Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (6): 1385-1395.DOI: 10.3969/j.issn.1004-1524.2023.06.16
• Plant Protection • Previous Articles Next Articles
YANG Kai(), CHEN Kai, LI Hongmei, ZHAO Zhongjuan, HU Jindong, LI Jishun*(
), YANG Hetong
Received:
2022-07-18
Online:
2023-06-25
Published:
2023-07-04
CLC Number:
YANG Kai, CHEN Kai, LI Hongmei, ZHAO Zhongjuan, HU Jindong, LI Jishun, YANG Hetong. Biocontrol efficacy and action mechanism of Trichoderma harzianum LTR-2 and Arthrobacter ureafaciens DnL1-1 against crown rot of wheat[J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1385-1395.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.06.16
处理 Treatment | 病情指数Disease index | ||
---|---|---|---|
100倍稀释液 Dilution ratio 100× | 50倍稀释液 Dilution ratio 50× | 20倍稀释液 Dilution ratio 20× | |
CK | 25.8±6.3 a | 62.0±7.5 a | 79.2±5.2 a |
酷拉斯 Kuras | 3.3±1.4 c | 27.5±7.5 b | 51.7±1.4 b |
LTR-2+DnL1-1 | 3.3±3.8 c | 30.8±8.8 b | 51.7±1.4 b |
LTR-2 | 15.8±6.3 b | 42.5±2.5 ab | 53.3±7.6 b |
DnL1-1 | 27.5±5.0 a | 56.7±11.8 a | 71.7±8.0 a |
Table 1 Effect of LTR-2 and DnL1-1 on disease index of wheat crown rot
处理 Treatment | 病情指数Disease index | ||
---|---|---|---|
100倍稀释液 Dilution ratio 100× | 50倍稀释液 Dilution ratio 50× | 20倍稀释液 Dilution ratio 20× | |
CK | 25.8±6.3 a | 62.0±7.5 a | 79.2±5.2 a |
酷拉斯 Kuras | 3.3±1.4 c | 27.5±7.5 b | 51.7±1.4 b |
LTR-2+DnL1-1 | 3.3±3.8 c | 30.8±8.8 b | 51.7±1.4 b |
LTR-2 | 15.8±6.3 b | 42.5±2.5 ab | 53.3±7.6 b |
DnL1-1 | 27.5±5.0 a | 56.7±11.8 a | 71.7±8.0 a |
Fig.1 Control effect of LTR-2 and DnL1-1 on wheat crown rot Data on the bars marked without the same lowercase letter indicated significant differences at P<0.05.
处理 Treatment | 株高 Plant height/cm | 苗鲜重 Fresh weight of seedling/g | 根鲜重 Fresh weight of root/g | 根冠比 Root shoot ratio/% |
---|---|---|---|---|
CK | 23.28±0.81 ab | 4.14±0.13 b | 1.81±0.30 b | 0.44±0.09 b |
酷拉斯Kuras | 23.84±1.16 ab | 5.33±0.56 a | 2.78±0.73 a | 0.53±0.17 a |
LTR-2+DnL1-1 | 24.42±0.76 a | 4.32±0.22 b | 2.89±0.30 a | 0.67±0.08 a |
LTR-2 | 23.29±0.70 ab | 4.54±0.18 b | 2.93±0.25 a | 0.65±0.07 a |
DnL1-1 | 22.85±1.12 bc | 4.14±0.44 b | 2.41±0.93 a | 0.57±0.19 a |
Table 2 Effects of different treatments on wheat growth under 20 times dilution inoculation of Fusarium pseudograminearum
处理 Treatment | 株高 Plant height/cm | 苗鲜重 Fresh weight of seedling/g | 根鲜重 Fresh weight of root/g | 根冠比 Root shoot ratio/% |
---|---|---|---|---|
CK | 23.28±0.81 ab | 4.14±0.13 b | 1.81±0.30 b | 0.44±0.09 b |
酷拉斯Kuras | 23.84±1.16 ab | 5.33±0.56 a | 2.78±0.73 a | 0.53±0.17 a |
LTR-2+DnL1-1 | 24.42±0.76 a | 4.32±0.22 b | 2.89±0.30 a | 0.67±0.08 a |
LTR-2 | 23.29±0.70 ab | 4.54±0.18 b | 2.93±0.25 a | 0.65±0.07 a |
DnL1-1 | 22.85±1.12 bc | 4.14±0.44 b | 2.41±0.93 a | 0.57±0.19 a |
Fig.2 Inhibitory effect of LTR-2 and DnL1-1 on Fusarium pseudograminearum A-D represent the control, DnL1-1, LTR-2 and DnL1-1+LTR-2 confront cultured with Fusarium pseudograminearum for 7 days, respectively.
Fig.3 Effects of LTR-2 and DnL1-1 on mycelial growth of Fusarium pseudograminearum A, Control; B, DnL1-1 confront cultured with Fusarium pseudograminearum; C and D, LTR-2 confront cultured with Fusarium pseudograminearum; E, F and G, DnL1-1+LTR-2 confront cultured with Fusarium pseudograminearum. The black arrows in the figure represented that Trichoderma parasitize Fusarium pseudograminearum in ways of twining, penetrating and clinging, and lead to Fusarium pseudograminearum mycelium protoplasm shrinkage, septum increased, cell became shorter or mycelium broke.
Fig.4 Inhibition of different fermentation filtrates on growth of Fusarium pseudograminearum mycelia A and B represent the results of cultured for 2 and 5 days, respectively. From left to right are the sterile water control group, DnL1-1 fermentation filtrate treatment group, LTR-2 fermentation filtrate treatment group and DnL1-1+LTR-2 combined fermentation filtrate treatment group. The top is the front side, and the bottom is the back side.
Fig.5 Effects of LTR-2 and DnL1-1 fermentation filtrate on mycelia growth of Fusarium pseudograminearum in liquid culture A, B, C and D represent the sterile water, DnL1-1 fermentation filtrate, LTR-2 fermentation filtrate and DnL1-1+LTR-2 fermentation filtrate cultured with Fusarium pseudograminearum, respectively. The black arrows in the figure refer to the area where the hyphae expand, twist or fuse.
Fig.6 Effect of LTR-2 and DnL1-1 fermentation filtrate on sporulation of Fusarium pseudograminearum in liquid culture A, B, C, D and E represent the sterile water, DnL1-1 fermentation filtrate, LTR-2 fermentation filtrate and DnL1-1+LTR-2 fermentation filtrate cultured with Fusarium pseudograminearum, respectively. The black arrows in the figure indicate different spore types, including chlamydospores and conidia.
[1] | 李冬梅, 曹克强, 王爱英, 等. 河北省小麦根病发生现状及致病病原种类调查[J]. 河北农业大学学报, 2001, 24(3): 38-42. |
LI D M, CAO K Q, WANG A Y, et al. Investigation on the occurrence and pathogen species of wheat root diseases in Hebei Province[J]. Journal of Agricultural University of Hebei, 2001, 24(3): 38-42. (in Chinese with English abstract) | |
[2] | 李鹏昌. 山东小麦根茎部主要真菌病害病原的分离鉴定和分子检测[D]. 泰安: 山东农业大学, 2014. |
LI P C. Identification and molecular detection of pathogen of soilborne fungal diseases in wheat of Shandong region[D]. Taian: Shandong Agricultural University, 2014. (in Chinese with English abstract) | |
[3] | SMILEY R W, GOURLIE J A, EASLEY S A, et al. Crop damage estimates for crown rot of wheat and barley in the Pacific northwest[J]. Plant Disease, 2005, 89(6): 595-604. |
[4] | CHAKRABORTY S, LIU C J, MITTER V, et al. Pathogen population structure and epidemiology are keys to wheat crown rot and Fusarium head blight management[J]. Australasian Plant Pathology, 2006, 35(6): 643-655. |
[5] | ERGINBAS-ORAKCI G, POOLE G, NICOL J M, et al. Assessment of inoculation methods to identify resistance to Fusarium crown rot in wheat[J]. Journal of Plant Diseases and Protection, 2016, 123(1): 19-27. |
[6] | KAZAN K, GARDINER D M. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: recent progress and future prospects[J]. Molecular Plant Pathology, 2018, 19(7): 1547-1562. |
[7] | 贺小伦, 周海峰, 袁虹霞, 等. 河南和河北冬小麦区假禾谷镰孢的遗传多样性[J]. 中国农业科学, 2016, 49(2): 272-281. |
HE X L, ZHOU H F, YUAN H X, et al. Genetic diversity of Fusarium pseudograminearum collected from Henan and Hebei winter wheat regions[J]. Scientia Agricultura Sinica, 2016, 49(2): 272-281. (in Chinese with English abstract) | |
[8] | 吴斌, 郭霞, 张眉, 等. 鲁西南地区小麦茎基腐病病原菌鉴定及其致病力分析[J]. 麦类作物学报, 2018, 38(3): 358-365. |
WU B, GUO X, ZHANG M, et al. Identification and pathogenicity of pathogens associated with the wheat crown rot in the southwest of Shandong Province[J]. Journal of Triticeae Crops, 2018, 38(3): 358-365. (in Chinese with English abstract) | |
[9] | ZHOU H F, HE X L, WANG S, et al. Diversity of the Fusarium pathogens associated with crown rot in the Huanghuai wheat-growing region of China[J]. Environmental Microbiology, 2019, 21(8): 2740-2754. |
[10] | DENG Y Y, LI W, ZHANG P, et al. Fusarium pseudograminearum as an emerging pathogen of crown rot of wheat in Eastern China[J]. Plant Pathology, 2020, 69(2): 240-248. |
[11] | 林琪童, 杨丽荣, 夏明聪, 等. 小麦茎基腐病生防菌株YB-161的分离鉴定及防效测定[J]. 植物保护学报, 2020, 47(4): 939-948. |
LIN Q T, YANG L R, XIA M C, et al. Isolation, identification and control efficiency of biocontrol strain YB-161 against wheat crown rot[J]. Journal of Plant Protection, 2020, 47(4): 939-948. (in Chinese with English abstract) | |
[12] | 张洁, 汤蒙蒙, 夏明聪, 等. 枯草芽孢杆菌YB-05与申嗪霉素复配防治小麦茎基腐病[J]. 中国生物防治学报, 2018, 34(6): 866-872. |
ZHANG J, TANG M M, XIA M C, et al. Combination of Bacillus subtilis YB-05 and Shenqinmycin for integrated control of wheat crown rot[J]. Chinese Journal of Biological Control, 2018, 34(6): 866-872. (in Chinese with English abstract) | |
[13] | ZHANG J E, ZHU W Q, GOODWIN P H, et al. Response of Fusarium pseudograminearum to biocontrol agent Bacillus velezensis YB-185 by phenotypic and transcriptome analysis[J]. Journal of Fungi, 2022, 8(8): 763. |
[14] | STUMMER B E, ZHANG Q, ZHANG X, et al. Quantification of Trichoderma afroharzianum, Trichoderma harzianum and Trichoderma gamsii inoculants in soil, the wheat rhizosphere and in planta suppression of the crown rot pathogen Fusarium pseudograminearum[J]. Journal of Applied Microbiology, 2020, 129(4): 971-990. |
[15] | 陈凯, 隋丽娜, 杨凯, 等. 两株木霉共培养发酵提高对小麦苗期茎基腐病的防治效果[J]. 植物病理学报, 2022, 52(3): 425-433. |
CHEN K, SUI L N, YANG K, et al. Co-culturation of two Trichoderma strains enhanced control efficiency against wheat crown rot at seedling stage[J]. Acta Phytopathologica Sinica, 2022, 52(3): 425-433. (in Chinese with English abstract) | |
[16] | 扈进冬, 杨在东, 吴远征, 等. 哈茨木霉拌种对冬小麦生长、土传病害及根际真菌群落的影响[J]. 植物保护, 2021, 47(5): 35-40. |
HU J D, YANG Z D, WU Y Z, et al. Effects of seed dressing treatment with Trichoderma harzianum on the growth of winter wheat seedlings, soil borne diseases and rhizosphere fungal community[J]. Plant Protection, 2021, 47(5): 35-40. (in Chinese with English abstract) | |
[17] | 纪莉景, 王亚娇, 栗秋生, 等. 防治小麦茎基腐病种衣剂的筛选及全生育期防控效果[J]. 河北农业科学, 2020, 24(2): 42-47. |
JI L J, WANG Y J, LI Q S, et al. Screening of seed coating agents for controlling Fusarium crown rot and control efficiency at the whole growth period of wheat[J]. Journal of Hebei Agricultural Sciences, 2020, 24(2): 42-47. (in Chinese with English abstract) | |
[18] | XU W, YANG Q A, XIE X A, et al. Genomic and phenotypic insights into the potential of Bacillus subtilis YB-15 isolated from rhizosphere to biocontrol against crown rot and promote growth of wheat[J]. Biology, 2022, 11(5): 778. |
[19] | RUANGWONG O U, WONGLOM P, PHOKA N, et al. Biological control activity of Trichoderma asperelloides PSU-P1 against gummy stem blight in muskmelon (Cucumis melo)[J]. Physiological and Molecular Plant Pathology, 2021, 115: 101663. |
[20] | KIM Y T, MONKHUNG S, LEE Y S, et al. Effects of Lysobacter antibioticus HS124, an effective biocontrol agent against Fusarium graminearum, on crown rot disease and growth promotion of wheat[J]. Canadian Journal of Microbiology, 2019, 65(12): 904-912. |
[21] | 陈小洁, 王其, 张欣悦, 等. 杜仲内生细菌拮抗小麦赤霉病菌研究[J]. 浙江农业学报, 2019, 31(5): 766-776. |
CHEN X J, WANG Q, ZHANG X Y, et al. Study on endophytic bacteria isolated from Eucommia ulmoides with antimicrobial activity against Fusarium graminearum[J]. Acta Agriculturae Zhejiangensis, 2019, 31(5): 766-776. (in Chinese with English abstract) | |
[22] | LI S, XU J Q, FU L M, et al. Biocontrol of wheat crown rot using Bacillus halotolerans QTH8[J]. Pathogens, 2022, 11(5): 595. |
[23] | LI T T, TANG J Q, KARUPPIAH V, et al. Co-culture of Trichoderma atroviride SG3403 and Bacillus subtilis 22 improves the production of antifungal secondary metabolites[J]. Biological Control, 2020, 140: 104122. |
[24] | LI L, MA M C, HUANG R, et al. Induction of chlamydospore formation in Fusarium by cyclic lipopeptide antibiotics from Bacillus subtilis C2[J]. Journal of Chemical Ecology, 2012, 38(8): 966-974. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||