADLEY S A, OKANO W, BALBO L C, et al. Molecular survey of infectious agents associated with bovine respiratory disease in a beef cattle feedlot in southern Brazil[J]. Journal of Veterinary Diagnostic Investigation, 2018, 30(2): 249-251.
DOI URL |
| [15] | 张颖慧, 岳华, 马艳君, 等. 肉牛呼吸道疾病综合征的病原学检测[J]. 西南民族大学学报(自然科学版), 2019, 45(5): 467-473. |
| ZHANG Y H, YUE H, MA Y J, et al. Pathogens detection of bovine respiratory disease complex in beef cattle[J]. Journal of Southwest Minzu University (Natural Science Edition), 2019, 45(5): 467-473. (in Chinese with English abstract) | |
| [16] |
MURRAY G M, MORE S J, SAMMIN D, et al. Pathogens, patterns of pneumonia, and epidemiologic risk factors associated with respiratory disease in recently weaned cattle in Ireland[J]. Journal of Veterinary Diagnostic Investigation, 2017, 29(1): 20-34.
DOI URL |
| [17] | 王洪梅, 赵贵民, 侯佩莉, 等. 牛呼吸道疾病综合征流行现状及防控技术研究进展[J]. 中国畜牧杂志, 2015, 51(16): 33-39. |
| WANG H M, ZHAO G M, HOU P L, et al. Advance on epidemic status and the researches of prevention and control of bovine respiratory disease complex[J]. Chinese Journal of Animal Science, 2015, 51(16): 33-39. (in Chinese with English abstract) | |
| [18] |
CASWELL J L, BATEMAN K G, CAI H Y, et al. Mycoplasma bovis in respiratory disease of feedlot cattle[J]. The Veterinary Clinics of North America Food Animal Practice, 2010, 26(2): 365-379.
DOI URL |
| [19] | MAUNSELL F P, DONOVAN G A. Mycoplasma bovis infections in young calves[J]. Veterinary Clinics of North America: Food Animal Practice, 2009, 25(1): 139-177. |
| [20] |
CASWELL J L, ARCHAMBAULT M. Mycoplasma bovis pneumonia in cattle[J]. Animal Health Research Reviews, 2007, 8(2): 161-186.
DOI URL |
| [21] |
ARCANGIOLI M A, DUET A, MEYER G, et al. The role of Mycoplasma bovis in bovine respiratory disease outbreaks in veal calf feedlots[J]. The Veterinary Journal, 2008, 177(1): 89-93.
DOI URL |
| [22] |
CASWELL J L, BATEMAN K G, CAI H Y, et al. Mycoplasma bovis in respiratory disease of feedlot cattle[J]. The Veterinary Clinics of North America Food Animal Practice, 2010, 26(2): 365-379.
DOI URL |
| [23] |
GRIFFIN D, CHENGAPPA M M, KUSZAK J, et al. Bacterial pathogens of the bovine respiratory disease complex[J]. The Veterinary Clinics of North America Food Animal Practice, 2010, 26(2): 381-394.
DOI URL |
| [24] | HAINES D M, MARTIN K M, CLARK E G, et al. The immunohistochemical detection of Mycoplasma bovis and bovine virus diarrhea virus in tissue of feedlot cattle with chronic unresponsive respiratory disease and/or arthritis[J]. Canadian Veterinary Journal, 2001, 42(11):857-860. |
| [25] |
HORWOOD P, SCHIBROWSKI M, FOWLER E, et al. Is Mycoplasma bovis a missing component of the bovine respiratory disease complex in Australia?[J]. Australian Veterinary Journal, 2014, 92(6): 185-191.
DOI URL |
| [26] |
LIU L H, HÄGGLUND S, HAKHVERDYAN M, et al. Molecular epidemiology of bovine coronavirus on the basis of comparative analyses of the S gene[J]. Journal of Clinical Microbiology, 2006, 44(3): 957-960.
DOI URL |
| [27] | TEGTMEIER C, UTTENTHAL A, FRIIS N F, et al. Pathological and microbiological studies on pneumonic lungs from Danish calves[J]. Journal of Veterinary Medicine, Series B, 1999, 46(10): 693-700. |
| [1] | ZHANG Yueyu, HUANG Meiqi, ZHANG Lin, QI Ying, LI Qiuling. Effects of bta-miR-146b on the signaling pathway of milk protein synthesis in heat-stressed bovine mammary epithelial cells [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1212-1220. |
| [2] | LI Yanyan, BU Jianhua, HAN Liyun, WANG Chuanchuan, MU Tong. Identification and functional analysis of key candidate genes for milk fat metabolism in dairy cattle [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2794-2808. |
| [3] | ZHANG Li, WANG Yuanyuan, WANG Rui, LIU Lixia. Cloning sequencing and bioinformatics analysis of DRA gene of yak [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1564-1570. |
| [4] | SONG Yaping, LEI Zhaoxiong, ZHAO Yi’ang, JIANG Chao, WANG Xingping, LUORENG Zhuoma, MA Yun, WEI Dawei. Cloning of CDS region of bovine FoxO1 gene and analysing expression pattern during adipocyte differentiation [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1016-1027. |
| [5] | LI Yanan, YE Wenxing, ZHU Xiangde, CHEN Lin, XU Xiaofeng, ZHANG Lili. LC-MS/MS-based study on effect of rice straw instead of partial corn silage on plasma metabolites of dairy cows [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 266-274. |
| [6] | YANG Qiulei, WEI Xudong, MA Zhijie, CHEN Shengmei, CHAO Shengyu, WULAN Bateer. Maternal genetic diversity and genetic background of Qaidam cattle based on mtDNA Cyt b sequence variations [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 285-292. |
| [7] | LYU Qian, LUO Qiao, LUO Xue, CHEN Jiubing, MA Li, LUO Zhengzhong, YAO Xueping, YU Shumin, SHEN Liuhong, CAO Suizhong. Analysis of microbial community difference between sand and rubber bedding in dairy farm by high throughput sequencing technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1377-1385. |
| [8] | AN Yawen, YANG Xiaodong, GAO Zhixiong, GUO Shaoqian, GAO Aiwu, YANG Jinli, WANG Hairong. Effects of adding Sophora alopecuroides to high grain diet on growth and serum biochemical indexes of lambs [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 908-914. |
| [9] | DING Yanling, WANG Pengfei, YANG Chaoyun, ZHOU Xiaonan, ZHAO Zhiyan, ZHANG Yanfeng, SHI Yuan- gang, KANG Xiaolong. Prediction of target genes and tissue expression analysis of miR-144 in cattle [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 471-479. |
| [10] | YANG Sirui, YANG Zhuo, HUO Miao, ZHANG Jie, ZHANG Lili, LI Shengli, XU Xiaofeng. Analysis on difference of soil bacterial community structure in different groups of Holstein dairy cow barns [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 275-283. |
| [11] | FENG Xiaofang, JIANG Qiufei, FENG Yuan, WANG Yu, CHEN Yafei, MU Tong, LI Ming, ZHOU Zihang, CAI Zhengyun, ZHANG Juan, GU Yaling. Growth curve fitting and correlation analysis of body weight and body measurements in Angus cattle [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 50-59. |
| [12] | CHEN Wen, ZHANG Weiwei, SHAO Shuli, FU Xuepeng, HUANG Xin, LI Tie. Expression of miR-423-5p in bovine muscle and predicted target genes [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 785-793. |
| [13] | JIANG Qiufei, CAI Zhengyun, HUANG Zengwen, FENG Xiaofang, ZHANG Juan, GU Yaling. Functional analysis of EEF1D mutation site in dairy cow milk fat traits candidate gene [J]. , 2020, 32(7): 1155-1159. |
| [14] | WU Jia, CHEN Lang, JIANG Tao, HUANG Guoming, LI Zhuo, LI Yaodong, ZHANG Li, LIU Lixia. Genetic polymorphism screening of CSF3 gene in dairy cow and its bioinformatics analysis [J]. , 2020, 32(6): 986-993. |
| [15] | LI Qiuling, QI Ying, WANG Chen, ZHANG Yiming, WANG Xinyu, SHANG Xiaolan, JIA Yonghong, LI Meiru, CHU Mingxing. Effect of heat stress on gene expressions and signaling pathways of mammary gland in Chinese Holstein [J]. , 2020, 32(5): 770-778. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||