Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (4): 586-594.DOI: 10.3969/j.issn.1004-1524.2021.04.03
• Crop Science • Previous Articles Next Articles
YANG Xinxiaa(), ZHANG Binb,*(
)
Received:
2020-10-11
Online:
2021-04-25
Published:
2021-04-25
Contact:
ZHANG Bin
基因名 Name | 基因编号 Gene ID | 基因长度 Gene length/bp | 氨基酸长度 Peptide residues/aa | 相对分子质量 Molecular weight/ku | pI | 不稳定系数 Instability index |
---|---|---|---|---|---|---|
GmLAZ1-1 | Glyma.03G226700 | 5 087 | 421 | 47.17 | 6.78 | 44.35 |
GmLAZ1-2 | Glyma.04G001400 | 5 252 | 486 | 54.56 | 8.75 | 44.04 |
GmLAZ1-3 | Glyma.04G240300 | 5 229 | 288 | 32.65 | 5.85 | 49.15 |
GmLAZ1-4 | Glyma.06G000800 | 5 037 | 492 | 55.03 | 8.86 | 41.80 |
GmLAZ1-5 | Glyma.06G123100 | 5 818 | 485 | 55.25 | 6.77 | 47.60 |
GmLAZ1-6 | Glyma.06G253700 | 6 131 | 304 | 35.01 | 8.79 | 26.55 |
GmLAZ1-7 | Glyma.09G071000 | 7 053 | 440 | 49.44 | 4.35 | 42.21 |
GmLAZ1-8 | Glyma.10G141000 | 7 265 | 418 | 46.92 | 8.23 | 41.65 |
GmLAZ1-9 | Glyma.12G147700 | 9 833 | 287 | 33.18 | 8.87 | 31.34 |
GmLAZ1-10 | Glyma.13G038900 | 7 402 | 484 | 54.98 | 5.56 | 46.63 |
GmLAZ1-11 | Glyma.13G245500 | 2 971 | 296 | 34.07 | 8.80 | 43.68 |
GmLAZ1-12 | Glyma.14G122700 | 8 650 | 484 | 55.12 | 5.99 | 44.47 |
GmLAZ1-13 | Glyma.15G068200 | 2 547 | 296 | 34.13 | 8.59 | 45.68 |
GmLAZ1-14 | Glyma.15G178900 | 4 890 | 397 | 44.60 | 8.84 | 32.32 |
GmLAZ1-15 | Glyma.17G156700 | 4 054 | 384 | 44.25 | 9.56 | 37.51 |
GmLAZ1-16 | Glyma.19G223700 | 4 841 | 419 | 46.68 | 6.31 | 41.23 |
GmLAZ1-17 | Glyma.20G089700 | 3 907 | 418 | 46.77 | 8.41 | 40.32 |
Table 1 Physical and chemical parameters of genes in soybean LAZ1 family
基因名 Name | 基因编号 Gene ID | 基因长度 Gene length/bp | 氨基酸长度 Peptide residues/aa | 相对分子质量 Molecular weight/ku | pI | 不稳定系数 Instability index |
---|---|---|---|---|---|---|
GmLAZ1-1 | Glyma.03G226700 | 5 087 | 421 | 47.17 | 6.78 | 44.35 |
GmLAZ1-2 | Glyma.04G001400 | 5 252 | 486 | 54.56 | 8.75 | 44.04 |
GmLAZ1-3 | Glyma.04G240300 | 5 229 | 288 | 32.65 | 5.85 | 49.15 |
GmLAZ1-4 | Glyma.06G000800 | 5 037 | 492 | 55.03 | 8.86 | 41.80 |
GmLAZ1-5 | Glyma.06G123100 | 5 818 | 485 | 55.25 | 6.77 | 47.60 |
GmLAZ1-6 | Glyma.06G253700 | 6 131 | 304 | 35.01 | 8.79 | 26.55 |
GmLAZ1-7 | Glyma.09G071000 | 7 053 | 440 | 49.44 | 4.35 | 42.21 |
GmLAZ1-8 | Glyma.10G141000 | 7 265 | 418 | 46.92 | 8.23 | 41.65 |
GmLAZ1-9 | Glyma.12G147700 | 9 833 | 287 | 33.18 | 8.87 | 31.34 |
GmLAZ1-10 | Glyma.13G038900 | 7 402 | 484 | 54.98 | 5.56 | 46.63 |
GmLAZ1-11 | Glyma.13G245500 | 2 971 | 296 | 34.07 | 8.80 | 43.68 |
GmLAZ1-12 | Glyma.14G122700 | 8 650 | 484 | 55.12 | 5.99 | 44.47 |
GmLAZ1-13 | Glyma.15G068200 | 2 547 | 296 | 34.13 | 8.59 | 45.68 |
GmLAZ1-14 | Glyma.15G178900 | 4 890 | 397 | 44.60 | 8.84 | 32.32 |
GmLAZ1-15 | Glyma.17G156700 | 4 054 | 384 | 44.25 | 9.56 | 37.51 |
GmLAZ1-16 | Glyma.19G223700 | 4 841 | 419 | 46.68 | 6.31 | 41.23 |
GmLAZ1-17 | Glyma.20G089700 | 3 907 | 418 | 46.77 | 8.41 | 40.32 |
Fig.1 Bioinformatics analysis of soybean LAZ1 family members A, Chromosomal location of soybean LAZ1 family genes; B, Phylogenetic tree of members of the LAZ1 family of soybeans and other species (Arabidopsis, rice, and maize); C, Analysis of gene structure and amino acid conservative motifs of soybean LAZ1 family members.
Fig.2 Expression patterns of soybean LAZ1 genes in different tissues The color scale on the right represents the level of gene expression. From gray to red, the value of expression increases from low to high.
Fig.3 Cis-acting element in soybean LAZ1 gene promoters and expression patterns of LAZ1 genes under salt treatment A, Abiotic stress-related cis-acting elements in the promoters of soybean LAZ1 genes; B, Expression of LAZ1 genes at 0, 3, 6, 12 h after treatment with 150 mmol·L-1 NaCl based on semi-quantitative PCR test.
Fig.4 Overexpression of soybean GmLAZ1-9 gene enhanced salt tolerance of transgenic Arabidopsis Phenotype (A) and germination rate (B) of the wild-type Arabidopsis WT and the transgenic material OEGmLAZ1-9 seeds for 7 days on 1/2MS medium and 1/2MS+200 mmol·L-1 NaCl medium; Phenotype (C), relative water content (D), and content of MDA (E) and proline (F) of 4-week-old Arabidopsis(WT and OEGmLAZ1-9) grown in normal condition and 150 mmol·L-1 NaCl solution for 7 days. Bars in D-F marked with “*” indicated significant difference between test materials at P<0.05 under the same condition.
[1] | LIU B L, YU H Q, WEN Q, et al. Genome-wide analysis of LAZ1 gene family from maize[J]. Journal of Plant Growth Regulation, 2020,39(2):656-668. |
[2] |
MALINOVSKY F G, BRODERSEN P, FIIL B K, et al. Lazarus1, a DUF300 protein, contributes to programmed cell death associated with Arabidopsis acd11 and the hypersensitive response[J]. PLoS One, 2010,5(9):e12586.
URL PMID |
[3] |
DAWSON P A, HUBBERT M L, RAO A. Getting the mOST from OST: role of organic solute transporter, OSTα-OSTβ, in bile acid and steroid metabolism[J]. Biochimica et Biophysica Acta: Molecular and Cell Biology of Lipids, 2010,1801(9):994-1004.
URL PMID |
[4] |
OLIVIER-MASON A, WOJTYNIAK M, BOWIE R V, et al. Transmembrane protein OSTA-1 shapes sensory Cilia morphology via regulation of intracellular membrane trafficking in C. elegans[J]. Development (Cambridge, England), 2013,140(7):1560-1572.
URL PMID |
[5] |
LIU Q S, VAIN T, VIOTTI C, et al. Vacuole integrity maintained by DUF300 proteins is required for brassinosteroid signaling regulation[J]. Molecular Plant, 2018,11(4):553-567.
DOI URL PMID |
[6] | 明川, 拓昊苑, 陶怡, 等. 玉米蔗糖非酵解型蛋白激酶2底物蛋白的筛选与鉴定[J]. 西北农林科技大学学报(自然科学版), 2018,46(10):57-67. |
MING C, TUO H Y, TAO Y, et al. Screening and identification of substrate proteins of sucrose non-fermenting protein kinase 2 in maize[J]. Journal of Northwest A & F University (Natural Science Edition), 2018,46(10):57-67.(in Chinese with English abstract) | |
[7] |
WANG Y G, FU F L, YU H Q, et al. Interaction network of core ABA signaling components in maize[J]. Plant Molecular Biology, 2018,96(3):245-263.
DOI URL PMID |
[8] |
ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016,167(2):313-324.
URL PMID |
[9] |
GONG Z Z, XIONG L M, SHI H Z, et al. Plant abiotic stress response and nutrient use efficiency[J]. Science China Life Sciences, 2020,63(5):635-674.
URL PMID |
[10] | ZHAO C Z, ZHANG H, SONG C P, et al. Mechanisms of plant responses and adaptation to soil salinity[J]. The Innovation, 2020,1(1):100017. |
[11] | 王丽, 王万兴, 索海翠, 等. 马铃薯多酚氧化酶基因家族生物信息学及表达分析[J]. 湖南农业大学学报(自然科学版), 2019,45(6):601-610. |
WANG L, WANG W X, SUO H C, et al. Bioinformatics and expression analysis of polyphenol oxidase gene family in potato[J]. Journal of Hunan Agricultural University (Natural Sciences), 2019,45(6):601-610.(in Chinese with English abstract) | |
[12] |
ZHANG B, LIU J, YANG Z E, et al. Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L[J]. BMC Genomics, 2018,19(1):1-12.
URL PMID |
[13] |
JIA H H, WANG C, WANG F, et al. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana[J]. PLoS One, 2015,10(3):e0120646.
DOI URL PMID |
[14] | MANZI M, LADO J, RODRIGO M J, et al. ABA accumulation in water-stressed citrus roots does not rely on carotenoid content in this organ[J]. Plant Science, 2016,252:151-161. |
[15] |
YOUSFI F E, MAKHLOUFI E, MARANDE W, et al. Comparative analysis of WRKY genes potentially involved in salt stress responses in Triticum turgidum L. ssp. durum[J]. Frontiers in Plant Science, 2017,7:2034.
URL PMID |
[16] | 朱作峰, 孙传清, 付永彩, 等. 水稻中一个新的MYC基因的克隆及其分析[J]. 遗传学报, 2005,32(4):393-398. |
ZHU Z F, SUN C Q, FU Y C, et al. Isolation and analysis of a novel MYC gene from rice[J]. Acta Genetica Sinica, 2005,32(4):393-398.(in Chinese with English abstract) | |
[17] |
LI Z Y, XU Z S, HE G Y, et al. A mutation in Arabidopsis BSK5 encoding a brassinosteroid-signaling kinase protein affects responses to salinity and abscisic acid[J]. Biochemical and Biophysical Research Communications, 2012,426(4):522-527.
URL PMID |
[18] |
MAESTRINI P, CAVALLINI A, RIZZO M, et al. Isolation and expression analysis of low temperature-induced genes in white poplar (Populus alba)[J]. Journal of Plant Physiology, 2009,166(14):1544-1556.
URL PMID |
[1] | LU Anqiao, ZHANG Fengju, WANG Xueqin, XU Xing. Effects of NaCl and Na2SO4 stress on content and distribution of K + and Na + of Echinochloa frumentacea seedlings [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 396-403. |
[2] | HUANG Yongming, SONG Fang, WANG Ce, YAO Jinglei, WANG Zhijing, HE Ligang, WU Liming, JIANG Yingchun. Effects of root pruning on growth and expression of related genes in Poncirus trifoliata [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 270-277. |
[3] | HE Jiaqi, ZHAI Ying, ZHANG Jun, QIU Shuang, LI Mingyang, ZHAO Yan, ZHANG Meijuan, MA Tianyi. Cloning and expression analysis of GmDof1.5 in soybean under abiotic stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 1-7. |
[4] | YANG Yiwei, XIAO Hua, CHEN Hu, XIAO Niejia, GUO Cheng. Structural characteristics of soil mite communities under different modes of rose-based agroforestry in Karst area [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 112-121. |
[5] | XU Xiuhong, LIU Jinliang, LI Dongcheng, LIU Renxiang. Analysis of nicotine content and related gene expression in different types of tobacco germplasm [J]. , 2020, 32(9): 1555-1563. |
[6] | SONG Xindan, CHEN Binbin, MA Zengling, XU Lili, LIN Lidong, WU Mingjiang. Effects of salinity level on photosynthetic characteristics of Sargassum fusiforme seedlings [J]. , 2020, 32(9): 1634-1644. |
[7] | LIU Kunju, ZHANG Xiaohui, PANG Youzhi, ZHAO Shujuan, QI Yanxia, WANG Qiankun. Relationship of plumage color with expression and polymorphism of GNAS gene in Korean quail [J]. , 2020, 32(8): 1369-1377. |
[8] | SHI Jing, LIU Dongyang, ZHANG Fenghua. Physiological response and salt tolerance mechanism of cotton seedlings to salt stress [J]. , 2020, 32(7): 1141-1148. |
[9] | LI Qiuling, QI Ying, WANG Chen, ZHANG Yiming, WANG Xinyu, SHANG Xiaolan, JIA Yonghong, LI Meiru, CHU Mingxing. Effect of heat stress on gene expressions and signaling pathways of mammary gland in Chinese Holstein [J]. , 2020, 32(5): 770-778. |
[10] | LU Yi, GAO Youling, WANG Shuitao, HE Shengsheng. Effects of microRNA-499 on lipid metabolism-related gene expression in Pelodiscus sinensis [J]. , 2020, 32(5): 798-803. |
[11] | LI Weifang, WANG Chunlei, WANG Ni, DENG Yuzheng, YAO Yandong, WEI Lijuan, LIAO Weibiao. Research progress on effect of nitric oxide on adventitious root formation in plants [J]. , 2020, 32(4): 742-752. |
[12] | QIN Ling, ZHANG Xin, RONG Chunxiao, MO Chuanyuan, FAN Lu, YAN Jie, MENG Ying, ZHANG Manrang. Identification and expression analysis of polyamine oxidase (PAO) gene family in apple [J]. , 2020, 32(2): 262-273. |
[13] | ZHANG Guwen, SHEN Li, ZHENG Huazhang, LIU Na, FENG Zhijuan, GONG Yaming. Research advances of zinc finger protein transcription factor Di19 in regulation of soybean responding to drought stress [J]. , 2020, 32(2): 373-382. |
[14] | ZHANG Zheng, WANG Xiaorong, QIAN Hong, ZHANG Lan, YAN Peng, ZHANG Liping, ZHANG Xinfu, LI Xin, HAN Wenyan. Effects of anthracnose disease on photosynthetic characteristics in tea leaves (Camellia sinensis L.) [J]. , 2020, 32(11): 2020-2026. |
[15] | BIAN Jianwen, CUI Yan, YANG Songqi, LUO Guanghong, MENG Xiangang. Effects of Chlamydomonas debaryana Gor. and Anabaena azotica Ley. on wheat seedling growth under salt stress [J]. , 2020, 32(10): 1748-1756. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 2190
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1883
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||