Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (10): 2368-2378.DOI: 10.3969/j.issn.1004-1524.20231417
• Biosystems Engineering • Previous Articles Next Articles
WANG Haoyang1(), JING Tiantian1, TANG Zhong1,*(
), WANG Guoqiang2, CHEN Shuren1
Received:
2023-12-18
Online:
2024-10-25
Published:
2024-10-30
CLC Number:
WANG Haoyang, JING Tiantian, TANG Zhong, WANG Guoqiang, CHEN Shuren. Structural design and experiment of picking and baling machine for wasted straw in field[J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2368-2378.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20231417
Fig.1 Structural diagram of the self-propelled baler 1, Toothed pickup; 2, Augers; 3, Operation platform; 4, Roller; 5, Diesel engine; 6, Transport fork; 7, Compression device; 8, Knotter; 9, Straw box.
项目 Item | 参数 Parameter |
---|---|
结构型式 Structural style | 履带自走式 Crawler self- propelled type |
发动机额定功率Rated power of engine/kW | 48 |
发动机额定转速 Rated engine speed/(r·min-1) | 2 400 |
整机外形尺寸(长×宽×高) Overall dimensions of the machine (length× width×height)/(mm×mm×mm) | 4 700×2 700×2 570 |
整机质量Whole machine weight/kg | 3 500 |
捡拾割台宽度 Width of the pick-up and cutting table/mm | 1 900 |
捡拾器型式 Pick up type | 滑道滚筒式 Slide roller type |
履带规格(宽度×节距×节数) Track specifications (width×pitch×number of sections)/(mm×mm) | 450×90×51 |
履带轨距Track gauge/mm | 1 150 |
理论作业速度 Theoretical working speed/(km·h-1) | 0~5.34 |
作业小时生产率 Hourly productivity of working/(hm2·h-1) | 0.3~0.7 |
压缩室截面尺寸 Compression chamber cross-sectional dimensions/(mm×mm) | 360×500 |
草捆长度Straw length/mm | 400~1 100 |
Table 1 Main technical parameters of whole machine
项目 Item | 参数 Parameter |
---|---|
结构型式 Structural style | 履带自走式 Crawler self- propelled type |
发动机额定功率Rated power of engine/kW | 48 |
发动机额定转速 Rated engine speed/(r·min-1) | 2 400 |
整机外形尺寸(长×宽×高) Overall dimensions of the machine (length× width×height)/(mm×mm×mm) | 4 700×2 700×2 570 |
整机质量Whole machine weight/kg | 3 500 |
捡拾割台宽度 Width of the pick-up and cutting table/mm | 1 900 |
捡拾器型式 Pick up type | 滑道滚筒式 Slide roller type |
履带规格(宽度×节距×节数) Track specifications (width×pitch×number of sections)/(mm×mm) | 450×90×51 |
履带轨距Track gauge/mm | 1 150 |
理论作业速度 Theoretical working speed/(km·h-1) | 0~5.34 |
作业小时生产率 Hourly productivity of working/(hm2·h-1) | 0.3~0.7 |
压缩室截面尺寸 Compression chamber cross-sectional dimensions/(mm×mm) | 360×500 |
草捆长度Straw length/mm | 400~1 100 |
阶次 Order level | 固有频率 Natural frequency/Hz | 最大位移 Maximum displacement/mm | 振型特点 Characteristics of vibration modes |
---|---|---|---|
1 | 26.615 | 5.989 5 | 驾驶室支撑梁弯曲The cab support beam is bent |
2 | 32.434 | 5.737 1 | 驾驶室位置向下弯曲The driver’s cab is bent downwards |
3 | 34.795 | 6.531 7 | 左前侧框架向下弯曲Left front frame bends downwards |
4 | 39.020 | 6.421 2 | 草料箱位置支撑梁弯曲 The support beam for the position of the hay box is bent |
5 | 51.834 | 10.619 0 | 驾驶室支撑梁扭转Driver’s cab support beam torsion |
6 | 52.930 | 9.395 1 | 驾驶室框架弯扭组合Combination of bending and twisting of cab frame |
Table 2 The first six modal frequencies and modal shapes of the chassis frame
阶次 Order level | 固有频率 Natural frequency/Hz | 最大位移 Maximum displacement/mm | 振型特点 Characteristics of vibration modes |
---|---|---|---|
1 | 26.615 | 5.989 5 | 驾驶室支撑梁弯曲The cab support beam is bent |
2 | 32.434 | 5.737 1 | 驾驶室位置向下弯曲The driver’s cab is bent downwards |
3 | 34.795 | 6.531 7 | 左前侧框架向下弯曲Left front frame bends downwards |
4 | 39.020 | 6.421 2 | 草料箱位置支撑梁弯曲 The support beam for the position of the hay box is bent |
5 | 51.834 | 10.619 0 | 驾驶室支撑梁扭转Driver’s cab support beam torsion |
6 | 52.930 | 9.395 1 | 驾驶室框架弯扭组合Combination of bending and twisting of cab frame |
阶次 Order level | 固有频率 Natural frequency/Hz | 最大位移 Maximum displacement/mm | 振型特点 Characteristics of vibration modes |
---|---|---|---|
1 | 11.213 | 7.152 1 | 机架后端出草支撑板弯曲The grass support plate at the back of the rack is bent |
2 | 17.934 | 1.870 8 | 机架中间位置弯扭组合Combination of bending and twisting in the middle position of the rack |
3 | 25.073 | 2.993 1 | 机架顶部后端弯曲The top and rear ends of the rack are bent |
4 | 36.787 | 9.270 6 | 后端出草支撑板弯扭组合Back end grass support plate bending and twisting combination |
5 | 52.231 | 8.038 1 | 机架中间侧板向内弯曲The middle side panel of the rack bends inward |
6 | 60.466 | 3.755 5 | 机架前端两侧板弯扭组合 |
Combination of bending and twisting of the two side plates at the front end of the rack |
Table 3 The first six modal frequencies and modal shapes of the baling frame
阶次 Order level | 固有频率 Natural frequency/Hz | 最大位移 Maximum displacement/mm | 振型特点 Characteristics of vibration modes |
---|---|---|---|
1 | 11.213 | 7.152 1 | 机架后端出草支撑板弯曲The grass support plate at the back of the rack is bent |
2 | 17.934 | 1.870 8 | 机架中间位置弯扭组合Combination of bending and twisting in the middle position of the rack |
3 | 25.073 | 2.993 1 | 机架顶部后端弯曲The top and rear ends of the rack are bent |
4 | 36.787 | 9.270 6 | 后端出草支撑板弯扭组合Back end grass support plate bending and twisting combination |
5 | 52.231 | 8.038 1 | 机架中间侧板向内弯曲The middle side panel of the rack bends inward |
6 | 60.466 | 3.755 5 | 机架前端两侧板弯扭组合 |
Combination of bending and twisting of the two side plates at the front end of the rack |
激振源 Excitation source | 转速 Speed/(r·min-1) | 频率 Frequency/Hz | 激振源 Excitation source | 转速 Speed/(r·min-1) | 频率 Frequency/Hz |
---|---|---|---|---|---|
发动机Engine | 2 400 | 40 | 变速箱输入轴Transmission input shaft | 391.7 | 6.53 |
中间轴Intermediate shaft | 1 354 | 22.57 | 活塞轴Piston shaft | 96.5 | 1.61 |
前拨草滚筒Front grass roller | 341.8 | 5.70 | 后拨草滚筒Rear grass roller | 569.8 | 9.50 |
螺旋绞龙Auger screw | 226 | 3.77 | 弹齿捡拾器Elastic tooth picker | 141 | 2.35 |
Table 4 Main excitation source parameters
激振源 Excitation source | 转速 Speed/(r·min-1) | 频率 Frequency/Hz | 激振源 Excitation source | 转速 Speed/(r·min-1) | 频率 Frequency/Hz |
---|---|---|---|---|---|
发动机Engine | 2 400 | 40 | 变速箱输入轴Transmission input shaft | 391.7 | 6.53 |
中间轴Intermediate shaft | 1 354 | 22.57 | 活塞轴Piston shaft | 96.5 | 1.61 |
前拨草滚筒Front grass roller | 341.8 | 5.70 | 后拨草滚筒Rear grass roller | 569.8 | 9.50 |
螺旋绞龙Auger screw | 226 | 3.77 | 弹齿捡拾器Elastic tooth picker | 141 | 2.35 |
Fig.9 Scenarios of field harvesting experiments a, b and c show the feeding process of straw pickup, the process of straw compression baling, the field harvesting process of the entire machine respectively.
试验指标 Experimental index | 试验序号Experimental number | 平均值 Average value | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
试验时间Experimental time | 上午Morning | 下午Afternoon | 上午Morning | 下午Afternoon | — |
气温Temperature/℃ | 18 | 23 | 17 | 24 | — |
秸秆含水率Moisture content of straw/% | 38 | 35 | 37 | 34 | 36 |
行驶速度Driving speed/(km·h-1) | 3.6 | 3.8 | 4.1 | 4.3 | 3.95 |
总捆数/捆Total number of bundles | 196 | 154 | 108 | 121 | — |
草捆质量Straw bundle quality/kg | 15.62 | 16.24 | 16.63 | 15.59 | 16.02 |
草捆密度Straw bundle density/( kg·m-3) | 133.53 | 138.12 | 142.71 | 135.31 | 137.42 |
成捆率Bundling rate/% | 98.97 | 99.35 | 99.07 | 98.35 | 98.94 |
规则成捆率Rule bundling rate/% | 98.47 | 97.40 | 98.15 | 95.87 | 97.47 |
草捆抗摔率Straw bundle drop resistance rate/% | 90 | 100 | 95 | 100 | 96.25 |
总损失率Total loss rate/% | 3.5 | 3.1 | 2.4 | 2.8 | 2.95 |
纯工作小时生产率Pure hourly productivity/(t·h-1) | 0.87 | 0.83 | 0.89 | 0.74 | 0.832 5 |
Table 5 Field performance test results of straw compression baler
试验指标 Experimental index | 试验序号Experimental number | 平均值 Average value | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
试验时间Experimental time | 上午Morning | 下午Afternoon | 上午Morning | 下午Afternoon | — |
气温Temperature/℃ | 18 | 23 | 17 | 24 | — |
秸秆含水率Moisture content of straw/% | 38 | 35 | 37 | 34 | 36 |
行驶速度Driving speed/(km·h-1) | 3.6 | 3.8 | 4.1 | 4.3 | 3.95 |
总捆数/捆Total number of bundles | 196 | 154 | 108 | 121 | — |
草捆质量Straw bundle quality/kg | 15.62 | 16.24 | 16.63 | 15.59 | 16.02 |
草捆密度Straw bundle density/( kg·m-3) | 133.53 | 138.12 | 142.71 | 135.31 | 137.42 |
成捆率Bundling rate/% | 98.97 | 99.35 | 99.07 | 98.35 | 98.94 |
规则成捆率Rule bundling rate/% | 98.47 | 97.40 | 98.15 | 95.87 | 97.47 |
草捆抗摔率Straw bundle drop resistance rate/% | 90 | 100 | 95 | 100 | 96.25 |
总损失率Total loss rate/% | 3.5 | 3.1 | 2.4 | 2.8 | 2.95 |
纯工作小时生产率Pure hourly productivity/(t·h-1) | 0.87 | 0.83 | 0.89 | 0.74 | 0.832 5 |
[1] | ISLAM M U, GUO Z C, JIANG F H, et al. Does straw return increase crop yield in the wheat-maize cropping system in China? A meta-analysis[J]. Field Crops Research, 2022, 279: 108447. |
[2] | PEREA-MORENO M A, SAMERÓN-MANZANO E, PEREA-MORENO A J. Biomass as renewable energy: worldwide research trends[J]. Sustainability, 2019, 11(3): 863. |
[3] | 廖培旺, 禚冬玲, 付春香, 等. 自走式棉秆联合收获打捆机改进设计与试验[J]. 中国农机化学报, 2021, 42(7): 19-25. |
LIAO P W, ZHUO D L, FU C X, et al. Improve design and test of self-propelled cotton stalk combine harvest baler[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(7): 19-25. (in Chinese with English abstract) | |
[4] | 李耀明, 成铖, 徐立章. 4L-4.0型稻麦联合收获打捆复式作业机设计与试验[J]. 农业工程学报, 2016, 32(23): 29-35. |
LI Y M, CHENG C, XU L Z. Design and experiment of baler for 4L-4.0 combine harvester of rice and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(23): 29-35. (in Chinese with English abstract) | |
[5] | 张仕林, 戴飞, 赵武云, 等. 青稞联合收获机配套秸秆打捆装置设计与试验[J]. 浙江农业学报, 2020, 32(7): 1289-1301. |
ZHANG S L, DAI F, ZHAO W Y, et al. Design and test of matching straw baling device for highland barley combine harvester[J]. Acta Agriculturae Zhejiangensis, 2020, 32(7): 1289-1301. (in Chinese with English abstract) | |
[6] | FLICK D E, NIGON C M, SHINNERS K J, et al. Control system for a continuous compaction large square baler[J]. Computers and Electronics in Agriculture, 2019, 165: 104969. |
[7] | ZHAO Z, HUANG H D, YIN J J, et al. Dynamic analysis and reliability design of round baler feeding device for rice straw harvest[J]. Biosystems Engineering, 2018, 174: 10-19. |
[8] | 尹建军, 李双, 李耀明. D型打结器及其辅助机构运动仿真与时序分析[J]. 农业机械学报, 2011, 42(6): 103-107. |
YIN J J, LI S, LI Y M. Kinematic simulation and time series analysis of D-knotter and its ancillary mechanisms[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(6): 103-107. (in Chinese with English abstract) | |
[9] | WANG Q Q, BAI Z W, LI Z Q, et al. Straw/spring teeth interaction analysis of baler picker in smart agriculture via an ADAMS-DEM coupled simulation method[J]. Machines, 2021, 9(11): 296. |
[10] | LI B Q, WU G F, LIU Y P, et al. Design and experiment of associated baler for combine harvester[J]. Agricultural mechanization in Asia, Africa and Latin America, 2019, 50(3):69-78. |
[11] | GUO H, GAO G M, ZHOU W, et al. Design of load and bale density monitoring and control system for a wheeled self-propelled square baler[J]. Journal of the ASABE, 2022, 65(3): 599-608. |
[12] | HONG S, LEE K, KANG D, et al. Analysis of static lateral stability using mathematical simulations for 3-axis tractor-baler system[J]. Journal of biocystems Engineering, 2017, 42(2): 86-97. |
[13] | FU J, CHEN C, ZHAO R Q, et al. Frame vibration states identification for corn harvester based on joint improved empirical mode decomposition-support vector machine method[J]. Frontiers in Plant Science, 2023, 14: 1065209. |
[14] | CHEN K K, YUAN Y W, ZHAO B, et al. Identification and comparative analysis of vibration modal parameters of rice planter frame[J]. AIP Advances, 2023, 13(4): 045002. |
[15] | 丁翰韬, 陈树人, 周巍伟, 等. 喂入量扰动下联合收获机振动特性机理研究[J]. 农业机械学报, 2022, 53(S2): 20-27. |
DING H T, CHEN S R, ZHOU W W, et al. Study on vibration characteristics and mechanism of combine harvester under feed disturbance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S2): 20-27, 51. (in Chinese with English abstract) | |
[16] | WANG X Z, CAO Y H, FANG W Q, et al. Vibration test and analysis of crawler pepper harvester under multiple working conditions[J]. Sustainability, 2023, 15(10): 8112. |
[17] | 潘世强, 操子夫, 赵婉宁. 基于虚拟样机的打捆机链传动系统仿真分析[J]. 中国农机化学报, 2016, 37(5): 41-44, 53. |
PAN S Q, CAO Z F, ZHAO W N. Simulation analysis of chain drive system based on virtual prototype[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(5): 41-44, 53. (in Chinese with English abstract) | |
[18] | 陶雷, 王永健, 刘光远, 等. 秸秆打捆机机架轻量化设计[J]. 中国农机化学报, 2017, 38(8): 26-33. |
TAO L, WANG Y J, LIU G Y, et al. Lightweight frame design of straw baler[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(8): 26-33. (in Chinese with English abstract) | |
[19] | 朱磊华, 李耀明, 唐忠, 等. 联合收获打捆复式作业机振动测试与分析[J]. 农机化研究, 2018, 40(3): 146-151. |
ZHU L H, LI Y M, TANG Z, et al. Vibration test and analysis of the all-in-one machine of combine harvester and baler[J]. Journal of Agricultural Mechanization Research, 2018, 40(3): 146-151. (in Chinese with English abstract) | |
[20] | DAI F, ZHANG S L, ZHAO W Y, et al. Parameter optimization and experiment of highland barley combine harvester with baler[J]. Agricultural Research in the Arid Areas, 2021, 39(6): 248-256. |
[1] | ZHANG Shilin, DAI Fei, ZHAO Wuyun, TIAN Bin, CHEN Bangshan. Design and test of matching straw baling device for highland barley combine harvester [J]. , 2020, 32(7): 1289-1301. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||