Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (7): 1729-1739.DOI: 10.3969/j.issn.1004-1524.20221148
• Biosystems Engineering • Previous Articles Next Articles
ZHANG Yana,b(), ZHOU Baopinga,*(
), WANG Yua,b, FENG Jiea,b, YE Fankaia,b, HE Yunlonga,b
Received:
2022-08-03
Online:
2023-07-25
Published:
2023-08-17
Contact:
ZHOU Baoping
CLC Number:
ZHANG Yan, ZHOU Baoping, WANG Yu, FENG Jie, YE Fankai, HE Yunlong. Identification of harm grades of cotton spider mites based on transfer learning and improved residual network[J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1729-1739.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221148
级别 Grade | 图像数量Image quantity | ||
---|---|---|---|
训练集 Training set | 测试集 Test set | 总计 Total | |
0 | 9 117 | 3 908 | 13 025 |
1 | 11 970 | 5 130 | 17 100 |
2 | 11 900 | 5 100 | 17 000 |
3 | 14 175 | 6 075 | 20 250 |
总计Total | 47 162 | 2 0213 | 67 375 |
Table 1 Quantity of cotten leaves images after augmentation
级别 Grade | 图像数量Image quantity | ||
---|---|---|---|
训练集 Training set | 测试集 Test set | 总计 Total | |
0 | 9 117 | 3 908 | 13 025 |
1 | 11 970 | 5 130 | 17 100 |
2 | 11 900 | 5 100 | 17 000 |
3 | 14 175 | 6 075 | 20 250 |
总计Total | 47 162 | 2 0213 | 67 375 |
Fig.2 Examples of images after data augmentation a, Origin image; b, Gaussian blur; c, Horizontal flip; d, Rotate by 90°; e, Elastic transformation; f, Selective erasing; g, Generate rectangular region; h, Grid distortion; i, Delete rectangular areas by grid mode; j, Optical distortion.
学习率 Learning rate | 准确率 Precision | 召回率 Recall | F1得分 F1 score |
---|---|---|---|
0.01 | 94.7 | 94.6 | 94.6 |
0.001 | 97.8 | 97.7 | 97.8 |
0.000 1 | 92.0 | 91.8 | 91.5 |
Table 2 Performance comparison of models under different learning rates %
学习率 Learning rate | 准确率 Precision | 召回率 Recall | F1得分 F1 score |
---|---|---|---|
0.01 | 94.7 | 94.6 | 94.6 |
0.001 | 97.8 | 97.7 | 97.8 |
0.000 1 | 92.0 | 91.8 | 91.5 |
模型 Model | 准确率Precision | 召回率Recall | F1得分F1 score | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0级 Grade 0 | 1级 Grade 1 | 2级 Grade 2 | 3级 Grade 3 | 0级 Grade 0 | 1级 Grade 1 | 2级 Grade 2 | 3级 Grade 3 | 0级 Grade 0 | 1级 Grade 1 | 2级 Grade 2 | 3级 Grade 3 | |
AlexNet | 92.9 | 74.3 | 80.3 | 85.8 | 92.9 | 89.6 | 85.9 | 87.5 | 92.9 | 80.7 | 86.9 | 86.6 |
MobileNet | 97.1 | 92.4 | 84.3 | 97.2 | 94.9 | 95.4 | 88.3 | 93.4 | 96.9 | 93.9 | 86.2 | 95.3 |
VGG16 | 96.6 | 89.5 | 84.0 | 95.3 | 94.9 | 94.8 | 81.5 | 94.0 | 96.8 | 92.1 | 82.7 | 94.7 |
ResNet50 | 97.0 | 89.0 | 73.0 | 95.7 | 96.0 | 89.6 | 81.6 | 88.8 | 97.0 | 89.3 | 77.1 | 92.2 |
SENet | 96.3 | 91.3 | 72.0 | 97.9 | 85.5 | 96.1 | 87.3 | 94.1 | 91.8 | 93.6 | 84.2 | 91.8 |
改进的ResNet50 | 97.1 | 96.2 | 98.0 | 98.7 | 100.0 | 98.1 | 94.2 | 98.7 | 98.5 | 97.1 | 96.0 | 99.3 |
Improved ResNet50 |
Table 3 Performance comparison of different models %
模型 Model | 准确率Precision | 召回率Recall | F1得分F1 score | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0级 Grade 0 | 1级 Grade 1 | 2级 Grade 2 | 3级 Grade 3 | 0级 Grade 0 | 1级 Grade 1 | 2级 Grade 2 | 3级 Grade 3 | 0级 Grade 0 | 1级 Grade 1 | 2级 Grade 2 | 3级 Grade 3 | |
AlexNet | 92.9 | 74.3 | 80.3 | 85.8 | 92.9 | 89.6 | 85.9 | 87.5 | 92.9 | 80.7 | 86.9 | 86.6 |
MobileNet | 97.1 | 92.4 | 84.3 | 97.2 | 94.9 | 95.4 | 88.3 | 93.4 | 96.9 | 93.9 | 86.2 | 95.3 |
VGG16 | 96.6 | 89.5 | 84.0 | 95.3 | 94.9 | 94.8 | 81.5 | 94.0 | 96.8 | 92.1 | 82.7 | 94.7 |
ResNet50 | 97.0 | 89.0 | 73.0 | 95.7 | 96.0 | 89.6 | 81.6 | 88.8 | 97.0 | 89.3 | 77.1 | 92.2 |
SENet | 96.3 | 91.3 | 72.0 | 97.9 | 85.5 | 96.1 | 87.3 | 94.1 | 91.8 | 93.6 | 84.2 | 91.8 |
改进的ResNet50 | 97.1 | 96.2 | 98.0 | 98.7 | 100.0 | 98.1 | 94.2 | 98.7 | 98.5 | 97.1 | 96.0 | 99.3 |
Improved ResNet50 |
[1] | 高江. 新疆棉种产业发展问题剖析[J]. 棉花科学, 2022, 44(2): 9-15. |
GAO J. Analysis of Xinjiang cotton seed industry development[J]. Cotton Sciences, 2022, 44(2): 9-15. (in Chinese with English abstract) | |
[2] | 杨德松, 姬华, 王星, 等. 影响新疆棉叶螨发生因素的研究[J]. 中国棉花, 2004, 31(6): 10-11. |
YANG D S, JI H, WANG X, et al. Study on the factors affecting the occurrence of cotton spider mite in Xinjiang[J]. China Cotton, 2004, 31(6): 10-11. (in Chinese with English abstract) | |
[3] | GREWAL P S, OLOUMI F, RUBIN U, et al. Deep learning in ophthalmology: a review[J]. Canadian Journal of Ophthalmology, 2018, 53(4): 309-313. |
[4] | KAMILARIS A, PRENAFETA-BOLDÚ F X. Deep learning in agriculture: a survey[J]. Computers and Electronics in Agriculture, 2018, 147: 70-90. |
[5] | REVATHI P, HEMALATHA M. Identification of cotton diseases based on cross information gain_deep forward neural network classifier with PSO feature selection[J]. International Journal of Engineering and Technology, 2013, 5(6): 4637-4642. |
[6] | BOULENT J, FOUCHER S, THÉAU J, et al. Convolutional neural networks for the automatic identification of plant diseases[J]. Frontiers in Plant Science, 2019, 10: 941. |
[7] | 许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020, 51(2): 230-236. |
XU J H, SHAO M Y, WANG Y C, et al. Recognition of corn leaf spot and rust based on transfer learning with convolutional neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 230-236. (in Chinese with English abstract) | |
[8] | 吴沧海, 熊焕亮, 裘武. 基于Matlab的柑橘始叶螨边缘检测的研究[J]. 微计算机信息, 2010, 26(26): 198-199. |
WU C H, XIONG H L, QIU W. Research of yellow-spider’s edge detection based on MATLAB[J]. Microcomputer Information, 2010, 26(26): 198-199. (in Chinese with English abstract) | |
[9] | 杨丽丽, 张大卫, 罗君, 等. 基于SVM和AdaBoost的棉叶螨危害等级识别[J]. 农业机械学报, 2019, 50(2): 14-20. |
YANG L L, ZHANG D W, LUO J, et al. Automatic recognition for cotton spider mites damage level based on SVM and AdaBoost[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 14-20. (in Chinese with English abstract) | |
[10] | CHENG X, ZHANG Y H, CHEN Y Q, et al. Pest identification via deep residual learning in complex background[J]. Computers and Electronics in Agriculture, 2017, 141: 351-356. |
[11] | 张建华, 孔繁涛, 吴建寨, 等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报, 2018, 23(11): 161-171. |
ZHANG J H, KONG F T, WU J Z, et al. Cotton disease identification model based on improved VGG convolution neural network[J]. Journal of China Agricultural University, 2018, 23(11): 161-171. (in Chinese with English abstract) | |
[12] | 何东健, 王鹏, 牛童, 等. 基于改进残差网络的田间葡萄霜霉病病害程度分级模型[J]. 农业机械学报, 2022, 53(1): 235-243. |
HE D J, WANG P, NIU T, et al. Classification model of grape downy mildew disease degree in field based on improved residual network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 235-243. (in Chinese with English abstract) | |
[13] | JENIFA A, RAMALAKSHMI R, RAMACHANDRAN V. Cotton leaf disease classification using deep convolution neural network for sustainable cotton production[C]// 2019 IEEE International Conference on Clean Energy and Energy Efficient Electronics Circuit for Sustainable Development (INCCES). December 18-20, 2019. Krishnankoil, India: IEEE, 2020: 1-3. |
[14] | CALDEIRA R F, SANTIAGO W E, TERUEL B. Identification of cotton leaf lesions using deep learning techniques[J]. Sensors (Basel, Switzerland), 2021, 21(9): 3169. |
[15] | YANG L L, LUO J, WANG Z P, et al. Research on recognition for cotton spider mites’ damage level based on deep learning[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(6): 129-134. |
[16] | HUGHES D P, SALATHE M. An open access repository of images on plant health to enable the development of mobile disease diagnostics[EB/OL]. (2015-11-25) [2022-08-03]. https://arxiv.org/abs/1511.08060v2 |
[17] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会.棉花叶螨测报技术规范: GB/T 15802—2011[S]. 北京: 中国标准出版社, 2011. |
[18] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016. Las Vegas, NV, USA: IEEE, 2016: 770-778. |
[19] | PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. |
[20] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327. |
[21] | 王卓, 王健, 王枭雄, 等. 基于改进YOLO v4的自然环境苹果轻量级检测方法[J]. 农业机械学报, 2022, 53(8): 294-302. |
WANG Z, WANG J, WANG X X, et al. Lightweight real-time apple detection method based on improved YOLO v4[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 294-302. (in Chinese with English abstract) | |
[22] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. ( 2017-06-12) [2022-08-03]. https://arxiv.org/abs/1706.03762v4 |
[23] | LAROCHELLE H, HINTON G. Learning to combine foveal glimpses with a third-order Boltzmann machine[C]//Proceedings of the 23rd International Conference on Neural Information Processing Systems: Volume 1. December 6-9, 2010. Vancouver: ACM, 2010: 1243-1251. |
[24] | 孙萍, 胡旭东, 张永军. 结合注意力机制的深度学习图像目标检测[J]. 计算机工程与应用, 2019, 55(17): 180-184. |
SUN P, HU X D, ZHANG Y J. Object detection based on deep learning and attention mechanism[J]. Computer Engineering and Applications, 2019, 55(17): 180-184. (in Chinese with English abstract) | |
[25] | MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[EB/OL]. ( 2014-06-25) [2022-08-03]. https://arxiv.org/abs/1406.6247 |
[26] | BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL]. ( 2014-09-01) [2022-08-03]. https://arxiv.org/abs/1409.0473v7 |
[27] | XU K, BA J, KIROS R, et al. Show, attend and tell: neural image caption generation with visual attention[EB/OL]. ( 2015-02-10) [2022-08-03]. https://arxiv.org/abs/1502.03044 |
[28] | RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. |
[29] | HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. |
[30] | FU J L, ZHENG H L, MEI T. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA: IEEE, 2017: 4476-4484. |
[31] | 万昊, 任勇, 山秀明. 基于混淆矩阵的全方位角雷达目标识别[J]. 微电子学与计算机, 2005, 22(3): 136-139. |
WAN H, REN Y, SHAN X M. Confusion-matrix based whole-aspect-range HRRP recognition[J]. Microelectronics & Computer, 2005, 22(3): 136-139. (in Chinese with English abstract) |
[1] | ZHANG Ning, WU Huarui, HAN Xiao, MIAO Yisheng. Tomato disease recognition scheme based on multi-scale and attention mechanism [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1329-1338. |
[2] | WANG Jian, TIAN Guangbao, ZHOU Qin. Cotton recognition based on transfer learning [J]. , 2020, 32(8): 1457-1465. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||