Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (12): 2823-2831.DOI: 10.3969/j.issn.1004-1524.20240058
• Biosystems Engineering • Previous Articles Next Articles
LI Qiao1,2(), ZHANG Huadong1,2, SUN Sanmin1,2,*(
), YIN Caiyun3
Received:
2024-01-10
Online:
2024-12-25
Published:
2024-12-27
CLC Number:
LI Qiao, ZHANG Huadong, SUN Sanmin, YIN Caiyun. Water demand prediction of jujube tree based on TCN-Attention-GRU model[J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2823-2831.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240058
可调参数Adjustable parameter | 数值Value |
---|---|
卷积核大小Convolutional kernel size | 3 |
残差块数量Residual fast number | 1 |
扩张率列表List of expansion rates | 1,2,4 |
舍弃率Dropout | 0.1 |
残差块激活函数Residual block activation funtion | ReLu |
学习率Learning rate | 0.01 |
Table 1 Hyperparameter settings
可调参数Adjustable parameter | 数值Value |
---|---|
卷积核大小Convolutional kernel size | 3 |
残差块数量Residual fast number | 1 |
扩张率列表List of expansion rates | 1,2,4 |
舍弃率Dropout | 0.1 |
残差块激活函数Residual block activation funtion | ReLu |
学习率Learning rate | 0.01 |
模型Model | MAPE | MSE | R2 |
---|---|---|---|
CNN | 14.7 | 70.3 | 80.1 |
TCN | 12.9 | 58.4 | 84.1 |
TCN-Attention | 10.1 | 51.9 | 90.0 |
TCN-GRU | 11.6 | 57.9 | 86.9 |
TCN-Attention-GRU | 7.9 | 28.8 | 94.4 |
Table 2 Comparison of evaluation indicators of different models in the test set %
模型Model | MAPE | MSE | R2 |
---|---|---|---|
CNN | 14.7 | 70.3 | 80.1 |
TCN | 12.9 | 58.4 | 84.1 |
TCN-Attention | 10.1 | 51.9 | 90.0 |
TCN-GRU | 11.6 | 57.9 | 86.9 |
TCN-Attention-GRU | 7.9 | 28.8 | 94.4 |
日期 Date | 预测需水量 Predicted water demand/ (mm·d-1) | 实际需水量 Actual water demand/ (mm·d-1) | 相对误差 Relative error/% |
---|---|---|---|
2023-04-16 | 3.62 | 3.73 | 2.82 |
2023-04-17 | 3.71 | 3.99 | 7.02 |
2023-04-18 | 3.83 | 4.36 | 12.18 |
2023-04-19 | 3.95 | 3.87 | 2.05 |
2023-04-20 | 4.09 | 3.90 | 4.78 |
2023-04-21 | 4.21 | 4.11 | 2.58 |
2023-04-22 | 4.33 | 5.69 | 23.89 |
…… | |||
2023-07-24 | 7.29 | 5.82 | 20.05 |
2023-07-25 | 7.31 | 5.28 | 27.73 |
2023-07-26 | 7.21 | 6.24 | 13.35 |
2023-07-27 | 9.41 | 10.11 | 7.41 |
2023-07-28 | 7.89 | 8.48 | 7.49 |
2023-07-29 | 8.42 | 9.48 | 12.53 |
2023-07-30 | 10.16 | 10.07 | 0.90 |
相对平均误差Relative mean error | 12.23 |
Table 3 TCN-Attention-GRU water demand model predicted value
日期 Date | 预测需水量 Predicted water demand/ (mm·d-1) | 实际需水量 Actual water demand/ (mm·d-1) | 相对误差 Relative error/% |
---|---|---|---|
2023-04-16 | 3.62 | 3.73 | 2.82 |
2023-04-17 | 3.71 | 3.99 | 7.02 |
2023-04-18 | 3.83 | 4.36 | 12.18 |
2023-04-19 | 3.95 | 3.87 | 2.05 |
2023-04-20 | 4.09 | 3.90 | 4.78 |
2023-04-21 | 4.21 | 4.11 | 2.58 |
2023-04-22 | 4.33 | 5.69 | 23.89 |
…… | |||
2023-07-24 | 7.29 | 5.82 | 20.05 |
2023-07-25 | 7.31 | 5.28 | 27.73 |
2023-07-26 | 7.21 | 6.24 | 13.35 |
2023-07-27 | 9.41 | 10.11 | 7.41 |
2023-07-28 | 7.89 | 8.48 | 7.49 |
2023-07-29 | 8.42 | 9.48 | 12.53 |
2023-07-30 | 10.16 | 10.07 | 0.90 |
相对平均误差Relative mean error | 12.23 |
[1] | 邓铭江. 南疆未来发展的思考:塔里木河流域水问题与水战略研究[J]. 干旱区地理, 2016, 39(1):1-11. |
DENG M J. Prospecting development of South Xinjiang:water strategy and problem of Tarim River Basin[J]. Arid Land Geography, 2016, 39(1):1-11. (in Chinese) | |
[2] | 尹立河, 张俊, 姜军, 等. 南疆地区水资源问题与对策建议[J]. 中国地质, 2023, 50(1):1-12. |
YIN L H, ZHANG J, JIANG J, et al. Issues and countermeasures on water resources in the Southern Xinjiang[J]. Geology in China, 2023, 50(1):1-12. (in Chinese with English abstract) | |
[3] | 连晓晗. 基于PSO-GRU青椒生长期需水预测算法的智慧灌溉系统研究[D]. 邯郸: 河北工程大学, 2022. |
LIAN X H. Research on intelligent irrigation system based on PSO-GRU water demand prediction algorithm for green pepper growth period[D]. Handan: Hebei University of Engineering, 2022. (in Chinese with English abstract) | |
[4] | 李少伟. 基于人工神经网络的智能节水灌溉系统的研究[D]. 合肥: 安徽大学, 2021. |
LI S W. Research on intelligent water-saving irrigation system based on artificial neural network[D]. Hefei: Anhui University, 2021. (in Chinese with English abstract) | |
[5] | 李真真. 基于作物需水量预测的农田智能灌溉系统的研究[D]. 郑州: 华北水利水电大学, 2021. |
LI Z Z. Research on intelligent farmland irrigation system based on crop water demand prediction[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021. (in Chinese with English abstract) | |
[6] | 李学军, 程红. 基于LSTM算法的智能节水灌溉预测模型研究[J]. 农机化研究, 2022, 44(3):22-27, 32. |
LI X J, CHENG H. Based on the Internet of Things precision farmland irrigation system key technology research[J]. Journal of Agricultural Mechanization Research, 2022, 44(3):22-27, 32. (in Chinese with English abstract) | |
[7] | 孙博瑞, 孙三民, 蒋敏, 等. 基于LSTM神经网络的智能灌溉系统设计与试验[J]. 中国农机化学报, 2022, 43(4):116-123. |
SUN B R, SUN S M, JIANG M, et al. Design and test of intelligent irrigation system based on LSTM neural network[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4):116-123. (in Chinese with English abstract) | |
[8] | 李莉, 李伟, 耿磊, 等. 基于RF-GRU的温室番茄结果前期蒸腾量预测方法[J]. 农业机械学报, 2022, 53(3):368-376. |
LI L, LI W, GENG L, et al. Prediction method of greenhouse tomato transpiration in early fruiting stage based on RF-GRU[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(3):368-376. (in Chinese with English abstract) | |
[9] | 李志磊, 周建平, 魏正英, 等. ET0预测的卡尔曼滤波修正ANFIS模型研究[J]. 干旱地区农业研究, 2017, 35(3):114-119. |
LI Z L, ZHOU J P, WEI Z Y, et al. A study on the modified ANFIS model by the Calman filter for ET0 prediction[J]. Agricultural Research in the Arid Areas, 2017, 35(3):114-119. (in Chinese with English abstract) | |
[10] | 刘玉甫, 曹伟. 基于支持向量机优化粒子群算法的作物生育期ET0预测[J]. 现代农业科技, 2014(2):219-220, 228. |
LIU Y F, CAO W. Prediction of ET0 based on particle swarm optimization and support vector regression[J]. Modern Agricultural Science and Technology, 2014(2):219-220, 228. (in Chinese with English abstract) | |
[11] | 张丽, 吴金亮, 杨国范. 基于BP神经网络的东港灌区作物需水量预测研究[J]. 水土保持研究, 2012, 19(6):207-210, 216. |
ZHANG L, WU J L, YANG G F. Prediction research for crop water requirement based on BP neural network in Donggang irrigation district[J]. Research of Soil and Water Conservation, 2012, 19(6):207-210, 216. (in Chinese with English abstract) | |
[12] | 吴家葆, 曾国辉, 张振华, 等. 基于K-means分层聚类的TCN-GRU和LSTM动态组合光伏短期功率预测[J]. 可再生能源, 2023, 41(8):1015-1022. |
WU J B, ZENG G H, ZHANG Z H, et al. Dynamic combination of TCN-GRU and LSTM photovoltaic short-term power prediction based on K-means hierarchical clustering[J]. Renewable Energy Resources, 2023, 41(8):1015-1022. (in Chinese with English abstract) | |
[13] | SIDHU R K, KUMAR R, RANA P S. Machine learning based crop water demand forecasting using minimum climatological data[J]. Multimedia Tools and Applications, 2020, 79(19):13109-13124. |
[14] | TONG Z Y, ZHANG S R, YU J X, et al. A hybrid prediction model for CatBoost tomato transpiration rate based on feature extraction[J]. Agronomy, 2023, 13(9):2371. |
[15] | MA Y Z, LV B, WANG Y F, et al. Crop water requirement prediction method based on EEMD-attention-LSTM model[J]. Journal of Physics:Conference Series, 2023, 2637(1):012028. |
[16] | 李发崇, 李鹏, 高莲, 等. 基于多尺度模型融合和VMD-TCN-RF混合网络的短期电力负荷预测方法[J]. 电子器件, 2023, 46(4):1035-1042. |
LI F C, LI P, GAO L, et al. Short-term power load forecasting method based on multiscale model fusion and VMD-TCN-RF hybrid network[J]. Chinese Journal of Electron Devices, 2023, 46(4):1035-1042. (in Chinese with English abstract) | |
[17] | 吴珺玥, 赵二刚, 郭增良, 等. 基于Spearman系数和TCN的光伏出力超短期多步预测[J]. 太阳能学报, 2023, 44(9):180-186. |
WU J Y, ZHAO E G, GUO Z L, et al. Ultra-short-term photovoltaic power multi-step prediction based on spearman coefficient and tcn[J]. Acta Energiae Solaris Sinica, 2023, 44(9):180-186. (in Chinese) | |
[18] | 张泉. 作物需水量及灌溉需水量趋势性分析及方法[J]. 河南水利与南水北调, 2021, 50(6):81-83. |
ZHANG Q. Analysis and method of trend of crop water demand and irrigation water demand[J]. Henan Water Resources and South-to-North Water Diversion, 2021, 50(6):81-83. (in Chinese with English abstract) | |
[19] | 苏向敬, 邓超, 栗风永, 等. 基于MGAT-TCN模型的可解释电网虚假数据注入攻击检测[J]. 电力系统自动化, 2024, 48(2):118-127. |
SU X J, DENG C, LI F Y, et al. Interpretable detection of false data injection attacks in power grid based on multi-head graph attention network and time convolution network model[J]. Automation of Electric Power Systems, 2024, 48(2):118-127. (in Chinese) | |
[20] | 刘晓晓, 孔云峰. 气象监测数据的时空特征分析与建模[J]. 地理空间信息, 2009, 7(4):104-107. |
LIU X X, KONG Y F. Spatiotemporal analysis and modeling of the meteorological data[J]. Geospatial Information, 2009, 7(4):104-107. (in Chinese with English abstract) | |
[21] | 陈天涯, 陈盛, 郑阳, 等. 基于VMD-CIMFs-TCN的水电机组振动预测[J]. 水电能源科学, 2023, 41(9):159-163. |
CHEN T Y, CHEN S, ZHENG Y, et al. Prediction of vibration trend of hydroelectric unit based on VMD-CIMFs-TCN[J]. Water Resources and Power, 2023, 41(9):159-163. (in Chinese with English abstract) | |
[22] | 张上要, 罗军刚, 石国栋, 等. 基于VMD-TCN模型的渭河流域月径流量预测研究[J]. 人民黄河, 2023, 45(10):25-29. |
ZHANG S Y, LUO J G, SHI G D, et al. Monthly runoff prediction in Weihe River Basin based on VMD-TCN model[J]. Yellow River, 2023, 45(10):25-29. (in Chinese with English abstract) | |
[23] | 安元超, 张岳君, 林文文, 等. 基于BO-GRU神经网络的锂离子电池剩余使用寿命预测[J]. 机械制造, 2023, 61(12):50-55. |
AN Y C, ZHANG Y J, LIN W W, et al. Prediction of remaining service life of lithium-ion battery based on BO-GRU neural network[J]. Machinery, 2023, 61(12):50-55. (in Chinese with English abstract) | |
[24] | 王则玉, 谢香文, 刘国宏, 等. 干旱区绿洲滴灌成龄枣树耗水规律及作物系数[J]. 新疆农业科学, 2015, 52 (4):675-680. |
WANG Z Y, XIE X W, LIU G H, et al. Jujube drip irrigation water consumption and its crop coefficient in oasis of arid areas[J]. Xinjiang Agricultural Sciences, 2015, 52 (4):675-680. (in Chinese with English abstract) |
[1] | ZHANG Luhe, WANG Duofeng, ZHANG De, ZHANG Guangzhong, ZHAO Tong, LYU Binyan, ZHANG Yangjun, LI Yi. Identification and bioinformatics analysis of novel-miR16 target gene ZjTCP4 in Chinese jujube [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 534-543. |
[2] | WANG Shiyao, XIN Zhenzhong, WANG Lian, WANG Yu. Preparation of beta@chitosan fresh-keeping coating and its effect on the quality of Taigu pear jujube [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2212-2221. |
[3] | SONG Chuansheng, KANG Xiaofei, FAN Qingzhong, WANG Jungang, SHI Xue, ZHANG Ziru, TAN Qingqing, ZENG Xiaojiao, LIU Fang, LI Yingsai, HOU Changyue. Cloning, sequence analysis, prokaryotic expression of thymidine kinase from jujube witches’-broom phytoplasma [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1763-1772. |
[4] | SUN Shouxia, CHEN Hong, LYU Wei, PIAO Hanqi, ZHOU Guanghui, WANG Hesong, ZHANG Shubin, HAO Jinlian. Effects of dustfall on photosynthetic characteristics and chlorophyll fluorescence characteristics of major fruit trees in Aksu Region, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2659-2668. |
[5] | ZHANG Jianli, WANG Zhenhua, CHEN Rui, WANG Dongwang, LIANG Yonghui, LIU Ruhua. Effect of water-fertilizer interaction on yield, quality and soil nutrients of drip irrigated jujube [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2428-2437. |
[6] | ZHANG Jiameng, WEI Jiawen, ZHANG Huiling. Process optimization of solid-state fermented jujube powder by Lactobacillus paracasei and its quality analysis [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 893-906. |
[7] | FENG Luoluo, GAO Haiyan, ZHANG Runguang, YAN Xinpeng, ZHANG Yani, HAN Qiqi, ZHANG Youlin. Effects of different gas composition storage on physiological changes and quality of Dog-head jujube fruit [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 704-713. |
[8] | DENG Zhenshan, WEI Tingting, SU Rui, GAO Fei, LIU Yuzhen, CHEN Bangkai, MO Darui, HE Xi, XU Hongxia. Isolation of an endophytic bacterial strain with antifungal activity from wild jujube [J]. , 2017, 29(12): 2068-2076. |
[9] | ZHANG Shanwen, HUANG Wenzhun, YOU Zhuhong. Recognition method of winter jujube diseases based on internet of things and deep convolutional neural network [J]. , 2017, 29(11): 1868-1874. |
[10] | ZHANG Lingtong, LI Shouning, SUN Sanmin*. Study on appearance quality classification based on detection of the striples of red jujube in Southern Xinjiang [J]. , 2016, 28(6): 1089-. |
[11] | HUANG Hong\|yun. Effect of high\|voltage static electric field on storage quality of winter jujube fruit [J]. , 2015, 27(6): 1073-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||