Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (6): 1379-1388.DOI: 10.3969/j.issn.1004-1524.20230786
• Biosystems Engineering • Previous Articles Next Articles
CHEN Wei1(), ZHU Yihang2, GU Qing2, LIN Baogang3, ZHANG Xiaobin2,*(
)
Received:
2023-06-21
Online:
2024-06-25
Published:
2024-07-02
CLC Number:
CHEN Wei, ZHU Yihang, GU Qing, LIN Baogang, ZHANG Xiaobin. Analysis of phenotypic parameters of rapeseed silique based on machine vision and YOLOv5[J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1379-1388.
参数 Item | 图像测量值 Image measured value/mm | 实测值 Actual value/mm | R2 | RMSE/mm | MAE/mm | MAPE/% |
---|---|---|---|---|---|---|
柄长Shank length | 22.01±5.24 d | 22.07±5.25 d | 0.97 | 0.94 | 0.82 | 4.00 |
喙长Beak length | 15.82±3.69 e | 15.54±3.65 e | 0.98 | 0.64 | 0.52 | 4.00 |
果长Silique length | 63.16±16.04 c | 63.58±15.44 c | 0.99 | 1.88 | 1.59 | 3.00 |
弦长Chord length | 93.92±17.19 b | 96.27±17.26 b | 0.99 | 2.49 | 2.35 | 2.00 |
凸边弧长Convex arc length | 100.46±18.59 a | 103.26±18.73 a | 0.99 | 2.99 | 2.80 | 3.00 |
Table 1 Comparison of rapeseed siliques image measured results and actual results
参数 Item | 图像测量值 Image measured value/mm | 实测值 Actual value/mm | R2 | RMSE/mm | MAE/mm | MAPE/% |
---|---|---|---|---|---|---|
柄长Shank length | 22.01±5.24 d | 22.07±5.25 d | 0.97 | 0.94 | 0.82 | 4.00 |
喙长Beak length | 15.82±3.69 e | 15.54±3.65 e | 0.98 | 0.64 | 0.52 | 4.00 |
果长Silique length | 63.16±16.04 c | 63.58±15.44 c | 0.99 | 1.88 | 1.59 | 3.00 |
弦长Chord length | 93.92±17.19 b | 96.27±17.26 b | 0.99 | 2.49 | 2.35 | 2.00 |
凸边弧长Convex arc length | 100.46±18.59 a | 103.26±18.73 a | 0.99 | 2.99 | 2.80 | 3.00 |
硬币 Coins | 图像测量值 Image measured value/mm | 实测值 Actual value/mm | RMSE/mm | MAE/mm | MAPE/% |
---|---|---|---|---|---|
欧元1 cent Euro 1 cent | 16.28±0.10 e | 16.25±0.08 e | 0.10 | 0.08 | 1.00 |
欧元10 cent Euro 10 cent | 19.68±0.07 d | 19.75±0.09 d | 0.09 | 0.09 | 0.00 |
欧元50 cent Euro 50 cent | 24.23±0.07 b | 24.25±0.11 b | 0.07 | 0.04 | 0.00 |
人民币1元 RMB 1 yuan | 25.02±0.10 a | 25.00±0.11 a | 0.09 | 0.07 | 0.20 |
澳元2 dollars Australian 2 dollars | 20.34±0.10 c | 20.62±0.09 c | 0.30 | 0.28 | 2.00 |
Table 2 Comparison of the diameter measured results and actual results
硬币 Coins | 图像测量值 Image measured value/mm | 实测值 Actual value/mm | RMSE/mm | MAE/mm | MAPE/% |
---|---|---|---|---|---|
欧元1 cent Euro 1 cent | 16.28±0.10 e | 16.25±0.08 e | 0.10 | 0.08 | 1.00 |
欧元10 cent Euro 10 cent | 19.68±0.07 d | 19.75±0.09 d | 0.09 | 0.09 | 0.00 |
欧元50 cent Euro 50 cent | 24.23±0.07 b | 24.25±0.11 b | 0.07 | 0.04 | 0.00 |
人民币1元 RMB 1 yuan | 25.02±0.10 a | 25.00±0.11 a | 0.09 | 0.07 | 0.20 |
澳元2 dollars Australian 2 dollars | 20.34±0.10 c | 20.62±0.09 c | 0.30 | 0.28 | 2.00 |
硬币 Coins | 图像测量值 Image measured value/mm2 | 实测值 Actual value/mm2 | RMSE/mm2 | MAE/mm2 | MAPE/% |
---|---|---|---|---|---|
欧元1 cent Euro 1 cent | 216.44±1.13 e | 207.39±2.86 e | 9.44 | 9.44 | 5.00 |
欧元10 cent Euro 10 cent | 313.56±1.01 d | 306.35±1.94 d | 7.62 | 7.56 | 2.00 |
欧元50 cent Euro 50 cent | 471.78±2.11 b | 461.86±1.55 b | 9.98 | 9.78 | 2.00 |
人民币1元 RMB 1 yuan | 502.56±3.78 a | 490.87±1.56 a | 12.09 | 11.56 | 2.00 |
澳元2 dollars Australian 2 dollars | 336.00±1.80 c | 333.94±1.96 c | 2.62 | 2.44 | 1.00 |
Table 3 Comparison of the area measured result of the calibration object image with the actual results
硬币 Coins | 图像测量值 Image measured value/mm2 | 实测值 Actual value/mm2 | RMSE/mm2 | MAE/mm2 | MAPE/% |
---|---|---|---|---|---|
欧元1 cent Euro 1 cent | 216.44±1.13 e | 207.39±2.86 e | 9.44 | 9.44 | 5.00 |
欧元10 cent Euro 10 cent | 313.56±1.01 d | 306.35±1.94 d | 7.62 | 7.56 | 2.00 |
欧元50 cent Euro 50 cent | 471.78±2.11 b | 461.86±1.55 b | 9.98 | 9.78 | 2.00 |
人民币1元 RMB 1 yuan | 502.56±3.78 a | 490.87±1.56 a | 12.09 | 11.56 | 2.00 |
澳元2 dollars Australian 2 dollars | 336.00±1.80 c | 333.94±1.96 c | 2.62 | 2.44 | 1.00 |
[1] | LI H T, FENG H, GUO C C, et al. High-throughput phenotyping accelerates the dissection of the dynamic genetic architecture of plant growth and yield improvement in rapeseed[J]. Plant Biotechnology Journal, 2020, 18(11): 2345-2353. |
[2] | 刘倩, 王鑫, 赵云. 甘蓝型油菜角果和种子发育相关的Bna-novel-miR432功能分析[J]. 四川大学学报(自然科学版), 2022, 59(5): 169-178. |
LIU Q, WANG X, ZHAO Y. Functional analysis of Bna-novel-miR432 related to silique and seed development in Brassica napus[J]. Journal of Sichuan University(Natural Science Edition), 2022, 59(5): 169-178. (in Chinese with English abstract) | |
[3] | 郭燕枝, 杨雅伦, 孙君茂. 我国油菜产业发展的现状及对策[J]. 农业经济, 2016(7): 44-46. |
GUO Y Z, YANG Y L, SUN J M. Present situation and countermeasures of rapeseed industry development in China[J]. Agricultural Economy, 2016(7): 44-46. (in Chinese) | |
[4] | 孙程明, 陈松, 彭琦, 等. 甘蓝型油菜角果长度性状的全基因组关联分析[J]. 作物学报, 2019, 45(9): 1303-1310. |
SUN C M, CHEN S, PENG Q, et al. Genome-wide association study of silique length in rapeseed(Brassica napus L.)[J]. Acta Agronomica Sinica, 2019, 45(9): 1303-1310. (in Chinese with English abstract) | |
[5] | BENNETT E J, ROBERTS J A, WAGSTAFF C. The role of the pod in seed development: strategies for manipulating yield[J]. The New Phytologist, 2011, 190(4): 838-853. |
[6] | FIORANI F, SCHURR U. Future scenarios for plant phenotyping[J]. Annual Review of Plant Biology, 2013, 64: 267-291. |
[7] | ZHANG Y, ZHANG N Q. Imaging technologies for plant high-throughput phenotyping: a review[J]. Frontiers of Agricultural Science and Engineering, 2018, 5(4): 406-419. |
[8] | 李岚涛, 任涛, 汪善勤, 等. 基于角果期高光谱的冬油菜产量预测模型研究[J]. 农业机械学报, 2017, 48(3): 221-229. |
LI L T, REN T, WANG S Q, et al. Prediction models of winter oilseed rape yield based on hyperspectral data at pod-filling stage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 221-229. (in Chinese with English abstract) | |
[9] | RAJKOVIĆ D, MARJANOVIĆ JEROMELA A, PEZO L, et al. Yield and quality prediction of winter rapeseed-artificial neural network and random forest models[J]. Agronomy, 2021, 12(1): 58. |
[10] | ZHAO H C, AN F Y, DU D Z. New idioplasmic resource B. napus L. with multi-loculus founded by interspecific hybridization[C]// Proceedings of the 12th International Rapeseed Congress, Wuhan. 2007, 3: 294-295. |
[11] | HAUSMANN J. Challenges for integrated pest management of Dasineura brassicae in oilseed rape[J]. Arthropod-Plant Interactions, 2021, 15(5): 645-656. |
[12] | ZHENG X R, KOOPMANN B, ULBER B, et al. A global survey on diseases and pests in oilseed rape-current challenges and innovative strategies of control[J]. Frontiers in Agronomy, 2020, 2: 590908. |
[13] | 张小斌, 谢宝良, 朱怡航, 等. 基于图像处理技术的菜用大豆豆荚高通量表型采集与分析[J]. 核农学报, 2022, 36(3): 602-612. |
ZHANG X B, XIE B L, ZHU Y H, et al. High-throughput phenotype collection and analysis of vegetable soybean pod based on image processing technology[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(3): 602-612. (in Chinese with English abstract) | |
[14] | LI Z B, GUO R H, LI M, et al. A review of computer vision technologies for plant phenotyping[J]. Computers and Electronics in Agriculture, 2020, 176: 105672. |
[15] | TENG X W, ZHOU G S, WU Y X, et al. Three-dimensional reconstruction method of rapeseed plants in the whole growth period using RGB-D camera[J]. Sensors, 2021, 21(14): 4628. |
[16] | IRAJI M S. Comparison between soft computing methods for tomato quality grading using machine vision[J]. Journal of Food Measurement and Characterization, 2019, 13(1): 1-15. |
[17] | SU Q H, KONDO N, LI M Z, et al. Potato quality grading based on machine vision and 3D shape analysis[J]. Computers and Electronics in Agriculture, 2018, 152: 261-268. |
[18] | WAN P, TOUDESHKI A, TAN H Q, et al. A methodology for fresh tomato maturity detection using computer vision[J]. Computers and Electronics in Agriculture, 2018, 146: 43-50. |
[19] | 李就好, 林乐坚, 田凯, 等. 改进Faster R-CNN的田间苦瓜叶部病害检测[J]. 农业工程学报, 2020, 36(12): 179-185. |
LI J H, LIN L J, TIAN K, et al. Detection of leaf diseases of balsam pear in the field based on improved Faster R-CNN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 179-185. (in Chinese with English abstract) | |
[20] | GOBALAKRISHNAN N, PRADEEP K, RAMAN C J, et al. A systematic review on image processing and machine learning techniques for detecting plant diseases[C]// 2020 International Conference on Communication and Signal Processing (ICCSP). July 28-30, 2020, Chennai, India. IEEE, 2020: 465-468. |
[21] | SHARIF M, KHAN M A, IQBAL Z, et al. Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection[J]. Computers and Electronics in Agriculture, 2018, 150: 220-234. |
[22] | 宁远霖, 杨颖, 李振波, 等. 基于改进YOLOv5的复杂跨域场景下的猪个体识别与计数[J]. 农业工程学报, 2022, 38(17): 168-175. |
NING Y L, YANG Y, LI Z B, et al. Detecting and counting pig number using improved YOLOv5 in complex scenes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(17): 168-175. (in Chinese with English abstract) | |
[23] | SONG H S, LIANG H X, LI H Y, et al. Vision-based vehicle detection and counting system using deep learning in highway scenes[J]. European Transport Research Review, 2019, 11(1): 1-16. |
[24] | 姚业浩, 李毅念, 陈玉仑, 等. 基于油菜角果长度图像识别的每角粒数测试方法[J]. 农业工程学报, 2021, 37(23): 153-160. |
YAO Y H, LI Y N, CHEN Y L, et al. Testing method for the seed number per silique of oilrape based on recognizing the silique length images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(23): 153-160. (in Chinese with English abstract) | |
[25] | 姚业浩, 李毅念, 邹玮, 等. 油菜籽粒千粒重图像测定方法[J]. 中国油料作物学报, 2022, 44(1): 201-210. |
YAO Y H, LI Y N, ZOU W, et al. Determination method on thousand-seed weight of rapeseed based on image processing[J]. Chinese Journal of Oil Crop Sciences, 2022, 44(1): 201-210. (in Chinese with English abstract) | |
[26] | 刘仁峰, 黄诗瑶, 聂勇鹏, 等. 油菜角果数量及关键表型参数的自动化检测方法研究[J]. 中国油料作物学报, 2020, 42(1): 71-77. |
LIU R F, HUANG S Y, NIE Y P, et al. Automated detection research for number and key phenotypic parameters of rapeseed silique[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(1): 71-77. (in Chinese with English abstract) | |
[27] | FETTER K C, EBERHARDT S, BARCLAY R S, et al. StomataCounter: a neural network for automatic stomata identification and counting[J]. The New Phytologist, 2019, 223(3): 1671-1681. |
[28] | 周成全, 叶宏宝, 俞国红, 等. 基于机器视觉与深度学习的西兰花表型快速提取方法研究[J]. 智慧农业(中英文), 2020, 2(1): 121-132. |
ZHOU C Q, YE H B, YU G H, et al. A fast extraction method of broccoli phenotype based on machine vision and deep learning[J]. Smart Agriculture, 2020, 2(1): 121-132. (in Chinese with English abstract) | |
[29] | 王婉心, 贾立锋. 骨架提取中的毛刺去除方法[J]. 广东工业大学学报, 2014, 31(4): 90-94. |
WANG W X, JIA L F. The method of removing burrs in skeleton extraction[J]. Journal of Guangdong University of Technology, 2014, 31(4): 90-94. (in Chinese with English abstract) | |
[30] | 翁杨, 曾睿, 吴陈铭, 等. 基于深度学习的农业植物表型研究综述[J]. 中国科学: 生命科学, 2019, 49(6): 698-716. |
WENG Y, ZENG R, WU C M, et al. A survey on deep-learning-based plant phenotype research in agriculture[J]. Scientia Sinica(Vitae), 2019, 49(6): 698-716. (in Chinese with English abstract) | |
[31] | LI L, ZHANG Q, HUANG D F. A review of imaging techniques for plant phenotyping[J]. Sensors, 2014, 14(11): 20078-20111. |
[32] | 朱怡航, 张小斌, 沈颖越, 等. 基于图像识别技术的金针菇表型高通量采集与分析[J]. 菌物学报, 2021, 40(3): 626-640. |
ZHU Y H, ZHANG X B, SHEN Y Y, et al. High-throughput phenotyping collection and analysis of Flammulina filiformis based on image recognition technology[J]. Mycosystema, 2021, 40(3): 626-640. (in Chinese with English abstract) |
[1] | YANG Xinyu, FENG Quan, ZHANG Jianhua, YANG Sen. Plant leaf disease identification based on contrastive learning [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 215-224. |
[2] | WANG Zhihui, PENG Hua, YANG Puxiang, JIANG Xinfeng, LI Wenjin, YUE Cuinan, LI Chen, LI Yansheng. Phenotypic variation and resource value evaluation of natural hybrid progenies of seventeen Huangjinju tea plants [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 298-307. |
[3] | HONG Xia, ZHAO Yongbin, QU Weidong, CHEN Yinlong, QIU Liping, WANG Jiaoyang. Comparative analysis on genetic diversity of Colocasia esculenta germplasm in Zhejiang Province based on phenotype and simple sequence repeats markers [J]. , 2020, 32(9): 1544-1554. |
[4] | BAO Lie, WANG Mantao, LIU Jiangchuan, WEN Bo, MING Yue. Estimation method of wheat yield based on convolution neural network [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2244-2252. |
[5] | LIU Zhi, HE Zheng, MIAO Fangfang, JIA Biao. Method and experiment for estimating emergence rate of water and fertilizer integrated maize based on drone technology [J]. , 2019, 31(6): 977-985. |
[6] | WANG Yanxiang, ZHANG Yan, YANG Chengya, MENG Qinglong, SHANG Jing. Advances in new nondestructive detection and identification techniques of crop diseases based on deep learning [J]. , 2019, 31(4): 669-676. |
[7] | WANG Xin, CHENG Liang, WANG Yayi, GAO Xusheng, LI Songling. Identification of blackleg pathogen on potato (Solanum tuberosum L.) in Qinghai [J]. , 2018, 30(8): 1369-1375. |
[8] | BU Zhengyan, LI Zhenfeng, SONG Feihu, LI Bin, LI Jing. Determination of moisture content in soybean leaves based on terahertz imaging [J]. , 2018, 30(8): 1420-1426. |
[9] | ZHANG Yang, YAO Wencheng, WANG Bin, LU Lizhi, WANG Zhaoshan, XU Qi, CHANG Guobin, CHEN Guohong. Expression analysis of crest phenotype related genes from crested white duck [J]. , 2018, 30(5): 707-710. |
[10] | GU Zhengmin, LI Zhenfeng, SONG Feihu, ZHANG Junsheng, ZHUANG Wei. Investigation of measurement method of soybean canopy leaf area based on light field camera [J]. , 2018, 30(12): 2144-2152. |
[11] | LI Qi, HU Yicong, WU Fuchuang. Environment control system of seedling box based on image processing [J]. , 2017, 29(11): 1912-1919. |
[12] | SHI Tie,SUO Xue\|song*,ZHOU Jing\|ren,HAN Chang\|xing,GAO Li\|ai. Study on traceability management of modern agricultural facilities: based on the analysis of image recognition of solar cells [J]. , 2015, 27(2): 285-. |
[13] | LI Zhen1,2, LIAO Tong\|qing1, FENG Qing\|chun2,3,4,5, ZHANG Dong\|yan1,2,3,4,5, WANG Xiu2,3,4,5,*. Study on vegetable seed vigor index detection algorithm and system realization based on machine vision [J]. , 2015, 27(12): 2218-. |
[14] | HU Meng-han;DONG Qing-li;*;LIU Bao-lin;ZHANG Chong-yang;YE Fei. Banana shape recognition based on elliptic Fourier descriptor [J]. , 2014, 26(1): 200-205. |
[15] | YAO Li-jian;BIAN Qi;LEI Liang-yu;ZHAO Da-xu. Classification of fruit based on the BP neural network [J]. , 2012, 24(5): 0-930. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 317
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 157
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||