Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (4): 695-705.DOI: 10.3969/j.issn.1004-1524.2022.04.05
• Animal Science • Previous Articles Next Articles
YU Yanling1(
), LUO Honglin1, LUO Hui2, FENG Pengfei1, PAN Chuanyan1, SONG Manling1, XIAO Rui1, ZHANG Yongde1,*(
)
Received:2020-10-13
Online:2022-04-25
Published:2022-04-28
Contact:
ZHANG Yongde
CLC Number:
YU Yanling, LUO Honglin, LUO Hui, FENG Pengfei, PAN Chuanyan, SONG Manling, XIAO Rui, ZHANG Yongde. Genome-wide identification and expression of MRF gene family in embryonic development of Trachinotus ovatus[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 695-705.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.04.05
| 引物名称Primer | 上游引物Forward primer (5'-3') | 下游引物Reverse primer (5'-3') |
|---|---|---|
| MyoD1 | AACGCCATCAGCTACATCGAG | ACAGGTGGGGCCGTTAAAATC |
| MyoD2 | CGGCCTACTGAAGCCCGAA | CTCATGGTTGCTGCTTTTCTCC |
| Myf5 | AAGAACGAGAGTTTGGGCGA | AGGACGTGGTATATGGGCCT |
| Myf6 | TCAGCTACATCGAGCGGTT | TCCAGTGGTACTCATGACCG |
| MyoG | CTTCTACGAGGGAGGGGACA | GCTGGATGGAGAGGCTTTGT |
| 18S rRNA | GACTCGGGGAGGTAGTGACG | AGATACGCTATTGGAGCTGGAA |
Table 1 qRT-PCR primers used for T. ovatus MRF family genes
| 引物名称Primer | 上游引物Forward primer (5'-3') | 下游引物Reverse primer (5'-3') |
|---|---|---|
| MyoD1 | AACGCCATCAGCTACATCGAG | ACAGGTGGGGCCGTTAAAATC |
| MyoD2 | CGGCCTACTGAAGCCCGAA | CTCATGGTTGCTGCTTTTCTCC |
| Myf5 | AAGAACGAGAGTTTGGGCGA | AGGACGTGGTATATGGGCCT |
| Myf6 | TCAGCTACATCGAGCGGTT | TCCAGTGGTACTCATGACCG |
| MyoG | CTTCTACGAGGGAGGGGACA | GCTGGATGGAGAGGCTTTGT |
| 18S rRNA | GACTCGGGGAGGTAGTGACG | AGATACGCTATTGGAGCTGGAA |
| 蛋白质名称 Protein name | 蛋白质编号 Locus ID | 蛋白质长度 Size/aa | 相对分子质量 Molecular weight/u | 等电点 Pi | 不稳定指数 Instability index | 疏水性均值 GRAVY |
|---|---|---|---|---|---|---|
| ToMyoD1 | EVM0022498 | 297 | 32 206.38 | 5.33 | 71.51 | -0.591 |
| ToMyoD2 | EVM0018159 | 263 | 28 731.83 | 5.87 | 66.57 | -0.634 |
| ToMyf5 | EVM0020882 | 240 | 26 187.14 | 6.23 | 89.12 | -0.594 |
| ToMyf6 | EVM0005068 | 231 | 25 542.27 | 5.93 | 65.35 | -0.849 |
| ToMyoG | EVM0008148 | 250 | 27 421.64 | 6.33 | 65.97 | -0.650 |
Table 2 Physicochemical properties of MRF family proteins in T. ovatus
| 蛋白质名称 Protein name | 蛋白质编号 Locus ID | 蛋白质长度 Size/aa | 相对分子质量 Molecular weight/u | 等电点 Pi | 不稳定指数 Instability index | 疏水性均值 GRAVY |
|---|---|---|---|---|---|---|
| ToMyoD1 | EVM0022498 | 297 | 32 206.38 | 5.33 | 71.51 | -0.591 |
| ToMyoD2 | EVM0018159 | 263 | 28 731.83 | 5.87 | 66.57 | -0.634 |
| ToMyf5 | EVM0020882 | 240 | 26 187.14 | 6.23 | 89.12 | -0.594 |
| ToMyf6 | EVM0005068 | 231 | 25 542.27 | 5.93 | 65.35 | -0.849 |
| ToMyoG | EVM0008148 | 250 | 27 421.64 | 6.33 | 65.97 | -0.650 |
Fig.3 Domain and conserved motif of MRF gene family in T.ovatus a, Domain and conserved motif position of MRF family genes; b, Conserved motif composition of MRF family genes.
| 物种 Species | 分类 Taxonomy | 基因名称 Gene name | 蛋白质编号 Locus ID | 蛋白质长度 Size/aa |
|---|---|---|---|---|
| 高体鰤 | 鲹形目Carangiformes; | SdMyoD1 | ENSSDUP00000023227 | 298 |
| S. dumerili | 鲹科Carangidae; | SdMyoD2 | ENSSDUP00000025164 | 262 |
| 鰤属Seriola | SdMyf5 | ENSSDUP00000025182 | 240 | |
| SdMyf6 | ENSSDUP00000025208 | 238 | ||
| SdMyoG | ENSSDUP00000002433 | 250 | ||
| 黄尾鰤 | 鲹形目Carangiformes; | SlMyoD1 | ENSSLDP00000028917 | 298 |
| S. lalandi dorsalis | 鲹科Carangidae; | SlMyoD2 | ENSSLDP00000027557 | 263 |
| 鰤属Seriola | SlMyf5 | ENSSLDP00000024335 | 240 | |
| SlMyf6 | ENSSLDP00000024364 | 239 | ||
| SlMyoG | ENSSLDP00000009264 | 250 | ||
| 半滑舌鳎 | 鲽形目Pleuronectiformes; | CsMyoD1 | ENSCSEP00000003405 | 296 |
| C. semilaevis | 舌鳎科Cynoglossidae; | CsMyoD2 | ENSCSEP00000016973 | 214 |
| 舌鳎属Cynoglossus | CsMyf5 | ENSCSEP00000006862 | 246 | |
| CsMyf6 | ENSCSEP00000006878 | 241 | ||
| CsMyoG | ENSCSEP00000007229 | 243 | ||
| 大菱鲆 | 鲽形目Pleuronectiformes; | SmMyoD1 | ENSSMAP00000005978 | 297 |
| S. maximus | 菱鲆科Scophthalmidae; | SmMyoD2 | ENSSMAP00000010597 | 265 |
| 菱鲆属 Scophthalmus | SmMyf5 | ENSSMAP00000007369 | 297 | |
| SmMyf6 | ENSSMAP00000007390 | 269 | ||
| SmMyoG | ENSSMAP00000010312 | 246 |
Table 3 Information of the MRF family genes in four fish species
| 物种 Species | 分类 Taxonomy | 基因名称 Gene name | 蛋白质编号 Locus ID | 蛋白质长度 Size/aa |
|---|---|---|---|---|
| 高体鰤 | 鲹形目Carangiformes; | SdMyoD1 | ENSSDUP00000023227 | 298 |
| S. dumerili | 鲹科Carangidae; | SdMyoD2 | ENSSDUP00000025164 | 262 |
| 鰤属Seriola | SdMyf5 | ENSSDUP00000025182 | 240 | |
| SdMyf6 | ENSSDUP00000025208 | 238 | ||
| SdMyoG | ENSSDUP00000002433 | 250 | ||
| 黄尾鰤 | 鲹形目Carangiformes; | SlMyoD1 | ENSSLDP00000028917 | 298 |
| S. lalandi dorsalis | 鲹科Carangidae; | SlMyoD2 | ENSSLDP00000027557 | 263 |
| 鰤属Seriola | SlMyf5 | ENSSLDP00000024335 | 240 | |
| SlMyf6 | ENSSLDP00000024364 | 239 | ||
| SlMyoG | ENSSLDP00000009264 | 250 | ||
| 半滑舌鳎 | 鲽形目Pleuronectiformes; | CsMyoD1 | ENSCSEP00000003405 | 296 |
| C. semilaevis | 舌鳎科Cynoglossidae; | CsMyoD2 | ENSCSEP00000016973 | 214 |
| 舌鳎属Cynoglossus | CsMyf5 | ENSCSEP00000006862 | 246 | |
| CsMyf6 | ENSCSEP00000006878 | 241 | ||
| CsMyoG | ENSCSEP00000007229 | 243 | ||
| 大菱鲆 | 鲽形目Pleuronectiformes; | SmMyoD1 | ENSSMAP00000005978 | 297 |
| S. maximus | 菱鲆科Scophthalmidae; | SmMyoD2 | ENSSMAP00000010597 | 265 |
| 菱鲆属 Scophthalmus | SmMyf5 | ENSSMAP00000007369 | 297 | |
| SmMyf6 | ENSSMAP00000007390 | 269 | ||
| SmMyoG | ENSSMAP00000010312 | 246 |
Fig.7 Expression pattern of MRF family genes in different developmental stages of T. ovatus embryos The bars without the same letters meant the significant difference (P<0.05).
| [1] |
RAJESH M, KAMALAM B S, CIJI A, et al. Molecular characterisation and transcriptional regulation of muscle growth regulatory factors myogenin and myogenic factor 6 in the Trans-Himalayan cyprinid fish Schizothorax richardsonii[J]. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 231: 188-200.
DOI URL |
| [2] | ZAMMIT P S. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis[J]. Seminars in Cell & Developmental Biology, 2017, 72: 19-32. |
| [3] |
BUCKINGHAM M, RIGBY P W J. Gene regulatory networks and transcriptional mechanisms that control myogenesis[J]. Developmental Cell, 2014, 28(3): 225-238.
DOI URL |
| [4] | HERNÁNDEZ-HERNÁNDEZ J M, GARCÍA-GONZÁLEZ E G, BRUN C E, et al. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration[J]. Seminars in Cell & Developmental Biology, 2017, 72: 10-18. |
| [5] | BENTZINGER C F, WANG Y X, RUDNICKI M A. Building muscle: molecular regulation of myogenesis[J]. Cold Spring Harbor Perspectives in Biology, 2012, 4(2): a008342. |
| [6] |
ZHAO X, YU Q, HUANG L, et al. Patterns of positive selection of the myogenic regulatory factor gene family in vertebrates[J]. PLoS One, 2014, 9(3): e92873.
DOI URL |
| [7] |
ASFOUR H A, ALLOUH M Z, SAID R S. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery[J]. Experimental Biology and Medicine (Maywood, N J), 2018, 243(2): 118-128.
DOI URL |
| [8] |
OZERNYUK N D, MYUGE N S. Evolutional principles of homology in regulatory genes of myogenesis[J]. Biology Bulletin, 2012, 39(4): 316-322.
DOI URL |
| [9] |
MASSARI M E, MURRE C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms[J]. Molecular and Cellular Biology, 2000, 20(2): 429-440.
DOI URL |
| [10] |
FONG A P, YAO Z Z, ZHONG J W, et al. Genetic and epigenetic determinants of neurogenesis and myogenesis[J]. Developmental Cell, 2012, 22(4): 721-735.
DOI URL |
| [11] |
FONG A P, YAO Z Z, ZHONG J W, et al. Conversion of MyoD to a neurogenic factor: binding site specificity determines lineage[J]. Cell Reports, 2015, 10(12): 1937-1946.
DOI URL |
| [12] | 刘宁, 邓雪娟, 王建平, 等. 生肌调节因子及肌生成调控因素研究进展[J]. 中国畜牧兽医, 2015, 42(10): 2644-2649. |
| LIU N, DENG X J, WANG J P, et al. Research progress on regulation factors of myogenic regulatory factors and myogenesis[J]. China Animal Husbandry & Veterinary Medicine, 2015, 42(10): 2644-2649. (in Chinese with English abstract) | |
| [13] | 陈洪强, 夏惠, 王进, 等. 葡萄STS基因家族的鉴定与表达分析[J]. 浙江农业学报, 2019, 31(3): 401-407. |
| CHEN H Q, XIA H, WANG J, et al. Identification and expression analysis of STS gene family in grape[J]. Acta Agriculturae Zhejiangensis, 2019, 31(3): 401-407. (in Chinese with English abstract) | |
| [14] |
CHEN X J, ZHANG X Q, HUANG S, et al. Selection of reference genes for quantitative real-time RT-PCR on gene expression in golden pompano (Trachinotus ovatus)[J]. Polish Journal of Veterinary Sciences, 2017, 20(3): 583-594.
DOI URL |
| [15] | FUJITA R, CRIST C. Translational control of the myogenic program in developing, regenerating, and diseased skeletal muscle[J]. Current Topics in Developmental Biology, 2018, 126: 67-98. |
| [16] |
CAMPOS C, VALENTE L M P, CONCEIÇÃO L E C, et al. Incubation temperature induces changes in muscle cellularity and gene expression in Senegalese sole (Solea senegalensis)[J]. Gene, 2013, 516(2): 209-217.
DOI URL |
| [17] |
CAMPOS C, VALENTE L, CONCEIÇÃO L, et al. Temperature affects methylation of the myogenin putative promoter, its expression and muscle cellularity in Senegalese sole larvae[J]. Epigenetics, 2013, 8(4): 389-397.
DOI URL |
| [18] | LIN Y, ZHOU J, LI R, et al. MRF gene family in Schizothorax prenanti: molecular cloning, tissue expression, and mRNA expression in muscle development[J]. Turkish Journal of Fisheries & Aquatic Sciences, 2016, 16(2):461-467. |
| [19] |
CHUROVA M V, MESHCHERYAKOVA O V, RUCHEV M, et al. Age-and stage-dependent variations of muscle-specific gene expression in brown trout Salmo trutta L[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2017, 211: 16-21.
DOI URL |
| [20] | 陈敦学. 黄鳝生肌调节因子(MRFs)家族基因的克隆与营养调控及进化分析[D]. 武汉: 华中农业大学, 2015. |
| CHEN D X. Cloning and expression of the MRFs in the monoptepus albus and analysis the evolutionary relationship based on complete mitochondrial DNA[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese with English abstract) | |
| [21] | 沈伟良, 钱宝英, 薛良义. 饥饿和复投喂对大黄鱼(Larimichthys crocea) IGF-Ⅰ、mTOR、MyoD和MHC基因表达的影响[J]. 海洋与湖沼, 2019, 50(4): 894-902. |
| SHEN W L, QIAN B Y, XUE L Y. Effects of starvation and refeeding on the expression of IGF-Ⅰ, mTOR, MyoD, and MHC in large yellow croaker Larimichthys crocea[J]. Oceanologia et Limnologia Sinica, 2019, 50(4): 894-902. (in Chinese with English abstract) | |
| [22] |
ZHANG D C, GUO L, GUO H Y, et al. Chromosome-level genome assembly of golden pompano (Trachinotus ovatus) in the family Carangidae[J]. Scientific Data, 2019, 6: 216.
DOI URL |
| [23] |
CARVAJAL J J, KEITH A, RIGBY P W J. Global transcriptional regulation of the locus encoding the skeletal muscle determination genes Mrf4 and Myf5[J]. Genes & Development, 2008, 22(2): 265-276.
DOI URL |
| [24] |
AASE-REMEDIOS M E, COLL-LLADÓ C, FERRIER D E K. More than one-to-four via 2R: evidence of an independent amphioxus expansion and two-gene ancestral vertebrate state for MyoD-related myogenic regulatory factors (MRFs)[J]. Molecular Biology and Evolution, 2020, 37(10): 2966-2982.
DOI URL |
| [25] |
OLIANI L C, LIDANI K C F, GABRIEL J E. Differentiated evolutionary relationships among chordates from comparative alignments of multiple sequences of MyoD and MyoG myogenic regulatory factors[J]. Genetics and Molecular Research, 2015, 14(4): 12561-12566.
DOI URL |
| [26] | 冀云燕, 薛霖莉, 曹靖, 等. 小鼠不同生长阶段骨骼肌组织中Myf5的表达[J]. 山西农业科学, 2019, 47(9): 1532-1536. |
| JI Y Y, XUE L L, CAO J, et al. Expression of Myf in skeletal muscle tissues of mice at different growth stages[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(9): 1532-1536. (in Chinese with English abstract) | |
| [27] | 李虹辉, 黄雪晴, 高鹏, 等. MRFs家族基因在翘嘴鳜成体不同组织及器官中的表达特征[J]. 基因组学与应用生物学, 2019, 38(1): 51-55. |
| LI H H, HUANG X Q, GAO P, et al. Expression characteristics of myogenic regulatory factors in different tissues and organs of adult mandarin fish(Siniperca chuatsi)[J]. Genomics and Applied Biology, 2019, 38(1): 51-55. (in Chinese with English abstract) | |
| [28] |
ZHU X, LI Y L, LIU L, et al. Molecular characterization of Myf5 and comparative expression patterns of myogenic regulatory factors in Siniperca chuatsi[J]. Gene Expression Patterns, 2016, 20(1): 1-10.
DOI URL |
| [29] |
GANASSI M, BADODI S, ORTUSTE QUIROGA H P, et al. Myogenin promotes myocyte fusion to balance fibre number and size[J]. Nature Communications, 2018, 9(1): 4232.
DOI URL |
| [30] | 杨建, 佟广香, 郑先虎, 等. 肌间刺缺失突变对斑马鱼胚胎发育过程中肌肉发育的影响[J]. 中国水产科学, 2019, 26(2): 296-303. |
|
YANG J, TONG G X, ZHENG X H, et al. Comparative analysis of embryonic muscle development in wildtype zebrafish and its intermuscular bone deficiency mutant[J]. Journal of Fishery Sciences of China, 2019, 26(2): 296-303. (in Chinese with English abstract)
DOI URL |
|
| [31] |
WEI S, DAI M M, LIU Z T, et al. The guanine nucleotide exchange factor Net1 facilitates the specification of dorsal cell fates in zebrafish embryos by promoting maternal β-catenin activation[J]. Cell Research, 2017, 27(2): 202-225.
DOI URL |
| [32] |
ARNOLD S J, ROBERTSON E J. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo[J]. Nature Reviews Molecular Cell Biology, 2009, 10(2): 91-103.
DOI URL |
| [33] | KOJIMA Y, TAM O H, TAM P P L. Timing of developmental events in the early mouse embryo[J]. Seminars in Cell & Developmental Biology, 2014, 34: 65-75. |
| [34] |
SOLNICA-KREZEL L, SEPICH D S. Gastrulation: making and shaping germ layers[J]. Annual Review of Cell and Developmental Biology, 2012, 28: 687-717.
DOI URL |
| [35] |
PENG G D, SUO S B, CHEN J, et al. Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo[J]. Developmental Cell, 2016, 36(6): 681-697.
DOI URL |
| [36] |
OSORNO R, TSAKIRIDIS A, WONG F, et al. The developmental dismantling of pluripotency is reversed by ectopic Oct 4 expression[J]. Development (Cambridge, England), 2012, 139(13): 2288-2298.
DOI URL |
| [37] |
OSBORN D P S, LI K Y, CUTTY S J, et al. Fgf-driven Tbx protein activities directly induce myf5 and myod to initiate zebrafish myogenesis[J]. bioRxiv, 2019, DOI: 10.1101/766501.
DOI |
| [1] | ZHANG Jun, ZHANG Bo, HU Bibo, LIU Jingliang, ZHANG Xiaoyu, LI Chunyang, XIONG Shengting, GUO Binbin, WANG Xiucun, MA Chao. Identification and expression analysis of members of the SWEET and SUT families in wheat (Triticum aestivum L.) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1825-1839. |
| [2] | CONG Jianmin, HUANG Weijian, YIN Xinxing, LIU Jinping, ZHAO Yong. Effect of 5-azacytosine on somatic embryo-induced DNA methylation in Fraxinus mandschurica [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1648-1657. |
| [3] | HE Changxi, ZHENG Jianbo, MA Jianbo, JIA Yongyi, LIU Shili, JIANG Wenping, CHI Meili, CHENG Shun, LI Fei. Cloning and expression analysis of Runx2b in Culter alburnus [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1024-1031. |
| [4] | LI Yaping, JIN Fulai, HUANG Zonggui, ZHANG Tao, DUAN Xiaojing, JIANG Wu, TAO Zhengming, CHEN Jiadong. Identification and expression pattern analysis of glycoside hydrolase GH3 gene family in Dendrobium officinale [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 790-799. |
| [5] | PENG Jiacheng, WU Yue, XU Jiehao, XIA Meiwen, QI Tianpeng, XU Haisheng. Cloning of paxillin gene from Macrobrachium nipponense and effect of cadmium stress on its expression [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 247-253. |
| [6] | LIU Xiaolin, SUN Tingting, YANG Jie, HE Hengbin. Cloning and expression analysis of FLS gene of flavonol synthetase in Lilium auratum and L.speciosum var. gloriosoides [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 344-357. |
| [7] | ZHAO Lingji, LIAO Xiangjiao, LIU Dechun, HU Wei, KUANG Liuqing, SONG Jie, YI Mingliang, LIU Yong, YANG Li. Changes of organic acid content in Taoxi pomelo fruits during the storage period and citric acid related gene expression analysis [J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2510-2520. |
| [8] | LI Chongjuan, LYU Fengxian, YANG Ding, ZHANG Liqin, LAN Mei, YANG Hongli, XU Xuezhong, HU Jingfeng, SHEN Shipin, WU Yufei, HE Jiangming, DONG Xiangshu. Creation of Ogura cytoplasmic male sterility (Ogura CMS) material of Brassica juncea [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1058-1068. |
| [9] | WU Jiao, GONG Chengyu, CHEN Chaoqun, CHEN Hongxu, LIU Junhong, TANG Wenjing, CHU Yuanqi, YANG Wenlong, ZHANG Yao, GONG Ronggao. Ecological response of organic acid metabolism of Huangguogan fruits at different altitudes [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 853-861. |
| [10] | LI Hongyi, ZHOU Runsheng, LIANG Xiaoling, ZHANG Chuyue, LYU Qixin, YANG Changhua, ZHANG Mao. Effect of dietary calcium and phosphorus level on Magang geese growth performance and liver gene expression [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2533-2542. |
| [11] | KONG Fanwang, ZHANG Zhigang, LI Wei, CHEN Yufeng, WANG Changjiang, ZHENG Yaqin, XU Meng. Identification of 4CL gene family in peach and its expression analysis in fruit coloration during development stage and chilling injury during post-harvest low temperature storage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2600-2610. |
| [12] | LIN Xianyu, LI Ziqian, BAI Song, LUO Jun, QU Yan. Changes of antioxidant enzyme activity and differential expression of key genes in Camellia reticulata during drought-rehydration process [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2611-2620. |
| [13] | XIONG Xingwei, WANG Yiqin, TIAN Huaizhi, ZHANG Suqin, GENG Guangdong. Molecular mechanisms of chlorophyll-reduced cotyledon based on transcriptome sequencing in pumpkin [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 90-102. |
| [14] | YAN Mei, YAO Yandong, MOU Kaiping, DAN Yuanyuan, LI Weitai, LIAO Weibiao. Involvement of abscisic acid in hydrogen gas-enhanced drought resistance by improving antioxidant enzyme activity and gene expression in tomato seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1901-1910. |
| [15] | LYU Fengxian, HE Jiangming, LI Chongjuan, YANG Ding, HU Jingfeng, YANG Hongli, LAN Mei, XU Xuezhong, ZHANG Liqin. Creation of allotetraploid vegetable germplasm by interspecific hybridization of Brassica rapa L. ssp chinensis var. utilis Tsen et Lee and Brassica oleracea var. Alboglabra [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1638-1647. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||