Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (3): 662-670.DOI: 10.3969/j.issn.1004-1524.20230159
• Biosystems Engineering • Previous Articles Next Articles
LI Dahua1,2(), KONG Shu1,2,*(
), LI Dong1,2, YU Xiao1,2
Received:
2023-02-14
Online:
2024-03-25
Published:
2024-04-09
CLC Number:
LI Dahua, KONG Shu, LI Dong, YU Xiao. Lightweight detection model of citrus leaf disease based on improved SSD[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 662-670.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230159
Fig.4 Structure of CA attention mechanism Avg Pool, Average pool; BatchNorm, Batch normalization; Non-linear, Non-linear classification; Sigmoid, Activation function; C, channel number; H, Height; W, Width.
模型 Model | mAP@0.5/% | mAP@0.5:0.95/% | F1值F1 score/% | 模型大小 Size/MB | 每秒检测帧数 Frames per seconds | ||
---|---|---|---|---|---|---|---|
炭疽病 Anthracnose | 黑素病 Melanosis | 褐斑病 Brown spot disease | |||||
SSD | 92.7 | 59.4 | 57.0 | 94.0 | 89.0 | 91.6 | 54.65 |
MR-CA-SSD | 97.1 | 66.5 | 84.0 | 97.0 | 86.0 | 39.3 | 57.80 |
Table 1 Results comparison before and after improvement of algorithm
模型 Model | mAP@0.5/% | mAP@0.5:0.95/% | F1值F1 score/% | 模型大小 Size/MB | 每秒检测帧数 Frames per seconds | ||
---|---|---|---|---|---|---|---|
炭疽病 Anthracnose | 黑素病 Melanosis | 褐斑病 Brown spot disease | |||||
SSD | 92.7 | 59.4 | 57.0 | 94.0 | 89.0 | 91.6 | 54.65 |
MR-CA-SSD | 97.1 | 66.5 | 84.0 | 97.0 | 86.0 | 39.3 | 57.80 |
Fig.8 Detection effect of MR-CA-SSD and original SSD model Disease-A, Disease-B and Disease-C represent anthracnose, melanosis and brown spot disease of citrus leaf, respectively.
模型 Model | mAP@0.5/% | mAP@0.5:0.95/% | 模型大小 Size/MB | 每秒检测帧数 Frames per seconds |
---|---|---|---|---|
MR-CA-SSD | 97.1 | 66.5 | 39.3 | 57.80 |
Faster R-CNN | 88.1 | 36.3 | 108.0 | 11.24 |
YOLOv4 | 73.5 | 27.3 | 127.0 | 66.49 |
CenterNet | 94.9 | 44.1 | 124.0 | 55.74 |
Efficientnet-YoloV3 | 92.9 | 51.2 | 60.7 | 35.03 |
Ghostnet-YoloV4 | 74.4 | 29.6 | 42.5 | 59.70 |
YoloV4-tiny | 87.3 | 42.8 | 22.4 | 141.12 |
Table 2 Comparison of results from different models
模型 Model | mAP@0.5/% | mAP@0.5:0.95/% | 模型大小 Size/MB | 每秒检测帧数 Frames per seconds |
---|---|---|---|---|
MR-CA-SSD | 97.1 | 66.5 | 39.3 | 57.80 |
Faster R-CNN | 88.1 | 36.3 | 108.0 | 11.24 |
YOLOv4 | 73.5 | 27.3 | 127.0 | 66.49 |
CenterNet | 94.9 | 44.1 | 124.0 | 55.74 |
Efficientnet-YoloV3 | 92.9 | 51.2 | 60.7 | 35.03 |
Ghostnet-YoloV4 | 74.4 | 29.6 | 42.5 | 59.70 |
YoloV4-tiny | 87.3 | 42.8 | 22.4 | 141.12 |
[1] | ÇETINER H. Citrus disease detection and classification using based on convolution deep neural network[J]. Microprocessors and Microsystems, 2022, 95: 104687. |
[2] | TYAGI A C. Towards a second green revolution[J]. Irrigation and Drainage, 2016, 65(4): 388-389. |
[3] | NEUPANE K, BAYSAL-GUREL F. Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: a review[J]. Remote Sensing, 2021, 13(19): 3841. |
[4] | DANANJAYAN S, TANG Y, ZHUANG J J, et al. Assessment of state-of-the-art deep learning based citrus disease detection techniques using annotated optical leaf images[J]. Computers and Electronics in Agriculture, 2022, 193: 106658. |
[5] | BARMAN U, CHOUDHURY R D, SAHU D, et al. Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease[J]. Computers and Electronics in Agriculture, 2020, 177: 105661. |
[6] | 樊湘鹏, 许燕, 周建平, 等. 基于迁移学习和改进CNN的葡萄叶部病害检测系统[J]. 农业工程学报, 2021, 37(6): 151-159. |
FAN X P, XU Y, ZHOU J P, et al. Detection system for grape leaf diseases based on transfer learning and updated CNN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 151-159. (in Chinese with English abstract) | |
[7] | 李鑫然, 李书琴, 刘斌. 基于改进Faster R_CNN的苹果叶片病害检测模型[J]. 计算机工程, 2021, 47(11): 298-304. |
LI X R, LI S Q, LIU B. Apple leaf diseases detection model based on improved Faster R_CNN[J]. Computer Engineering, 2021, 47(11): 298-304. (in Chinese with English abstract) | |
[8] | SHARIF M, KHAN M A, IQBAL Z, et al. Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection[J]. Computers and Electronics in Agriculture, 2018, 150(C): 220-234. |
[9] | 王云露, 吴杰芳, 兰鹏, 等. 基于改进Faster R-CNN的苹果叶部病害识别方法[J]. 林业工程学报, 2022, 7(1): 153-159. |
WANG Y L, WU J F, LAN P, et al. Apple disease identification using improved Faster R-CNN[J]. Journal of Forestry Engineering, 2022, 7(1): 153-159. (in Chinese with English abstract) | |
[10] | 李辉, 严康华, 景浩, 等. 基于改进SSD的苹果叶部病理检测识别[J]. 传感器与微系统, 2022, 41(10): 134-137. |
LI H, YAN K H, JING H, et al. Apple leaf pathology detection and recognition based on improved SSD[J]. Transducer and Microsystem Technologies, 2022, 41(10): 134-137. (in Chinese with English abstract) | |
[11] | 陈家栋, 雷斌. 基于改进SSD轻量化的交通路口目标检测[J]. 传感器与微系统, 2022, 41(10): 117-121. |
CHEN J D, LEI B. Traffic intersection target detection based on improved SSD lightweight[J]. Transducer and Microsystem Technologies, 2022, 41(10): 117-121. (in Chinese with English abstract) | |
[12] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. |
[13] | 汝承印, 张仕海, 张子淼, 等. 基于轻量级MobileNet-SSD和MobileNetV2-DeeplabV3+的绝缘子故障识别方法[J]. 高电压技术, 2022, 48(9): 3670-3679. |
RU C Y, ZHANG S H, ZHANG Z M, et al. Fault identification method for high voltage power grid insulator based on lightweight MobileNet-SSD and MobileNetV2-DeeplabV3+network[J]. High Voltage Engineering, 2022, 48(9): 3670-3679. (in Chinese with English abstract) | |
[14] | 吴天成, 王晓荃, 蔡艺军, 等. 基于特征融合的轻量级SSD目标检测方法[J]. 液晶与显示, 2021, 36(10): 1437-1444. |
WU T C, WANG X Q, CAI Y J, et al. Lightweight SSD object detection method based on feature fusion[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(10): 1437-1444. (in Chinese with English abstract) | |
[15] | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018. Salt Lake City, UT. IEEE, 2018: 4510-4520. |
[16] | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021. Nashville, TN, USA. IEEE, 2021: 13713-13722. |
[17] | LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]// European Conference on Computer Vision. Cham: Springer, 2018: 404-419. |
[18] | 张岚, 邢博闻, 李彩, 等. 采用改进SSD网络的海参目标检测算法[J]. 农业工程学报, 2022, 38(8): 297-303. |
ZHANG L, XING B W, LI C, et al. Algorithm for detecting sea cucumbers based on improved SSD[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(8): 297-303. (in Chinese with English abstract) |
[1] | LI Qi, LI Yuzhe. Detection of piggery cleaning target under low-light condition [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2240-2249. |
[2] | LI Rongpeng, MAMAT Sawut, SHENG Yanfang, HE Xugang. Identification and application of walnut disease based on CA-MobileNet-V2 [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2977-2987. |
[3] | WANG Yingyun, LONG Yan, YANG Zhiyou, HUANG Lyuwen. Semantic segmentation method of apple leaf disease based on improved U-Net network [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2731-2741. |
[4] | ZHAO Yuhong, HE Wen, LI Gen, WANG Qiang, XIE Rui, WANG Yan, CHEN Qing, WANG Xiaorong. Fruit quality of Citrus maxima (Burm.) Merrill and its bud mutants varieties in Sichuan area [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 995-1004. |
[5] | ZHOU Pinzhi, PEI Yuekun, WEI Ran, ZHANG Yongfei, GU Yu. Real-time detection of orchard cherry based on YOLOV4 model [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2522-2532. |
[6] | ZHANG Ziting, HAN Jinyu, ZHANG Donghui, LI Han, LI Mingyuan, DENG Zhiping, SUN Xiaoyong. Anomaly detection of potato, maize and apple leaf diseases based on color moments [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2230-2239. |
[7] | XI Wenyong, FU Peihong. Land suitability evaluation of citrus cultivation based on fuzzy mathematics [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 141-152. |
[8] | ZHANG Ning, WU Huarui, HAN Xiao, MIAO Yisheng. Tomato disease recognition scheme based on multi-scale and attention mechanism [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1329-1338. |
[9] | WEN Mingxia, ZHANG Shunchang, WU Shaohui, HU Lipeng, WANG Peng, HUANG Bei. Effect of protein hydrolysate-based amino-acid fertilizers on fruit quality of Hongmeiren citrus hybrid [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 422-428. |
[10] | MENG Youqing, WANG Enguo, CHEN Wujian, LI Yanmin, CHENG Fan, MENG Minxia. Distribution and growth dynamics of Candidatus Liberibacter asiaticus positive Asian citrus psyllid in Zhejiang Province [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 464-469. |
[11] | YANG Lei, ZHANG Yungui, YANG Haijian, LI Xunlan, HONG Lin. Characteristics of nutrients and leaf surface organisms under different citrus moss severities [J]. , 2020, 32(4): 632-643. |
[12] | TANG Weimin, XING Jianrong, YANG Ying, XIANG Lu, WANG Sinong, LU Shengmin. Processing adaptability and storage characteristics of four whole fruit drinks of hybrid citrus [J]. , 2020, 32(3): 483-489. |
[13] | ZHANG Hongtao, LI Yijia, TAN Lian, XU Shuaitao. Image recognition of millet leaf disease based on CS-SVM [J]. , 2020, 32(2): 274-282. |
[14] | LAI Jiahao, SONG Shuilin, LIU Bing. Effects of three endophytic bacteria with the characteristic of controlling citrus canker on the activity of several defensive enzymes in navel orange [J]. , 2020, 32(11): 1994-2000. |
[15] | WANG Chengkuan, HUANG Zhendong, LIU Xingquan, HONG Xiaoling. Effects of meteorological factors on fruit quality of Hongmeiren citrus [J]. , 2020, 32(10): 1798-1808. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||