Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (10): 2316-2327.DOI: 10.3969/j.issn.1004-1524.20231269
• Environmental Science • Previous Articles Next Articles
NIE Hongli1(), CHENG Qilu2, SUN Wanchun2, MA Jinchuan2, LIN Hui2, MA Junwei2,*(
)
Received:
2023-11-10
Online:
2024-10-25
Published:
2024-10-30
CLC Number:
NIE Hongli, CHENG Qilu, SUN Wanchun, MA Jinchuan, LIN Hui, MA Junwei. Stress response and tolerance of Chlorella vulgaris to tylosin[J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2316-2327.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20231269
成分 Ingredient | 含量 Content | 成分 Ingredient | 含量 Content |
---|---|---|---|
硝酸钠NaNO3 | 1 500 | 碳酸钠Na2CO3 | 20 |
三水磷酸氢二钾K2HPO4·3H2O | 40 | 硼酸H3BO3 | 2.860 |
七水硫酸镁MgSO4·7H2O | 75 | 一水氯化锰MnCl2·H2O | 1.810 |
二水氯化钙CaCl2·2H2O | 36 | 七水硫酸锌ZnSO4·7H2O | 0.222 |
柠檬酸C6H8O7 | 6 | 五水硫酸铜CuSO4·5H2O | 0.079 |
柠檬酸铁铵C6H11FeNO7 | 6 | 二水钼酸钠Na2MoO4·2H2O | 0.390 |
乙二胺四乙酸EDTA | 1 | 六水硝酸钻Co(NO3)2·6H2O | 0.049 |
A5(微量金属溶液)A5 (Trace mental solution) | 1 000 |
Table 1 The component of BG11 cultural medium mg·L-1
成分 Ingredient | 含量 Content | 成分 Ingredient | 含量 Content |
---|---|---|---|
硝酸钠NaNO3 | 1 500 | 碳酸钠Na2CO3 | 20 |
三水磷酸氢二钾K2HPO4·3H2O | 40 | 硼酸H3BO3 | 2.860 |
七水硫酸镁MgSO4·7H2O | 75 | 一水氯化锰MnCl2·H2O | 1.810 |
二水氯化钙CaCl2·2H2O | 36 | 七水硫酸锌ZnSO4·7H2O | 0.222 |
柠檬酸C6H8O7 | 6 | 五水硫酸铜CuSO4·5H2O | 0.079 |
柠檬酸铁铵C6H11FeNO7 | 6 | 二水钼酸钠Na2MoO4·2H2O | 0.390 |
乙二胺四乙酸EDTA | 1 | 六水硝酸钻Co(NO3)2·6H2O | 0.049 |
A5(微量金属溶液)A5 (Trace mental solution) | 1 000 |
Fig.2 Transmission electron micrographs of C. vulgaris cells after 4-day exposure to TYN at mass concentration of 0, 0.50, and 5.00 mg·L-1 CW, T, P, and S represent cell wall, thylakoid, pyrenoid and starch sheath, respectively.
Fig.3 EPS secretion of C.vulgaris under different mass concentrations of TYN treatment A, B and C, Changes in contents of total EPS, extracellular polysaccharides and extracellular proteins in 105 C. vulgaris cells after 2, 4, and 8 days of exposure, respectively; D, FTIR spectra of the C. vulgaris cell surface after 8 days of exposure.
Fig.4 The number of differentially expressed genes, and the top 3 categories of genes significantly enriched in the GO functional annotation after 0.05 and 5.00 mg·L-1 TYN exposure for 2 and 8 days
Fig.5 The significantly enriched KEGG pathways of DEGs and the key metabolic pathways in C. vulgaris cells after 8 days of exposure to 5.00 mg·L-1 TYN T5 represents 5.00 mg·L-1 TYN treatment.
Fig.6 The removal of TYN by C.vulgaris A, Removal rate of 1.00 and 5.00 mg·L-1 TYN in the culture system on 2, 4, and 8 days; B, The fourier transform infrared spectrum of C. vulgaris EPS; C and D, 3D-EEM plots of C. vulgaris EPS in the control and 5.00 mg·L-1 TYN treatment on day 8; EM is the emission wavelength and EX is the excitation wavelength.
[1] | LILIANA S. Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health[J]. Water, 2020, 12(12): 3313. |
[2] | ARSÈNE M M J, DAVARES A K L, ANDREEVNA S L, et al. The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics[J]. Veterinary World, 2021, 14(2): 319-328. |
[3] | RIAZ L, MAHMOOD T, KHALID A, et al. Fluoroquinolones (FQs) in the environment: a review on their abundance, sorption and toxicity in soil[J]. Chemosphere, 2018, 191: 704-720. |
[4] | ARSIC B, BARBER J, ČIKOŠ A, et al. 16-membered macrolide antibiotics: a review[J]. International Journal of Antimicrobial Agents, 2018, 51(3): 283-298. |
[5] | LEKAGUL A, TANGCHAROENSATHIEN V, YEUNG S. Patterns of antibiotic use in global pig production: a systematic review[J]. Veterinary and Animal Science, 2019, 7: 100058. |
[6] | BOXALL A, TIEDE K, BRYNING G, et al. Desk-based study of current knowledge on veterinary medicines in drinking water and estimation of potential levels[EB/OL]. [2023-11-09]. https://www.academia.edu/22907779/DESK_BASED_STUDY_OF_CURRENT_KNOWLEDGE_ON_VETERINARY_MEDICINES_IN_DRINKING_WATER_AND_ESTIMATION_OF_POTENTIAL_LEVELS. |
[7] | SANDOZ M A, WOOTEN K J, CLENDENING S L, et al. Transport mechanisms for veterinary pharmaceuticals from beef cattle feedyards to wetlands: is aerial deposition a contributing source?[J]. Agriculture, Ecosystems & Environment, 2018, 252: 14-21. |
[8] | MAIA C, SOUSA C A, SOUSA H, et al. Parabens removal from wastewaters by microalgae: ecotoxicity, metabolism and pathways[J]. Chemical Engineering Journal, 2023, 453: 139631. |
[9] | LE V V, TRAN Q G, KO S R, et al. How do freshwater microalgae and cyanobacteria respond to antibiotics?[J]. Critical Reviews in Biotechnology, 2023, 43(2): 191-211. |
[10] | BABIAK W, KRZEMIŃSKA I. Extracellular polymeric substances (EPS) as microalgal bioproducts: a review of factors affecting EPS synthesis and application in flocculation processes[J]. Energies, 2021, 14(13): 4007. |
[11] | LI J R, WANG Y J, FAN Z Q, et al. Toxicity of tetracycline and metronidazole in Chlorella pyrenoidosa[J]. International Journal of Environmental Research and Public Health, 2023, 20(4): 3623. |
[12] | CHEN S, WANG L Q, FENG W B, et al. Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris: evaluation of growth, photosynthesis, antioxidants, ultrastructure, and nucleic acids[J]. Scientific Reports, 2020, 10(1): 8243. |
[13] | LU D L, MA Z H, PENG J L, et al. Integrated comparison of growth and oxidative stress induced by tylosin in two freshwater algae Chlorella vulgaris and Raphidocelis subcapitata[J]. Ecotoxicology, 2022, 31(3): 376-384. |
[14] | CHENG Q L, DU L N, XU L G, et al. Toxicity alleviation and metabolism enhancement of nonylphenol in green algae Dictyosphaerium sp. by NaHCO3[J]. Science of the Total Environment, 2022, 848: 157698. |
[15] | ZHOU G J, PENG F Q, ZHANG L J, et al. Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus[J]. Environmental Science and Pollution Research International, 2011, 19(7): 2918-2929. |
[16] | QU F S, LIANG H, HE J G, et al. Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling[J]. Water Research, 2012, 46(9): 2881-2890. |
[17] | XIAO M, LI M, DUAN P F, et al. Insights into the relationship between colony formation and extracellular polymeric substances (EPS) composition of the cyanobacterium Microcystis spp[J]. Harmful Algae, 2019, 83: 34-41. |
[18] | ZHU W J, MA W, LI C X, et al. Well-designed multihollow magnetic imprinted microspheres based on cellulose nanocrystals (CNCs) stabilized Pickering double emulsion polymerization for selective adsorption of bifenthrin[J]. Chemical Engineering Journal, 2015, 276: 249-260. |
[19] | VIDYADHARANI G, DHANDAPANI R. Fourier transform infrared (FTIR) spectroscopy for the analysis of lipid from Chlorella vulgaris[J]. Elixir Applied Biology, 2013, 61: 16753-16756. |
[20] | MOHAN N H, CHOUDHURY M, AMMAYAPPAN L, et al. Characterization of secondary structure of pig hair fiber using fourier-transform infrared spectroscopy[J]. Journal of Natural Fibers, 2022, 19(11): 4223-4235. |
[21] | CARPENTER J, SAHARAN V K. Ultrasonic assisted formation and stability of mustard oil in water nanoemulsion: effect of process parameters and their optimization[J]. Ultrasonics Sonochemistry, 2017, 35: 422-430. |
[22] | LIU W H, MING Y, HUANG Z W, et al. Impacts of florfenicol on marine diatom Skeletonema costatum through photosynthesis inhibition and oxidative damages[J]. Plant Physiology and Biochemistry, 2012, 60: 165-170. |
[23] | DONG X T, SUN S H, JIA R B, et al. Effects of sulfamethoxazole exposure on the growth, antioxidant system of Chlorella vulgaris and Microcystis aeruginosa[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 105(3): 358-365. |
[24] | MAO Y F, YU Y, MA Z X, et al. Azithromycin induces dual effects on microalgae: roles of photosynthetic damage and oxidative stress[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112496. |
[25] | VILLACIS R A R, FILHO J S, PIÑA B, et al. Integrated assessment of toxic effects of maghemite (γ-Fe2O3) nanoparticles in zebrafish[J]. Aquatic Toxicology, 2017, 191: 219-225. |
[26] | CHENG Q L, LIU Y Z, XU L G, et al. Regulation and role of extracellular polymeric substances in the defensive responses of Dictyosphaerium sp. to enrofloxacin stress[J]. Science of the Total Environment, 2023, 896: 165302. |
[27] | XIE Q T, LIU N, LIN D H, et al. The complexation with proteins in extracellular polymeric substances alleviates the toxicity of Cd (II) to Chlorella vulgaris[J]. Environmental Pollution, 2020, 263: 114102. |
[28] | LENG L J, WEI L, XIONG Q, et al. Use of microalgae based technology for the removal of antibiotics from wastewater: a review[J]. Chemosphere, 2020, 238: 124680. |
[29] | 宋晓梅, 胡桂林, 江钰, 等. Fe3+对水溶液中泰乐菌素光解的影响[J]. 安全与环境学报, 2018, 18(4): 1569-1572. |
SONG X M, HU G L, JIANG Y, et al. Influence of Fe3+ on the tylosin photolysis in aqueous solution[J]. Journal of Safety and Environment, 2018, 18(4): 1569-1572. (in Chinese with English abstract) | |
[30] | YAHIAT S, FOURCADE F, BROSILLON S, et al. Removal of antibiotics by an integrated process coupling photocatalysis and biological treatment: case of tetracycline and tylosin[J]. International Biodeterioration & Biodegradation, 2011, 65(7): 997-1003. |
[31] | CHEN Q H, ZHANG L, HAN Y H, et al. Degradation and metabolic pathways of sulfamethazine and enrofloxacin in Chlorella vulgaris and Scenedesmus obliquus treatment systems[J]. Environmental Science and Pollution Research International, 2020, 27(22): 28198-28208. |
[32] | JIANG R X, WEI Y R, SUN J Y, et al. Degradation of cefradine in alga-containing water environment: a mechanism and kinetic study[J]. Environmental Science and Pollution Research International, 2019, 26(9): 9184-9192. |
[33] | LU Z K, XU Y F, PENG L, et al. A two-stage degradation coupling photocatalysis to microalgae enhances the mineralization of enrofloxacin[J]. Chemosphere, 2022, 293: 133523. |
[1] | QIU Wenyi, WANG Shiyu, LI Xiaofang, XU Heng, ZHANG Hua, ZHU Ying, WANG Liangchao. Functions of plant MYB transcription factors in response to abiotic stress and plant hormones [J]. , 2020, 32(7): 1317-1328. |
[2] | LUO Longzao, LIN Xiaoai, YANG Jia, LIU Ye, TIAN Guangming. Research progress of influencing factors of livestock wastewater purification by microalgae [J]. , 2020, 32(3): 552-558. |
[3] | BIAN Jianwen, CUI Yan, YANG Songqi, LUO Guanghong, MENG Xiangang. Effects of Chlamydomonas debaryana Gor. and Anabaena azotica Ley. on wheat seedling growth under salt stress [J]. , 2020, 32(10): 1748-1756. |
[4] | LUO Longzao, LIN Xiaoai, ZHU Feng, ZENG Fanjian, ZHANG Bangxi, LIU Ye, TIAN Guangming. Effect of aeration with carbon dioxide on growth of Desmodesmus sp. CHX1 in wastewater with high concentration of ammonium nitrogen [J]. , 2019, 31(9): 1541-1548. |
[5] | WU Wei, FENG Zhijuan, XU Shengchun, LIU Na, ZHANG Guwen, HU Qizan, GONG Yaming. Genome-wide identification and expression analysis of soybean NIPs [J]. , 2018, 30(7): 1101-1109. |
[6] | CHENG Pengfei, WANG Yan, YANG Qiyong, LIU Defu, LIU Tianzhong. Purification effect for swine wastewater with attached culture of microalgae [J]. , 2017, 29(9): 1564-1569. |
[7] | LI Dongyue, YUAN Wenxia, ZHENG Chao, WANG Xuming, ZHOU Jie, YAN Chengqi, CHEN Jianping. Roles of bZIP transcription factors in phytohormone-mediated disease resistance and stress tolerance [J]. , 2017, 29(1): 168-175. |
[8] | XIN Ya1, ZHANG Qing2, QIU Jie\|ren1, MA Hua\|sheng1, WANG Shu\|zhen1,RUAN Song\|lin1,*. Effects of brassinolide on quality and stress tolerance of summer strawberry seedlings#br# [J]. , 2015, 27(10): 1735-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||