Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (12): 2832-2845.DOI: 10.3969/j.issn.1004-1524.20240190
• Biosystems Engineering • Previous Articles Next Articles
FAN Weipei1,2,3(), YU Xiaoming1, SHEN Fenglong1,*(
), WANG Liang2,3, WANG Xing4
Received:
2024-03-01
Online:
2024-12-25
Published:
2024-12-27
CLC Number:
FAN Weipei, YU Xiaoming, SHEN Fenglong, WANG Liang, WANG Xing. A lightweight bumblebee image classification model based on improved GhostNet V2[J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2832-2845.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240190
熊蜂类别 Bumblebee category | 训练集 Training set | 验证集 Validation set | 测试集 Test set | 总计 Total |
---|---|---|---|---|
蜂王Queen bee | 3 011 | 861 | 430 | 4 302 |
雄蜂Drone bee | 3 130 | 895 | 447 | 4 472 |
工蜂Worker bee | 3 040 | 869 | 434 | 4 343 |
总计Total | 9 181 | 2 625 | 1 311 | 13 117 |
Table 1 Distribution of BumblebeeImage dataset
熊蜂类别 Bumblebee category | 训练集 Training set | 验证集 Validation set | 测试集 Test set | 总计 Total |
---|---|---|---|---|
蜂王Queen bee | 3 011 | 861 | 430 | 4 302 |
雄蜂Drone bee | 3 130 | 895 | 447 | 4 472 |
工蜂Worker bee | 3 040 | 869 | 434 | 4 343 |
总计Total | 9 181 | 2 625 | 1 311 | 13 117 |
Fig.5 Schematic diagram of GMCFF network structure GV2-bottleneck, GhostNetV2 bottleneck; Conv2d, Convolution 2D; AvgPool, Average Pooling; FC, Fully Connected; F, Low-level feature; B1, Shortcut branch 1; B2, Shortcut branch 2.
输入Input | 操作Operator | 增大比例Exp | 输出通道数Out | 通道注意力SE | 步长Stride |
---|---|---|---|---|---|
224×224×3 | Conv2d 3×3、5×5、7×7 | — | 16 | — | 2 |
122×122×16 | GV2-bneck | 16 | 16 | — | 1 |
122×122×16 | GV2-bneck | 48 | 24 | — | 2 |
56×56×24 | GV2-bneck | 72 | 24 | — | 1 |
56×56×24 | GV2-bneck | 72 | 40 | 0.25 | 2 |
28×28×40 | GV2-bneck | 120 | 40 | 0.25 | 1 |
28×28×40 | GV2-bneck | 240 | 80 | — | 2 |
14×14×80 | GV2-bneck | 200 | 80 | — | 1 |
14×14×80 | GV2-bneck | 184 | 112 | 0.25 | 1 |
14×14×112 | GV2-bneck | 672 | 112 | 0.25 | 1 |
14×14×112 | GV2-bneck | 160 | 160 | 0.25 | 2 |
7×7×160 | Conv2d 1×1 | — | 160 | — | 1 |
7×7×160 | AvgPool 7×7 | — | 480 | — | - |
1×1×480 | Conv2d 1×1 | — | 480 | — | 1 |
1×1×480 | FC | — | 3 | — | - |
Table 2 Parameters of GMCFF network structure
输入Input | 操作Operator | 增大比例Exp | 输出通道数Out | 通道注意力SE | 步长Stride |
---|---|---|---|---|---|
224×224×3 | Conv2d 3×3、5×5、7×7 | — | 16 | — | 2 |
122×122×16 | GV2-bneck | 16 | 16 | — | 1 |
122×122×16 | GV2-bneck | 48 | 24 | — | 2 |
56×56×24 | GV2-bneck | 72 | 24 | — | 1 |
56×56×24 | GV2-bneck | 72 | 40 | 0.25 | 2 |
28×28×40 | GV2-bneck | 120 | 40 | 0.25 | 1 |
28×28×40 | GV2-bneck | 240 | 80 | — | 2 |
14×14×80 | GV2-bneck | 200 | 80 | — | 1 |
14×14×80 | GV2-bneck | 184 | 112 | 0.25 | 1 |
14×14×112 | GV2-bneck | 672 | 112 | 0.25 | 1 |
14×14×112 | GV2-bneck | 160 | 160 | 0.25 | 2 |
7×7×160 | Conv2d 1×1 | — | 160 | — | 1 |
7×7×160 | AvgPool 7×7 | — | 480 | — | - |
1×1×480 | Conv2d 1×1 | — | 480 | — | 1 |
1×1×480 | FC | — | 3 | — | - |
Fig.7 GhostNetV1 bottleneck and GhostNetV2 bottleneck DWConv, Depthwise convolution;BN, Batch normalization; ReLU, Rectified linear unit; DFC, Decoupled fully connected; FC, fully connected.
数据增强 Data augmentation | 准确率 Accuracy | 精确率 Precision | 召回率 Recall | F1分数 F1-score |
---|---|---|---|---|
未使用Unused | 82.53 | 83.99 | 82.49 | 82.83 |
使用Used | 98.40 | 98.42 | 98.41 | 98.41 |
Table 3 Comparison of data augmentation experiments %
数据增强 Data augmentation | 准确率 Accuracy | 精确率 Precision | 召回率 Recall | F1分数 F1-score |
---|---|---|---|---|
未使用Unused | 82.53 | 83.99 | 82.49 | 82.83 |
使用Used | 98.40 | 98.42 | 98.41 | 98.41 |
激活函数 Activation function | 准确率 Accuracy | 精确率 Precision | 召回率 Recall | F1分数 F1-score |
---|---|---|---|---|
ReLU | 97.48 | 97.49 | 97.49 | 97.49 |
LeakyReLU | 97.48 | 97.51 | 97.50 | 97.50 |
H-swish | 97.48 | 97.49 | 97.49 | 97.49 |
SiLU | 98.40 | 98.42 | 98.41 | 98.41 |
Table 4 Comparison of model experiments with different activation functions %
激活函数 Activation function | 准确率 Accuracy | 精确率 Precision | 召回率 Recall | F1分数 F1-score |
---|---|---|---|---|
ReLU | 97.48 | 97.49 | 97.49 | 97.49 |
LeakyReLU | 97.48 | 97.51 | 97.50 | 97.50 |
H-swish | 97.48 | 97.49 | 97.49 | 97.49 |
SiLU | 98.40 | 98.42 | 98.41 | 98.41 |
模型 Model | 改进方式Improvement mode | 准确率 Accuracy/% | F1分数 F1- score/% | 参数量 Parameters/ M | 浮点运算量 FLOPs/M | ||
---|---|---|---|---|---|---|---|
多尺度卷积 Multi-scale convolution | 特征融合 Feature fusion | 架构精简 Streamlined architecture | |||||
GhostNet V2 | × | × | × | 96.87 | 96.89 | 4.88 | 184.50 |
√ | × | × | 98.02 | 98.03 | 5.03 | 229.06 | |
× | √ | × | 97.56 | 97.57 | 4.90 | 194.82 | |
× | × | √ | 96.49 | 96.50 | 0.71 | 103.54 | |
√ | √ | × | 97.78 | 97.80 | 5.06 | 239.38 | |
√ | × | √ | 97.25 | 97.26 | 0.82 | 148.10 | |
× | √ | √ | 96.57 | 96.58 | 0.75 | 113.86 | |
GMCFF | √ | √ | √ | 98.40 | 98.41 | 0.73 | 159.35 |
Table 5 Ablation experiment of GMCFF model
模型 Model | 改进方式Improvement mode | 准确率 Accuracy/% | F1分数 F1- score/% | 参数量 Parameters/ M | 浮点运算量 FLOPs/M | ||
---|---|---|---|---|---|---|---|
多尺度卷积 Multi-scale convolution | 特征融合 Feature fusion | 架构精简 Streamlined architecture | |||||
GhostNet V2 | × | × | × | 96.87 | 96.89 | 4.88 | 184.50 |
√ | × | × | 98.02 | 98.03 | 5.03 | 229.06 | |
× | √ | × | 97.56 | 97.57 | 4.90 | 194.82 | |
× | × | √ | 96.49 | 96.50 | 0.71 | 103.54 | |
√ | √ | × | 97.78 | 97.80 | 5.06 | 239.38 | |
√ | × | √ | 97.25 | 97.26 | 0.82 | 148.10 | |
× | √ | √ | 96.57 | 96.58 | 0.75 | 113.86 | |
GMCFF | √ | √ | √ | 98.40 | 98.41 | 0.73 | 159.35 |
模型 Model | 准确率 Accuracy/% | 精确率 Precision/% | 召回率 Recall/% | F1分数 F1-score/% | 参数量 Parameters/M | 浮点运算量 FLOPs/M | 模型大小 Model size/MB |
---|---|---|---|---|---|---|---|
DenseNet121 | 97.71 | 97.74 | 97.71 | 97.72 | 6.96 | 2 895.99 | 27.1 |
RegNet | 94.66 | 94.68 | 94.69 | 94.68 | 2.32 | 207.34 | 9.00 |
ShuffleNetV2 | 96.87 | 96.90 | 96.89 | 96.89 | 1.26 | 151.69 | 4.95 |
MobileNetV2 | 97.25 | 97.29 | 97.26 | 97.26 | 2.23 | 326.27 | 8.73 |
MobileNetV3_small | 96.26 | 96.36 | 96.30 | 96.29 | 1.52 | 61.17 | 5.92 |
ResNet18 | 97.03 | 97.04 | 97.05 | 97.04 | 11.18 | 1 823.52 | 42.7 |
EfficientNetB0 | 97.64 | 97.65 | 97.64 | 97.65 | 4.01 | 411.55 | 15.5 |
GhostNet | 97.25 | 97.26 | 97.27 | 97.26 | 3.91 | 154.58 | 15.1 |
GhostNetV2 | 96.87 | 96.90 | 96.90 | 96.89 | 4.88 | 184.50 | 19.1 |
GMCFF | 98.40 | 98.42 | 98.41 | 98.41 | 0.73 | 159.35 | 3.01 |
Table 6 Performance comparison of different models
模型 Model | 准确率 Accuracy/% | 精确率 Precision/% | 召回率 Recall/% | F1分数 F1-score/% | 参数量 Parameters/M | 浮点运算量 FLOPs/M | 模型大小 Model size/MB |
---|---|---|---|---|---|---|---|
DenseNet121 | 97.71 | 97.74 | 97.71 | 97.72 | 6.96 | 2 895.99 | 27.1 |
RegNet | 94.66 | 94.68 | 94.69 | 94.68 | 2.32 | 207.34 | 9.00 |
ShuffleNetV2 | 96.87 | 96.90 | 96.89 | 96.89 | 1.26 | 151.69 | 4.95 |
MobileNetV2 | 97.25 | 97.29 | 97.26 | 97.26 | 2.23 | 326.27 | 8.73 |
MobileNetV3_small | 96.26 | 96.36 | 96.30 | 96.29 | 1.52 | 61.17 | 5.92 |
ResNet18 | 97.03 | 97.04 | 97.05 | 97.04 | 11.18 | 1 823.52 | 42.7 |
EfficientNetB0 | 97.64 | 97.65 | 97.64 | 97.65 | 4.01 | 411.55 | 15.5 |
GhostNet | 97.25 | 97.26 | 97.27 | 97.26 | 3.91 | 154.58 | 15.1 |
GhostNetV2 | 96.87 | 96.90 | 96.90 | 96.89 | 4.88 | 184.50 | 19.1 |
GMCFF | 98.40 | 98.42 | 98.41 | 98.41 | 0.73 | 159.35 | 3.01 |
模型 Model | 准确率 Accuracy/% | 精确率 Precision/% | 召回率 Recall/% | F1分数 F1-score/% | 参数量 Parameters/M | 浮点运算量 FLOPs/M | 模型大小 Model size/MB |
---|---|---|---|---|---|---|---|
GhostNet V2 | 93.90 | 93.92 | 93.92 | 93.92 | 4.88 | 184.50 | 19.1 |
GMCFF | 93.94 | 93.97 | 93.96 | 93.96 | 0.73 | 159.35 | 3.01 |
Table 7 Comparison of various evaluation indicators on the BeeOrWasp dataset
模型 Model | 准确率 Accuracy/% | 精确率 Precision/% | 召回率 Recall/% | F1分数 F1-score/% | 参数量 Parameters/M | 浮点运算量 FLOPs/M | 模型大小 Model size/MB |
---|---|---|---|---|---|---|---|
GhostNet V2 | 93.90 | 93.92 | 93.92 | 93.92 | 4.88 | 184.50 | 19.1 |
GMCFF | 93.94 | 93.97 | 93.96 | 93.96 | 0.73 | 159.35 | 3.01 |
Fig.15 Classification test results of different bumblebees in actual environment A. Queen bee, with a classification prediction value of 95.87%; B. Drone bee, with a classification prediction value of 94.58%; C. Worker bee, with a classification prediction value of 94.49%.
[1] | 周峰, 姚丽媛, 石涵, 等. 传粉熊蜂访花行为的研究进展[J]. 昆虫学报, 2023, 66(3):419-438. |
ZHOU F, YAO L Y, SHI H, et al. Research progress in foraging behavior of pollinating bumblebees[J]. Acta Entomologica Sinica, 2023, 66(3):419-438. (in Chinese with English abstract) | |
[2] | THENMOZHI K, SRINⅣASULU REDDY U. Crop pest classification based on deep convolutional neural network and transfer learning[J]. Computers and Electronics in Agriculture, 2019, 164:104906. |
[3] | DE NART D, COSTA C, DI PRISCO G, et al. Image recognition using convolutional neural networks for classification of honey bee subspecies[J]. Apidologie, 2022, 53(1):5. |
[6] | 甘雨, 郭庆文, 王春桃, 等. 基于改进EfficientNet模型的作物害虫识别[J]. 农业工程学报, 2022, 38(1):203-211. |
GAN Y, GUO Q W, WANG C T, et al. Recognizing crop pests using an improved EfficientNet model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1):203-211. (in Chinese with English abstract) | |
[4] | 陈彦彤, 陈伟楠, 张献中, 等. 基于深度卷积神经网络的蝇类面部识别[J]. 光学精密工程, 2020, 28(7):1558-1567. |
CHEN Y T, CHEN W N, ZHANG X Z, et al. Fly facial recognition based on deep convolutional neural network[J]. Optics and Precision Engineering, 2020, 28(7):1558-1567. (in Chinese with English abstract) | |
[7] | 阮炬全, 刘朔. 基于高阶残差和注意力机制的轻量型作物害虫识别[J]. 计算机系统应用, 2023, 32(3):104-115. |
RUAN J Q, LIU S. Lightweight recognition of crop pests based on high-order residual and attention mechanism[J]. Computer Systems and Applications, 2023, 32(3):104-115. (in Chinese with English abstract) | |
[5] | 陈俭. 基于卷积神经网络和度量学习的害虫检测方法研究[D]. 杭州: 浙江大学, 2021:1-30. |
CHEN J. Research on pest detection method based on convolutional neural network and metric learning[D]. Hangzhou: Zhejiang University, 2021:1-30. (in Chinese with English abstract) | |
[8] | 彭红星, 徐慧明, 刘华鼐. 融合双分支特征和注意力机制的葡萄病虫害识别模型[J]. 农业工程学报, 2022, 38(10):156-165. |
PENG H X, XU H M, LIU H N. Model for identifying grape pests and diseases based on two-branch feature fusion and attention mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(10):156-165. (in Chinese with English abstract) | |
[9] | MARTINEAU C, CONTE D, RAVEAUX R, et al. A survey on image-based insect classification[J]. Pattern Recognition, 2017, 65:273-284. |
[10] | TANG Y, HAN K, GUO J, et al. GhostNetV2: enhance cheap operation with long-range attention[C]// NeurIPS 2022:36th Conference on Neural Information Processing Systems. New Orleans, USA: ACM Press, 2022:64879. |
[11] | HAN K, WANG Y H, TIAN Q, et al. GhostNet:more features from cheap operations[C]// 020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020:1577-1586. |
[12] | 于明, 李若曦, 阎刚, 等. 基于颜色掩膜网络和自注意力机制的叶片病害识别方法[J]. 农业机械学报, 2022, 53(8):337-344. |
YU M, LI R X, YAN G, et al. Crop diseases recognition method via fusion color mask and self-attention mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8):337-344. (in Chinese with English abstract) | |
[13] | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2:inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018:4510-4520. |
[14] | 张善文, 邵彧, 齐国红, 等. 基于多尺度注意力卷积网络的作物害虫检测[J]. 江苏农业学报, 2021, 37(3):579-588. |
ZHANG S W, SHAO Y, QI G H, et al. Crop pest detection based on multi-scale convolutional network with attention[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(3):579-588. (in Chinese with English abstract) | |
[15] | 尹群杰, 杨文柱, 冉梦影, 等. 结合多特征融合与残差空洞卷积的小目标检测[J]. 计算机工程与设计, 2022, 43(9):2622-2630. |
YIN Q J, YANG W Z, RAN M Y, et al. Small object detection using multi-feature fusion and residual dilated convolution[J]. Computer Engineering and Design, 2022, 43(9):2622-2630. (in Chinese with English abstract) | |
[16] | 王继霄, 李阳, 王家宝, 等. 基于SqueezeNet的轻量级图像融合方法[J]. 计算机应用, 2020, 40(3):837-841. |
WANG J X, LI Y, WANG J B, et al. Light-weight image fusion method based on SqueezeNet[J]. Journal of Computer Applications, 2020, 40(3):837-841. (in Chinese with English abstract) | |
[17] | LIU W, WU G, REN F. Deep multi-branch fusion residual network for insect pest recognition[J]. IEEE Transactions on Cognitive and Developmental Systems, 2020, 13(3):705-716. |
[18] | 翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7):1-18. |
ZHAI Z Y, CAO Y F, XU H L, et al. Review of key techniques for crop disease and pest detection[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7):1-18. (in Chinese with English abstract) | |
[19] | 徐静萍, 王芳. 基于改进的S-ReLU激活函数的图像分类方法[J]. 科学技术与工程, 2022, 22(29):12963-12968. |
XU J P, WANG F. Image classification method based on improved S-ReLU activation function[J]. Science Technology and Engineering, 2022, 22(29):12963-12968. (in Chinese with English abstract) | |
[20] | 李好, 邱卫根, 张立臣. 改进ShuffleNet V2的轻量级农作物病害识别方法[J]. 计算机工程与应用, 2022, 58(12):260-268. |
LI H, QIU W G, ZHANG L C. Improved ShuffleNet V2 for lightweight crop disease identification[J]. Computer Engineering and Applications, 2022, 58(12):260-268. (in Chinese with English abstract) | |
[21] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[J]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017:2261-2269. |
[22] | RADOSAVOVIC I, KOSARAJU R P, GIRSHICK R, et al. Designing network design spaces[J]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020:10425-10433. |
[23] | MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2:practical guidelines for efficient CNN architecture design[M]// Lecture notes in computer science. Cham: Springer International Publishing, 2018:122-138. |
[24] | HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). October 27-November 2, 2019, Seoul, Korea (South). IEEE. 2019:1314-1324. |
[25] | TAN M, LE Q. Efficientnet:Rethinking model scaling for convolutional neural networks[C]// Proceedings of the 36th International Conference on Machine Learning (ICML). Long Beach, California,USA:PMLR,s 2019(97):6105-6114. |
[1] | ZHU Mingmin, ZHANG Guoping, TAN Jianjun, SUN Lingjiao, ZHU Li, JIAO Jie. A lightweight tea buds terminal detection model based on YOLOv5s [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1413-1424. |
[2] | LI Dahua, KONG Shu, LI Dong, YU Xiao. Lightweight detection model of citrus leaf disease based on improved SSD [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 662-670. |
[3] | ZHANG Ning, WU Huarui, HAN Xiao, MIAO Yisheng. Tomato disease recognition scheme based on multi-scale and attention mechanism [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1329-1338. |
[4] | ZHANG Mandun, SHAN Xinyuan, YU Yang, MI Na, YAN Gang, GUO Yingchun. Research of individual dairy cattle recognition based on wavelet transform and improved KPCA [J]. , 2017, 29(12): 2000-2008. |
[5] | YANG Chun\|he, JIANG Zhao\|hui*, YANG Bao\|hua, CHEN Yi\|qiong, LIU Lian\|zhong. Detection of moisture content of plant leaf based on image processing & the mobile internet#br# [J]. , 2015, 27(10): 1835-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||