Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (12): 2794-2802.DOI: 10.3969/j.issn.1004-1524.20240020
• Food Science • Previous Articles Next Articles
LYU Guoying(), WANG Mengyu, ZHANG Zuofa(
)
Received:
2024-01-02
Online:
2024-12-25
Published:
2024-12-27
CLC Number:
LYU Guoying, WANG Mengyu, ZHANG Zuofa. Impact of Hericium erinaceus polysaccharide on intestinal flora in mice[J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2794-2802.
Fig.2 Alpha diversity index of fecal microflora of mice in the control group and the Hericium erinaceus polysaccharide treated group ** meant significant differences (P<0.01) compared to the control group.ns meant no significant difference (P>0.05) compared to the control group.
Fig.4 The microbial community structure at the phylum (A) and genus (B) levels of fecal microflora in the control group and the Hericium erinaceus polysaccharide treated group
短链脂肪酸 Short-chain fatty acid | 对照组 Control group | 猴头菇多糖处理组 Hericium erinaceus polysaccharide treated group |
---|---|---|
乙酸Acetic acid | 486.1±12.6 | 580.7±15.3* |
丙酸Propanoic acid | 53.3±2.6 | 59.5±1.9* |
异丁酸Isobutyric acid | 23.8±1.1 | 20.4±0.8* |
正丁酸Butyric acid | 272.3±13.3 | 313.2±13.1* |
异戊酸Isovaleric acid | 28.6±1.4 | 27.7±1.3 |
正戊酸Valeric acid | 34.5±1.1 | 29.0±1.5* |
Table 1 The content of short-chain fatty acids in the feces of mice in the control group and the Hericium erinaceus polysaccharide treated group μg·g-1
短链脂肪酸 Short-chain fatty acid | 对照组 Control group | 猴头菇多糖处理组 Hericium erinaceus polysaccharide treated group |
---|---|---|
乙酸Acetic acid | 486.1±12.6 | 580.7±15.3* |
丙酸Propanoic acid | 53.3±2.6 | 59.5±1.9* |
异丁酸Isobutyric acid | 23.8±1.1 | 20.4±0.8* |
正丁酸Butyric acid | 272.3±13.3 | 313.2±13.1* |
异戊酸Isovaleric acid | 28.6±1.4 | 27.7±1.3 |
正戊酸Valeric acid | 34.5±1.1 | 29.0±1.5* |
[1] | REN Y L, GENG Y, DU Y, et al. Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota[J]. The Journal of Nutritional Biochemistry, 2018, 57:67-76. |
[2] | LUO J M, ZHANG C, LIU R, et al. Ganoderma lucidum polysaccharide alleviating colorectal cancer by alteration of special gut bacteria and regulation of gene expression of colonic epithelial cells[J]. Journal of Functional Foods, 2018, 47:127-135. |
[3] | SANG T T, GUO C J, GUO D D, et al. Suppression of obesity and inflammation by polysaccharide from sporoderm-broken spore of Ganoderma lucidum via gut microbiota regulation[J]. Carbohydrate Polymers, 2021, 256:117594. |
[4] | CHEN Y Q, LIU D, WANG D Y, et al. Hypoglycemic activity and gut microbiota regulation of a novel polysaccharide from Grifola frondosa in type 2 diabetic mice[J]. Food and Chemical Toxicology, 2019, 126:295-302. |
[5] | YANG M Y, BELWAL T, DEVKOTA H P, et al. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine:a comprehensive review[J]. Trends in Food Science & Technology, 2019, 92:94-110. |
[6] | YIN C M, NORATTO G D, FAN X Z, et al. The impact of mushroom polysaccharides on gut microbiota and its beneficial effects to host:a review[J]. Carbohydrate Polymers, 2020, 250:116942. |
[7] | KHAN I, HUANG G X, LI X A, et al. Mushroom polysaccharides from Ganoderma lucidum and Poria cocos reveal prebiotic functions[J]. Journal of Functional Foods, 2018, 41:191-201. |
[8] | YING M X, YU Q, ZHENG B, et al. Cultured Cordyceps sinensis polysaccharides modulate intestinal mucosal immunity and gut microbiota in cyclophosphamide-treated mice[J]. Carbohydrate Polymers, 2020, 235:115957. |
[9] | PAN Y Y, WAN X Z, ZENG F, et al. Regulatory effect of Grifola frondosa extract rich in polysaccharides and organic acids on glycolipid metabolism and gut microbiota in rats[J]. International Journal of Biological Macromolecules, 2020, 155:1030-1039. |
[10] | KAWAGISHI H. Chemical studies on bioactive compounds related to higher fungi[J]. Bioscience, Biotechnology, and Biochemistry, 2021, 85(1):1-7. |
[11] | HE X R, WANG X X, FANG J C, et al. Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus(lion’s mane) mushroom:a review[J]. International Journal of Biological Macromolecules, 2017, 97:228-237. |
[12] | 雍康, 罗正中, 骆巧, 等. 基于16S rDNA扩增子测序技术揭示真胃左方变位对奶牛粪便微生物的影响[J]. 微生物学报, 2021, 61(3):750-763. |
YONG K, LUO Z Z, LUO Q, et al. Revealing the impact of left displacement of the abomasum on fecal microbes of dairy cows by 16S rDNA amplicon sequencing technology[J]. Acta Microbiologica Sinica, 2021, 61(3):750-763. (in Chinese with English abstract) | |
[13] | LIU X P, REN Z, YU R H, et al. Structural characterization of enzymatic modification of Hericium erinaceus polysaccharide and its immune-enhancement activity[J]. International Journal of Biological Macromolecules, 2021, 166:1396-1408. |
[14] | YAN J K, DING Z C, GAO X L, et al. Comparative study of physicochemical properties and bioactivity of Hericium erinaceus polysaccharides at different solvent extractions[J]. Carbohydrate Polymers, 2018, 193:373-382. |
[15] | 刘昭曦, 王禄山, 陈敏. 肠道菌群多糖利用及代谢[J]. 微生物学报, 2021, 61(7):1816-1828. |
LIU Z X, WANG L S, CHEN M. Glycan utilization and metabolism by gut microbiota[J]. Acta Microbiologica Sinica, 2021, 61(7):1816-1828. (in Chinese with English abstract) | |
[16] | 朱佳敏, 武艺, 赵琳静, 等. 猴头菇多糖结构及调节肠道菌群作用研究进展[J]. 食品与发酵工业, 2023, 49(14):311-320. |
ZHU J M, WU Y, ZHAO L J, et al. Structures and effects of Hericium erinaceus polysaccharide on regulating gut microbiota:a review[J]. Food and Fermentation Industries, 2023, 49(14):311-320. (in Chinese with English abstract) | |
[17] | SHAO S, WANG D D, ZHENG W, et al. A unique polysaccharide from Hericium erinaceus mycelium ameliorates acetic acid-induced ulcerative colitis rats by modulating the composition of the gut microbiota, short chain fatty acids levels and GPR41/43 respectors[J]. International Immunopharmacology, 2019, 71:411-422. |
[18] | ZHAO C, SUN C, YUAN J, et al. Hericium caput-medusae (Bull.:FR.) Pers. fermentation concentrate polysaccharides improves intestinal bacteria by activating chloride channels and mucus secretion[J]. Journal of Ethnopharmacology, 2023, 300:115721. |
[19] | 王海松, 任鹏飞. 不同单糖组成的低聚糖对人肠道菌群的调节作用[J]. 中国食品学报, 2020, 20(7):44-52. |
WANG H S, REN P F. Modulation of oligosaccharides with different monosaccharide composition on the human gut microbiota[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(7):44-52. (in Chinese with English abstract) | |
[20] | WRIGHT R S, ANDERSON J W, BRIDGES S R. Propionate inhibits hepatocyte lipid synthesis[J]. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine, 1990, 195(1):26-29. |
[21] | TRAN N T, LI Z Z, WANG S Q, et al. Progress and perspectives of short-chain fatty acids in aquaculture[J]. Reviews in Aquaculture, 2020, 12(1):283-298. |
[22] | CANFORA E E, JOCKEN J W, BLAAK E E. Short-chain fatty acids in control of body weight and insulin sensitivity[J]. Nature Reviews Endocrinology, 2015, 11(10):577-591. |
[23] | FAN P X, LI L S, REZAEI A, et al. Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut[J]. Current Protein & Peptide Science, 2015, 16(7):646-654. |
[24] | YAO C K, MUIR J G, GIBSON P R. Review article:insights into colonic protein fermentation, its modulation and potential health implications[J]. Alimentary Pharmacology & Therapeutics, 2016, 43(2):181-196. |
[25] | ZHAO L P, ZHANG F, DING X Y, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359(6380):1151-1156. |
[1] | GONG Baorong, WU Hongjun, LI Benzhen, XU Dayang, ZOU Wenteng, QU Junyi, BAO Chuanhe, ZHU Ruolin. Isolation, identification of Elizabethkingia miricola of Pelophylax nigromaculatus with cataract and cloning of PNGase gene [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1297-1306. |
[2] | LIU Chuang, WANG Chaojun, MA Xingguan, JIANG Yue, WU Zhibo, ZHANG Li, FU Jinxiang. Effect of organic fertilizer and magnesium ammonium phosphate made from feces and urine on Chrysanthemum coronarium [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2914-2922. |
[3] | LIN Yuqing, LU Shengmin, ZHOU Wanyi, XING Jianrong, YANG Ying. Preliminary investigation about structure and probiotic properties of polysaccharides from Dendrobium officinale leaves [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2504-2511. |
[4] | BAI Minghuan, GENG Yi, DENG Longjun, GAN Weixiong, ZHOU Jian, HUANG Xiaoli, CHEN Defang, OUYANG Ping, ZHAO Ruoxuan, SHEN Bingjie. Isolation and identification of Pseudomonas putida from Leptobotia elongate and pathological lesions of its infection [J]. , 2019, 31(2): 207-215. |
[5] | CUI Yilong, SHI Yun, YANG Dahan, YIN Youqin, XUE Jiangdong, HUO Xiaowei, MA Dehui. Isolation,identification of horse Bacillus cereus and its virulence genes detection [J]. , 2019, 31(2): 216-221. |
[6] | REN Meishen1,2, WANG Yin1,2,*, YANG Zexiao1, YAO Xueping1, WU Xulong1,2, XIAO Lu1,2. Isolation, identification and biological characteristics analysis of Streptococcus parauberis [J]. , 2016, 28(5): 758-. |
[7] | ZHANG Zhen\|xing1,2, ZHANG Wen\|zhao1, YANG Hui\|cui1,2, CHEN Chun\|lan1, WEI Wen\|xue1,*. Effects of growing rice roots on the bacterial abundance and community structure in the rhizosphere during tillering stage [J]. , 2015, 27(12): 2045-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 327
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 116
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||