Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (7): 1720-1728.DOI: 10.3969/j.issn.1004-1524.20220807
• Quality and Safety of Agricultural Products • Previous Articles Next Articles
YE Hui1,2(), CHEN Yuting1, LUO Yuqin2, FAN Xuyan2, LEI Yuan2, LU Lanfei2, HAO Peipei3, CHENG Youpu1,*(
), ZHANG Changpeng2,*(
)
Received:
2022-05-31
Online:
2023-07-25
Published:
2023-08-17
Contact:
CHENG Youpu,ZHANG Changpeng
CLC Number:
YE Hui, CHEN Yuting, LUO Yuqin, FAN Xuyan, LEI Yuan, LU Lanfei, HAO Peipei, CHENG Youpu, ZHANG Changpeng. Residue and dissipation dynamics of two formulations of pyraclostrobin in strawberry[J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1720-1728.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20220807
保留时间 Retention time/min | 母离子 Precursor ion(m/z) | 子离子 Product ion(m/z) | 滞留时间 Dwell time/s | 锥孔电压 Cone voltage/V | 碰撞能 Collision energy/eV |
---|---|---|---|---|---|
1.51 | 388.01 | 197.03* | 0.061 | 18 | 28 |
388.01 | 163.05 | 0.061 | 18 | 12 |
Table 1 Mass spectrometric parameters of pyraclostrobin
保留时间 Retention time/min | 母离子 Precursor ion(m/z) | 子离子 Product ion(m/z) | 滞留时间 Dwell time/s | 锥孔电压 Cone voltage/V | 碰撞能 Collision energy/eV |
---|---|---|---|---|---|
1.51 | 388.01 | 197.03* | 0.061 | 18 | 28 |
388.01 | 163.05 | 0.061 | 18 | 12 |
线性范围 Linear range/ (mg·L-1) | 基质 Matrix | 回归方程 Regression equation | 决定系数 Coefficient of determination | 基质效应 ME | 检出限 LOD/ (mg·L-1) | 定量限 LOQ/ (mg·kg-1) |
---|---|---|---|---|---|---|
0.0005~0.1 | 乙腈Acetonitrile | y=1 938 010.57x+4 352.84 | 0.999 7 | — | — | — |
叶Leaf | y=2 804 465.99x+1 0761.20 | 0.998 9 | 0.87 | 0.000 5 | 0.005 0 | |
茎Stem | y=2 576 648.62x+3 515.89 | 1.000 0 | 0.85 | 0.000 5 | 0.005 0 | |
草莓Strawberry | y=1 992 976.51x+6 239.22 | 0.999 2 | 1.03 | 0.000 5 | 0.002 0 | |
根Root | y=2 081 043.87x+6 103.10 | 0.999 8 | 1.07 | 0.000 5 | 0.005 0 | |
土壤Soil | y=2 292 365.17x+7 089.11 | 0.999 8 | 1.21 | 0.000 5 | 0.002 0 |
Table 2 Regression equation, coefficient of determination (R2), limit of detection (LOD), limit of quantitation (LOQ) and matrix effect (ME) of pyraclostrobin in strawberry
线性范围 Linear range/ (mg·L-1) | 基质 Matrix | 回归方程 Regression equation | 决定系数 Coefficient of determination | 基质效应 ME | 检出限 LOD/ (mg·L-1) | 定量限 LOQ/ (mg·kg-1) |
---|---|---|---|---|---|---|
0.0005~0.1 | 乙腈Acetonitrile | y=1 938 010.57x+4 352.84 | 0.999 7 | — | — | — |
叶Leaf | y=2 804 465.99x+1 0761.20 | 0.998 9 | 0.87 | 0.000 5 | 0.005 0 | |
茎Stem | y=2 576 648.62x+3 515.89 | 1.000 0 | 0.85 | 0.000 5 | 0.005 0 | |
草莓Strawberry | y=1 992 976.51x+6 239.22 | 0.999 2 | 1.03 | 0.000 5 | 0.002 0 | |
根Root | y=2 081 043.87x+6 103.10 | 0.999 8 | 1.07 | 0.000 5 | 0.005 0 | |
土壤Soil | y=2 292 365.17x+7 089.11 | 0.999 8 | 1.21 | 0.000 5 | 0.002 0 |
基质 Matrix | 加标水平 Spike level/ (mg·kg-1) | 日内精密度Intra-day (n=5)/% | 日间精密度Inter-day (n=15)/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 d | 2 d | 3 d | |||||||||
Rec | RSD | Rec | RSD | Rec | RSD | Rec | RSD | ||||
叶Leaf | 0.005 | 89 | 8 | 89 | 4 | 87 | 5 | 89 | 8 | ||
0.01 | 78 | 4 | 79 | 3 | 74 | 3 | 76 | 3 | |||
2 | 83 | 5 | 80 | 6 | 79 | 5 | 81 | 3 | |||
茎Stem | 0.005 | 91 | 9 | 97 | 8 | 92 | 9 | 93 | 9 | ||
0.01 | 91 | 5 | 81 | 7 | 87 | 7 | 97 | 8 | |||
2 | 77 | 4 | 83 | 5 | 86 | 5 | 91 | 9 | |||
草莓 | 0.002 | 96 | 3 | 97 | 1 | 96 | 4 | 97 | 4 | ||
Strawberry | 0.01 | 94 | 3 | 96 | 4 | 88 | 2 | 107 | 3 | ||
2 | 97 | 1 | 91 | 2 | 94 | 1 | 96 | 1 | |||
根Root | 0.005 | 106 | 2 | 108 | 6 | 101 | 4 | 107 | 4 | ||
0.01 | 96 | 6 | 94 | 6 | 101 | 5 | 105 | 5 | |||
2 | 93 | 2 | 92 | 3 | 92 | 3 | 94 | 2 | |||
土壤Soil | 0.002 | 110 | 9 | 105 | 6 | 101 | 6 | 104 | 7 | ||
0.01 | 99 | 7 | 103 | 6 | 104 | 7 | 102 | 6 | |||
2 | 99 | 4 | 95 | 3 | 97 | 4 | 94 | 4 |
Table 3 Average recoveries and relative standard deviations of pyraclostrobin in strawberry cultivation system
基质 Matrix | 加标水平 Spike level/ (mg·kg-1) | 日内精密度Intra-day (n=5)/% | 日间精密度Inter-day (n=15)/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 d | 2 d | 3 d | |||||||||
Rec | RSD | Rec | RSD | Rec | RSD | Rec | RSD | ||||
叶Leaf | 0.005 | 89 | 8 | 89 | 4 | 87 | 5 | 89 | 8 | ||
0.01 | 78 | 4 | 79 | 3 | 74 | 3 | 76 | 3 | |||
2 | 83 | 5 | 80 | 6 | 79 | 5 | 81 | 3 | |||
茎Stem | 0.005 | 91 | 9 | 97 | 8 | 92 | 9 | 93 | 9 | ||
0.01 | 91 | 5 | 81 | 7 | 87 | 7 | 97 | 8 | |||
2 | 77 | 4 | 83 | 5 | 86 | 5 | 91 | 9 | |||
草莓 | 0.002 | 96 | 3 | 97 | 1 | 96 | 4 | 97 | 4 | ||
Strawberry | 0.01 | 94 | 3 | 96 | 4 | 88 | 2 | 107 | 3 | ||
2 | 97 | 1 | 91 | 2 | 94 | 1 | 96 | 1 | |||
根Root | 0.005 | 106 | 2 | 108 | 6 | 101 | 4 | 107 | 4 | ||
0.01 | 96 | 6 | 94 | 6 | 101 | 5 | 105 | 5 | |||
2 | 93 | 2 | 92 | 3 | 92 | 3 | 94 | 2 | |||
土壤Soil | 0.002 | 110 | 9 | 105 | 6 | 101 | 6 | 104 | 7 | ||
0.01 | 99 | 7 | 103 | 6 | 104 | 7 | 102 | 6 | |||
2 | 99 | 4 | 95 | 3 | 97 | 4 | 94 | 4 |
剂型 Formulation | 剂量 Dose/ (g·hm-2) | 时间 Time | 草莓 Strawberry/ (mg·kg-1) | 叶 Leaf/ (mg·kg-1) | 茎 Stem/ (mg·kg-1) | 根 Root/ (mg·kg-1) | 土壤 Soil/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
乳油EC | 90 | 2 h | 0.25±0.01 | 7.83±0.12 | 1.64±0.04 | 0.11±0.01 | 0.02±0 |
1 d | 0.20±0.01 | 6.52±0.05 | 1.33±0.04 | 0.17±0.01 | 0.01±0 | ||
3 d | 0.14±0.01 | 5.53±0.01 | 1.27±0.02 | 0.07±0 | 0.01±0 | ||
5 d | 0.11±0 | 5.12±0.01 | 0.95±0.04 | 0.06±0 | 0.01±0 | ||
7 d | 0.10±0.01 | 4.69±0.30 | 0.87±0.66 | 0.04±0 | 0.01±0 | ||
10 d | 0.08±0.01 | 4.33±0.08 | 0.72±0.08 | 0.05±0 | 0.02±0 | ||
150 | 2 h | 0.27±0.01 | 9.75±0.05 | 2.12±0.07 | 0.22±0.01 | 0.02±0 | |
1 d | 0.28±0.01 | 8.80±0.10 | 2.28±0.08 | 0.16±0 | 0.01±0 | ||
3 d | 0.25±0.01 | 8.12±0.14 | 1.83±0.07 | 0.11±0 | 0.02±0 | ||
5 d | 0.19±0.01 | 8.03±0.16 | 1.56±0.09 | 0.10±0.01 | 0.02±0 | ||
7 d | 0.14±0 | 7.30±0.29 | 1.12±0.06 | 0.08±0 | 0.02±0 | ||
10 d | 0.11±0 | 6.42±0.19 | 1.07±0.09 | 0.05±0 | 0.02±0 | ||
微囊悬浮剂CS | 90 | 2 h | 0.16±0 | 5.94±0.10 | 1.09±0.03 | 0.07±0 | 0.02±0 |
1 d | 0.14±0.01 | 5.10±0.01 | 0.92±0.09 | 0.07±0 | 0.02±0 | ||
3 d | 0.10±0.01 | 4.97±0.06 | 0.76±0.03 | 0.09±0 | 0.01±0 | ||
5 d | 0.10±0.01 | 4.62±0.16 | 0.69±0.06 | 0.05±0 | 0.02±0 | ||
7 d | 0.09±0.01 | 4.56±0.01 | 0.65±0.05 | 0.07±0.01 | 0.01±0 | ||
10 d | 0.06±0.01 | 3.57±0.01 | 0.60±0.03 | 0.03±0 | 0.02±0 | ||
150 | 2 h | 0.21±0.01 | 8.90±0.17 | 1.68±0.03 | 0.10±0.01 | 0.02±0 | |
1 d | 0.20±0.01 | 8.53±0.14 | 1.62±0.06 | 0.14±0 | 0.03±0 | ||
3 d | 0.16±0.01 | 7.37±0.30 | 1.22±0.05 | 0.13±0.01 | 0.01±0 | ||
5 d | 0.16±0.01 | 7.25±0.22 | 1.16±0.01 | 0.07±0.01 | 0.02±0 | ||
7 d | 0.12±0.01 | 7.16±0.35 | 1.17±0.01 | 0.05±0.01 | 0.03±0 | ||
10 d | 0.10±0.01 | 6.48±0.35 | 0.94±0.06 | 0.04±0 | 0.03±0 |
Table 4 Residues of pyraclostrobin for different formulations and doses in strawberry cultivation system
剂型 Formulation | 剂量 Dose/ (g·hm-2) | 时间 Time | 草莓 Strawberry/ (mg·kg-1) | 叶 Leaf/ (mg·kg-1) | 茎 Stem/ (mg·kg-1) | 根 Root/ (mg·kg-1) | 土壤 Soil/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
乳油EC | 90 | 2 h | 0.25±0.01 | 7.83±0.12 | 1.64±0.04 | 0.11±0.01 | 0.02±0 |
1 d | 0.20±0.01 | 6.52±0.05 | 1.33±0.04 | 0.17±0.01 | 0.01±0 | ||
3 d | 0.14±0.01 | 5.53±0.01 | 1.27±0.02 | 0.07±0 | 0.01±0 | ||
5 d | 0.11±0 | 5.12±0.01 | 0.95±0.04 | 0.06±0 | 0.01±0 | ||
7 d | 0.10±0.01 | 4.69±0.30 | 0.87±0.66 | 0.04±0 | 0.01±0 | ||
10 d | 0.08±0.01 | 4.33±0.08 | 0.72±0.08 | 0.05±0 | 0.02±0 | ||
150 | 2 h | 0.27±0.01 | 9.75±0.05 | 2.12±0.07 | 0.22±0.01 | 0.02±0 | |
1 d | 0.28±0.01 | 8.80±0.10 | 2.28±0.08 | 0.16±0 | 0.01±0 | ||
3 d | 0.25±0.01 | 8.12±0.14 | 1.83±0.07 | 0.11±0 | 0.02±0 | ||
5 d | 0.19±0.01 | 8.03±0.16 | 1.56±0.09 | 0.10±0.01 | 0.02±0 | ||
7 d | 0.14±0 | 7.30±0.29 | 1.12±0.06 | 0.08±0 | 0.02±0 | ||
10 d | 0.11±0 | 6.42±0.19 | 1.07±0.09 | 0.05±0 | 0.02±0 | ||
微囊悬浮剂CS | 90 | 2 h | 0.16±0 | 5.94±0.10 | 1.09±0.03 | 0.07±0 | 0.02±0 |
1 d | 0.14±0.01 | 5.10±0.01 | 0.92±0.09 | 0.07±0 | 0.02±0 | ||
3 d | 0.10±0.01 | 4.97±0.06 | 0.76±0.03 | 0.09±0 | 0.01±0 | ||
5 d | 0.10±0.01 | 4.62±0.16 | 0.69±0.06 | 0.05±0 | 0.02±0 | ||
7 d | 0.09±0.01 | 4.56±0.01 | 0.65±0.05 | 0.07±0.01 | 0.01±0 | ||
10 d | 0.06±0.01 | 3.57±0.01 | 0.60±0.03 | 0.03±0 | 0.02±0 | ||
150 | 2 h | 0.21±0.01 | 8.90±0.17 | 1.68±0.03 | 0.10±0.01 | 0.02±0 | |
1 d | 0.20±0.01 | 8.53±0.14 | 1.62±0.06 | 0.14±0 | 0.03±0 | ||
3 d | 0.16±0.01 | 7.37±0.30 | 1.22±0.05 | 0.13±0.01 | 0.01±0 | ||
5 d | 0.16±0.01 | 7.25±0.22 | 1.16±0.01 | 0.07±0.01 | 0.02±0 | ||
7 d | 0.12±0.01 | 7.16±0.35 | 1.17±0.01 | 0.05±0.01 | 0.03±0 | ||
10 d | 0.10±0.01 | 6.48±0.35 | 0.94±0.06 | 0.04±0 | 0.03±0 |
Fig.1 Degradation dynamics of pyraclostrobin in strawberry, leaf and stem under different formulations and doses EC, Emulsifiable concentrate; CS, Microencapsule suspension; Recommended low dose 90 g·hm-2; Recommended high dose 150 g ·hm-2.
剂型 Formulation | 样品 Sample | 回归方程 Regression equation | 决定系数 Determination coefficient(R2) | 半衰期 Half-life/d | |||
---|---|---|---|---|---|---|---|
90 g·hm-2 | 150 g·hm-2 | 90 g·hm-2 | 150 g ·hm-2 | 90 g ·hm-2 | 150 g ·hm-2 | ||
乳油EC | 草莓Strawberry | Ct=0.212 6e-0.1051t | Ct=0.301 8e-0.1015t | 0.923 5 | 0.925 6 | 6.6 | 6.8 |
茎Stem | Ct=1.581 2e-0.0814t | Ct=2.268 7e-0.0813t | 0.965 5 | 0.926 4 | 8.5 | 8.6 | |
叶Leaf | Ct=7.05 0e-0.0550t | Ct=9.419 3e-0.0380t | 0.890 3 | 0.951 1 | 12.6 | 18.2 | |
微囊悬浮剂 | 草莓Strawberry | Ct=0.148 7e-0.0895t | Ct=0.208 3e-0.0708t | 0.929 3 | 0.947 4 | 7.7 | 9.8 |
CS | 茎Stem | Ct=0.978 1e-0.0558t | Ct=1.615 6e-0.0540t | 0.877 5 | 0.895 7 | 12.4 | 12.5 |
叶Leaf | Ct=5.690 2e-0.0423t | Ct=8.612 2e-0.0297t | 0.894 3 | 0.896 2 | 16.5 | 23.1 |
Table 5 The half-life and degradation kinetic parameters of pyraclostrobin in strawberry, leaf and stem under different formulations and doses
剂型 Formulation | 样品 Sample | 回归方程 Regression equation | 决定系数 Determination coefficient(R2) | 半衰期 Half-life/d | |||
---|---|---|---|---|---|---|---|
90 g·hm-2 | 150 g·hm-2 | 90 g·hm-2 | 150 g ·hm-2 | 90 g ·hm-2 | 150 g ·hm-2 | ||
乳油EC | 草莓Strawberry | Ct=0.212 6e-0.1051t | Ct=0.301 8e-0.1015t | 0.923 5 | 0.925 6 | 6.6 | 6.8 |
茎Stem | Ct=1.581 2e-0.0814t | Ct=2.268 7e-0.0813t | 0.965 5 | 0.926 4 | 8.5 | 8.6 | |
叶Leaf | Ct=7.05 0e-0.0550t | Ct=9.419 3e-0.0380t | 0.890 3 | 0.951 1 | 12.6 | 18.2 | |
微囊悬浮剂 | 草莓Strawberry | Ct=0.148 7e-0.0895t | Ct=0.208 3e-0.0708t | 0.929 3 | 0.947 4 | 7.7 | 9.8 |
CS | 茎Stem | Ct=0.978 1e-0.0558t | Ct=1.615 6e-0.0540t | 0.877 5 | 0.895 7 | 12.4 | 12.5 |
叶Leaf | Ct=5.690 2e-0.0423t | Ct=8.612 2e-0.0297t | 0.894 3 | 0.896 2 | 16.5 | 23.1 |
[1] | 舒锐, 焦健, 臧传江, 等. 我国草莓产业现状及发展建议[J]. 中国果菜, 2019, 39(1): 51-53. |
SHU R, JIAO J, ZANG C J, et al. The Current situation and development suggestions of strawberry industry in China[J]. China Fruit & Vegetable, 2019, 39(1): 51-53. (in Chinese with English abstract) | |
[2] | 张振荣, 田云霞, 董琼娥, 等. 基于高通量测序的草莓白粉病病原菌分析[J]. 西南农业学报, 2021, 34(7): 1439-1443. |
ZHANG Z R, TIAN Y X, DONG Q E, et al. Analysis of pathogen of strawberry powdery mildew based on high-throughput sequencing[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(7): 1439-1443. (in Chinese with English abstract) | |
[3] | YOSHIDA K, ASANO S. Efficacy of fungicides, and resistance among cultivars, in the control of strawberry powdery mildew[J]. Annual Report of the Kansai Plant Protection Society, 2019, 61: 125-128. |
[4] | CHEN X Y, DAI D J, ZHAO S F, et al. Genetic diversity of Colletotrichum spp. causing strawberry anthracnose in Zhejiang, China[J]. Plant Disease, 2020, 104(5): 1351-1357. |
[5] | 高萍, 高士刚, 成玮, 等. 上海市草莓灰霉病菌对氟吡菌酰胺敏感性检测及抗性分子机制[J]. 植物保护, 2021, 47(4): 215-220. |
GAO P, GAO S G, CHENG W, et al. Sensitivity and resistance molecular mechanism of Botrytis cinerea to fluopyram in strawberry in Shanghai[J]. Plant Protection, 2021, 47(4): 215-220. (in Chinese with English abstract) | |
[6] | 吴声敢, 柴伟纲, 柳新菊, 等. 不同杀菌剂对草莓灰霉病的防治效果[J]. 浙江农业科学, 2019, 60(11): 1985-1988. |
WU S G, CHAI W G, LIU X J, et al. Control effect of different fungicides on strawberry gray mold[J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(11): 1985-1988. (in Chinese) | |
[7] | 周晓肖, 杨肖芳, 邱莉萍, 等. 杀菌剂组合对草莓炭疽病的防效及其对草莓生长和品质影响[J]. 现代农药, 2018, 17(5): 42-45. |
ZHOU X X, YANG X F, QIU L P, et al. Efficacies of fungicide combinations aganist anthracnose and its effects on the growth and quality of strawberry[J]. Modern Agrochemicals, 2018, 17(5): 42-45. (in Chinese with English abstract) | |
[8] | JAFARI A, SHOEIBI S, AMINI M, et al. Monitoring dithiocarbamate fungicide residues in greenhouse and non-greenhouse tomatoes in Iran by HPLC-UV[J]. Food Additives & Contaminants: Part B, 2012, 5(2): 87-92. |
[9] | YANG G Q, LI J M, LAN T T, et al. Dissipation, residue, stereoselectivity and dietary risk assessment of penthiopyrad and metabolite PAM on cucumber and tomato in greenhouse and field[J]. Food Chemistry, 2022, 387: 132875. |
[10] | 杨丽娟, 柏亚罗. 甲氧基丙烯酸酯类杀菌剂: 吡唑醚菌酯[J]. 现代农药, 2012, 11(4): 46-50, 56. |
YANG L J, BAI Y L. Strobilurin fungicide—pyraclostrobin[J]. Modern Agrochemicals, 2012, 11(4): 46-50, 56. (in Chinese with English abstract) | |
[11] | 张一宾. 甲氧基丙烯酸酯类杀菌剂的全球市场概况及进展[J]. 世界农药, 2016, 38(4): 30-34. |
ZHANG Y B. Development and global market of strobilurin fungicides[J]. World Pesticide, 2016, 38(4): 30-34. (in Chinese with English abstract) | |
[12] | 中国农药信息网. 农药登记数据[EB/OL]. [2022-05-30]. http://www.chinapesticide.org.cn/yxcftozw.jhtml. |
[13] | 郭洋洋, 刘丰茂, 王娟, 等. 农药乳油中有害有机溶剂替代的研究进展[J]. 农药学学报, 2020, 22(6): 925-932. |
GUO Y Y, LIU F M, WANG J, et al. Research progress on substitution of harmful organic solvent in pesticide emulsifiable concentrates[J]. Chinese Journal of Pesticide Science, 2020, 22(6): 925-932. (in Chinese with English abstract) | |
[14] | 王仁飞, 范文娟, 王丹, 等. 9%吡唑醚菌酯微囊悬浮剂的制备与性能研究[J]. 现代农药, 2019, 18(6): 5-9, 30. |
WANG R F, FAN W J, WANG D, et al. Preparation and property of pyraclostrobin 9% CS[J]. Modern Agrochemicals, 2019, 18(6): 5-9, 30. (in Chinese with English abstract) | |
[15] | 闫宪飞. 吡唑醚菌酯蜜胺树脂微囊悬浮剂的制备与表征[D]. 长春: 吉林农业大学, 2018. |
YAN X F. Preparation and characterization of pyraclostrobin melamine resin microcapsule suspension concentrate[D]. Changchun: Jilin Agricultural University, 2018. (in Chinese with English abstract) | |
[16] | 高云. 不同加工剂型吡唑醚菌酯对水生生物毒性的影响[D]. 泰安: 山东农业大学, 2017. |
GAO Y. Effects of different processed dosage forms of pyraclostrobin on aquatic toxicity[D]. Taian: Shandong Agricultural University, 2017. (in Chinese with English abstract) | |
[17] | 王瑞, 曹海潮, 狄春香, 等. 微囊化溶剂对吡唑醚菌酯微囊悬浮剂应用性能的影响[J]. 农药学学报, 2022, 24(1): 114-122. |
WANG R, CAO H C, DI C X, et al. Effects of microencapsulated solvents on the application features of pyraclostrobin microcapsule suspension[J]. Chinese Journal of Pesticide Science, 2022, 24(1): 114-122. (in Chinese with English abstract) | |
[18] | 宋雯, 王强, 张怡, 等. 水培蕹菜使用吡唑醚菌酯的水生生态系统风险评估[J]. 农业环境科学学报, 2022, 41(6): 1202-1210. |
SONG W, WANG Q, ZHANG Y, et al. Risk assessment of aquatic ecosystem using pyraclostrobin in water spinach (Ipomoea aquatic Forsk) cultured in aquatic environment[J]. Journal of Agro-Environment Science, 2022, 41(6): 1202-1210. (in Chinese with English abstract) | |
[19] | 农药残留试验准则: NY/T 788—2018[S]. 北京: 中国农业出版社, 2018. |
[20] | LI Y J, XU J B, ZHAO X P, et al. The dissipation behavior, household processing factor and risk assessment for cyenopyrafen residues in strawberry and mandarin fruits[J]. Food Chemistry, 2021, 359: 129925. |
[21] | WANG Z W, DI S S, QI P P, et al. Dissipation, accumulation and risk assessment of fungicides after repeated spraying on greenhouse strawberry[J]. Science of the Total Environment, 2021, 758: 144067. |
[22] | 喻歆茹, 何红梅, 王祥云, 等. 啶虫脒在芹菜设施栽培体系下的沉积与残留[J]. 浙江农业学报, 2020, 32(12): 2211-2217. |
YU X R, HE H M, WANG X Y, et al. Deposition and residue of acetamiprid under protected celery cultivation[J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2211-2217. (in Chinese with English abstract) | |
[23] | 国家卫生健康委员会, 农业农村部, 国家市场监督管理总局.食品安全国家标准食品中农药最大残留限量: GB 2763—2021[S]. 北京: 中国标准出版社, 2021. |
[24] | Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed(SANTE/11813/2017)[S]. EU (Eupropean Commission), 2017. |
[25] | 郑豪杰, 刘沁雨, 孙健, 等. 四种作物上登记吡唑醚菌酯单剂的水生生态风险评估[J]. 农药学学报, 2022, 24(2): 411-422. |
ZHENG H J, LIU Q Y, SUN J, et al. Advanced risk assessment for aquatic ecology of single-dose of pyraclostrobin registered on four crops[J]. Chinese Journal of Pesticide Science, 2022, 24(2): 411-422. (in Chinese with English abstract) | |
[26] | 熊锋. 吡唑醚菌酯在不同类型蔬菜中的残留消解及膳食风险评估[D]. 长沙: 湖南农业大学, 2018. |
XIONG F. Residue degradation and dietary risk assessment of pyraclostrobin in different vegetables[D]. Changsha: Hunan Agricultural University, 2018. (in Chinese with English abstract) |
[1] | SUN Caixia, OUYANG Zhizhou, LIU Yuhong, YU Guoguang. Residue dynamic and risk assessment of three fungicides in broccoli [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1292-1299. |
[2] | WANG Di, DI Shanshan, WANG Xinquan, ZHANG Changpeng, WANG Xiangyun, WANG Meng, ZHANG Chenghui. Degradation and dietary risk of chlorpyrifos after its application during different periods of cowpea planting [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1104-1109. |
[3] | WANG Di, DI Shanshan, WANG Xinquan, ZHANG Changpeng, WANG Xiangyun, WANG Meng. Degradation of carbosulfan after its application in different growth stage of cowpea [J]. , 2020, 32(11): 2050-2058. |
[4] | ZHANG Lijun, ZHANG Hu, XU Mingfei, LIN Chunmian, WU Huizhen, XU Jie, QIAN Mingrong. Dynamics of 5 fungicides residue in grape brewing fermentation process [J]. , 2019, 31(1): 149-154. |
[5] | FANG Qi, ZHANG Jun, ZHOU Jinyun. Effect of processing on carbendazim residue in canned citrus [J]. , 2018, 30(9): 1599-1603. |
[6] | YU Youyi, YANG Lu, LIAO Xiang, CHENG Ping, WU Shengli, LI Hong. Residual degradation dynamics of lambda-cyhalothrin and cypermethrin in apple and its removal method [J]. , 2018, 30(8): 1376-1381. |
[7] | XIE Yunye, ZENG Sijin, YUAN Yue, WANG Lianping, FANG Li, WANG Hanrong. Pathogen identification and susceptibility to fungicides on tea anthracnose in Xinchang of Zhejiang Province [J]. , 2018, 30(7): 1188-1193. |
[8] | LI Zhen, SUN Caixia, DAI Fen, ZHENG Weiran, YU Guoguang, YAO Jiarong, WANG Qiang. New requirements for grapes of national food safety standard GB 2763-2016 [J]. , 2018, 30(5): 840-847. |
[9] | XU Li\|hong1,WU Ying\|miao2,CAI Zheng1,ZHENG Wei\|ran1,YE Chang\|Wen2,WU Yin\|hua2. Concentrations of heavy metals,pesticide residues and Se in Grifola frondosa with different cultivation methods [J]. , 2016, 28(1): 79-. |
[10] | FENG Chun\|ye1, BAO Jia\|qin1, FANG Xiao\|ming2,*, DING Zhuo\|ping1,*. Investigation and analysis of pesticide residues for commercially available fruits and vegetables in Shanghai [J]. , 2015, 27(3): 434-. |
[11] | LIU Li1,2, YUAN Ming\|an3, SHENG Xian\|qiao2, ZHU Ping\|yang2, WANG Yan2, CHEN Gui\|hua2,*. Influence of matrix effect on the detection of four organophosphorus pesticide residues in cucumber [J]. , 2014, 26(6): 1564-. |
[12] | HE Jian\|hong1, HU Xuan\|xiang1, ZHAO Shuai\|feng1, KE Han\|yun1, WU Yan\|jun2, ZHAO Li2. Degradation of bifenazate residue in strawberry and its safe application [J]. , 2014, 26(5): 1268-. |
[13] | GUAN Wenchen;WANG Xinquan;ZHANG Hu;XU Hao;WANG Xiangyun;WANG Minghua;WANG Qiang;*. Removal efficiency of metalaxyl and difenoconazole in pakchoi cabbage by different washing solutions [J]. , 2014, 26(2): 0-451455. |
[14] | QIANG Cheng-kui;FENG Wu-jian;HU Chang-xiao;WANG Sheng-yong;ZHOU Bao-ya;WANG Song-song;QIN Yue-hua;*. Characteristics and evaluation of pesticide residues in surface soils and grapes from main grape-producing areas of Xuzhou city [J]. , 2013, 25(2): 0-297. |
[15] | HONG Wen-ying;WU Yan-jun;ZHANG Hu;QIAN Ming-rong;CHEN Rui . Degradation behavior and safely applying technology of azoxystrobin and pyraclostrobin in cucumber [J]. , 2012, 24(3): 0-475. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||