Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (12): 2846-2856.DOI: 10.3969/j.issn.1004-1524.20240092
• Biosystems Engineering • Previous Articles Next Articles
YU Shuochen1(), ZHANG Jun2,*(
), SONG Xinjie1,3, ZHOU Jinyun2
Received:
2024-01-21
Online:
2024-12-25
Published:
2024-12-27
CLC Number:
YU Shuochen, ZHANG Jun, SONG Xinjie, ZHOU Jinyun. Research on 1D-DenseRNet-based classification and detection method for canned food vacuum data[J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2846-2856.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240092
真空度等级 Vacuum level | 训练集 Training set | 测试集 Test set | 验证集 Valid set | 合计 Total |
---|---|---|---|---|
0级(标准大气压) | 3 645 | 729 | 729 | 5 103 |
Class 0 (standard atmospheric pressure) | ||||
1级(低真空度) | 3 645 | 729 | 729 | 5 103 |
Class 1 (low vacuum) | ||||
合计Total | 7 290 | 1 458 | 1 458 | 10 206 |
Table 1 Division of the data set
真空度等级 Vacuum level | 训练集 Training set | 测试集 Test set | 验证集 Valid set | 合计 Total |
---|---|---|---|---|
0级(标准大气压) | 3 645 | 729 | 729 | 5 103 |
Class 0 (standard atmospheric pressure) | ||||
1级(低真空度) | 3 645 | 729 | 729 | 5 103 |
Class 1 (low vacuum) | ||||
合计Total | 7 290 | 1 458 | 1 458 | 10 206 |
结构名称 Structure name | 超参数设置 Hyperparameter setting | 训练超参数 Training hyperparameters | ||
---|---|---|---|---|
Dense | Dense | 1DCNN | Kernel-size | 12 |
block | layer | K-Stride | 1 | |
1DCNN | Kernel-size | 1 | ||
K-Stride | 1 | |||
1DCNN | Kernel-size | 3 | ||
K-Stride | 1 | |||
Transition | 1DCNN | Kernel-size | 1 | |
layer | MaxPooling1D | Pool-Size | 2 | |
其他参数 | 优化算法Optimization algorithm | Nadam | ||
Other parameters | 迭代次数Number of iterations | 100 | ||
学习率Learning rate | 0.000 5 | |||
激活函数Activation function | Swish | |||
批次数据量Batch data volume | 32 | |||
损失函数Loss function | 交叉损失函数 | |||
Cross-loss function |
Table 2 Network parameter setting
结构名称 Structure name | 超参数设置 Hyperparameter setting | 训练超参数 Training hyperparameters | ||
---|---|---|---|---|
Dense | Dense | 1DCNN | Kernel-size | 12 |
block | layer | K-Stride | 1 | |
1DCNN | Kernel-size | 1 | ||
K-Stride | 1 | |||
1DCNN | Kernel-size | 3 | ||
K-Stride | 1 | |||
Transition | 1DCNN | Kernel-size | 1 | |
layer | MaxPooling1D | Pool-Size | 2 | |
其他参数 | 优化算法Optimization algorithm | Nadam | ||
Other parameters | 迭代次数Number of iterations | 100 | ||
学习率Learning rate | 0.000 5 | |||
激活函数Activation function | Swish | |||
批次数据量Batch data volume | 32 | |||
损失函数Loss function | 交叉损失函数 | |||
Cross-loss function |
学习率 Learning rate | 准确率 Accuracy | 精确度 Precision | F1值 F1 score | 召回率 Recall |
---|---|---|---|---|
0.05 | 75.31 c | 79.78 c | 79.01 c | 79.32 c |
0.000 5 | 98.77 a | 98.81 a | 98.77 a | 98.77 a |
0.000 1 | 79.01 b | 83.66 b | 81.95 b | 81.48 b |
Table 3 Performance comparison of networks with different learning rates %
学习率 Learning rate | 准确率 Accuracy | 精确度 Precision | F1值 F1 score | 召回率 Recall |
---|---|---|---|---|
0.05 | 75.31 c | 79.78 c | 79.01 c | 79.32 c |
0.000 5 | 98.77 a | 98.81 a | 98.77 a | 98.77 a |
0.000 1 | 79.01 b | 83.66 b | 81.95 b | 81.48 b |
卷积核参数 Convolutional kernel parameters | 准确率 Accuracy | 精准度 Precision | F1值 F1 score | 召回率 Recall |
---|---|---|---|---|
1 | 88.89 d | 89.99 d | 89.09 d | 88.89 d |
3 | 97.51 b | 97.70 b | 97.55 b | 97.53 b |
12 | 92.59 c | 90.91 c | 92.06 c | 94.44 c |
梯度设计 | 98.77 a | 98.81 a | 98.62 a | 99.07 a |
Gradient design |
Table 4 Performance comparison of networks designed with different convolutional kernels %
卷积核参数 Convolutional kernel parameters | 准确率 Accuracy | 精准度 Precision | F1值 F1 score | 召回率 Recall |
---|---|---|---|---|
1 | 88.89 d | 89.99 d | 89.09 d | 88.89 d |
3 | 97.51 b | 97.70 b | 97.55 b | 97.53 b |
12 | 92.59 c | 90.91 c | 92.06 c | 94.44 c |
梯度设计 | 98.77 a | 98.81 a | 98.62 a | 99.07 a |
Gradient design |
模型名称 Model name | 准确率 Accuracy/% | 精确度 Precision/% | F1值 F1 score/% | 召回率 Recall/% | 网络参数量 Number of network parameters/bytes |
---|---|---|---|---|---|
1D-CNN | 48.14 g | 30.51 i | 36.58 i | 45.68 h | 687 213 c |
1D-DenseNet | 92.59 f | 92.99 h | 92.65 g | 92.59 f | 254 568 f |
1D-DenseNet-LSTM | 96.30 d | 96.47 e | 96.29 e | 96.30 d | 428 334 d |
1D-DenseNet-Res-LSTM | 97.53 c | 97.62 c | 97.51 c | 97.53 c | 428 334 d |
1D-DenseNet-BiLSTM | 95.31 e | 97.70 b | 97.53 b | 97.55 b | 924 846 a |
1D-DenseNet-Res-BiLSTM | 96.30 d | 96.67 d | 96.33 d | 96.30 d | 700 590 b |
1D-DenseNet-GRU | 97.83 b | 94.37 g | 93.85 f | 93.83 e | 386 286 e |
1D-Swin Transformer | 92.59 f | 95.24 f | 80.00 h | 86.96 g | 108 482 g |
1D-DenseRNet | 98.77 a | 98.81 a | 98.62 a | 99.07 a | 386 286 e |
Table 5 Performance comparison of different models
模型名称 Model name | 准确率 Accuracy/% | 精确度 Precision/% | F1值 F1 score/% | 召回率 Recall/% | 网络参数量 Number of network parameters/bytes |
---|---|---|---|---|---|
1D-CNN | 48.14 g | 30.51 i | 36.58 i | 45.68 h | 687 213 c |
1D-DenseNet | 92.59 f | 92.99 h | 92.65 g | 92.59 f | 254 568 f |
1D-DenseNet-LSTM | 96.30 d | 96.47 e | 96.29 e | 96.30 d | 428 334 d |
1D-DenseNet-Res-LSTM | 97.53 c | 97.62 c | 97.51 c | 97.53 c | 428 334 d |
1D-DenseNet-BiLSTM | 95.31 e | 97.70 b | 97.53 b | 97.55 b | 924 846 a |
1D-DenseNet-Res-BiLSTM | 96.30 d | 96.67 d | 96.33 d | 96.30 d | 700 590 b |
1D-DenseNet-GRU | 97.83 b | 94.37 g | 93.85 f | 93.83 e | 386 286 e |
1D-Swin Transformer | 92.59 f | 95.24 f | 80.00 h | 86.96 g | 108 482 g |
1D-DenseRNet | 98.77 a | 98.81 a | 98.62 a | 99.07 a | 386 286 e |
[1] | 曾颖, 莫锡乾. 我国罐头行业质量安全问题研究分析[J]. 现代食品, 2019, 25(10):128-130. |
ZENG Y, MO X Q. Research and analysis on quality and safety of canning industry in China[J]. Modern Food, 2019, 25(10):128-130. (in Chinese with English abstract) | |
[2] | 仇凯, 邵懿, 王亚, 等. 罐头食品安全标准体系国内外对比分析研究[J]. 中国食品卫生杂志, 2021, 33(4):509-517. |
QIU K, SHAO Y, WANG Y, et al. Comparative analysis and research on safety index of domestic and international canned food standard[J]. Chinese Journal of Food Hygiene, 2021, 33(4):509-517. (in Chinese with English abstract) | |
[3] | 陆新龙. 罐头的“打检” 技术[J]. 江苏食品与发酵, 1992(2):20-21, 16. |
LU X L. The “inspection” technology for canned goods[J]. Jiangsu Food and Fermentation, 1992(2):20-21, 16. (in Chinese) | |
[4] | 干蜀毅, 朱武, 陈长琦, 等. 电涡流法检测罐头真空度的探头研制和仪器智能化[J]. 真空科学与技术, 2002, 22(5):326-328. |
GAN S Y, ZHU W, CHEN C Q, et al. Non-destructive detection of low vacuum inside canned food and its sensors[J]. Chinese Journal of Vacuum Science and Technology, 2002, 22(5):326-328. (in Chinese with English abstract) | |
[5] | 李莉. 双探头电涡流传感器真空度无损检测系统研究[D]. 天津: 天津大学, 2007. |
LI L. Research on non destructive testing system for vacuum degree of dual probe eddy current sensor[D]. Tianjin:Tianjin University, 2007. (in Chinese with English abstract) | |
[6] | 韩威, 周松斌, 刘忆森, 等. 基于麦克风阵列的罐装食品真空度在线检测[J]. 中国测试, 2019, 45(7):128-133. |
HAN W, ZHOU S B, LIU Y S, et al. Online detection for vacuum of canned food based on microphone array[J]. China Measurement & Test, 2019, 45(7):128-133. (in Chinese with English abstract) | |
[7] | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. |
[8] | 严春满, 王铖. 卷积神经网络模型发展及应用[J]. 计算机科学与探索, 2021, 15(1):27-46. |
YAN C M, WANG C. Development and application of convolutional neural network model[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(1):27-46. (in Chinese with English abstract) | |
[9] | EREN L, INCE T, KIRANYAZ S. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier[J]. Journal of Signal Processing Systems, 2019, 91(2):179-189. |
[10] | YU Z J, LU Y Q, AN Q, et al. Real-time multiple gesture recognition:application of a lightweight individualized 1D CNN model to an edge computing system[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30:990-998. |
[11] | JANA G C, SHARMA R, AGRAWAL A. A 1D-CNN-spectrogram based approach for seizure detection from EEG signal[J]. Procedia Computer Science, 2020, 167:403-412. |
[12] | KIRANYAZ S, INCE T, GABBOUJ M. Real-time patient-specific ECG classification by 1-D convolutional neural networks[J]. IEEE Transactions on Bio-Medical Engineering, 2016, 63(3):664-675. |
[13] | 李文. 神经网络中梯度消失的解决办法[J]. 电脑知识与技术, 2023, 19(10):19-21, 28. |
LI W. Solution to vanishing gradients in neural networks[J]. Computer Knowledge and Technology, 2023, 19(10):19-21, 28. (in Chinese) | |
[14] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016:770-778. |
[15] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017:2261-2269. |
[16] | CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. Eprint Arxiv, 2014.DOI:10.48550/arXiv.1412.3555. |
[17] | ZHANG J J, LIU Y H, YUAN H. Attention-based residual BiLSTM networks for human activity recognition[J]. IEEE Access, 2023, 11:94173-94187. |
[18] | JOHN A, CARDIFF B, JOHN D. A 1D-CNN based deep learning technique for sleep apnea detection in IoT sensors[C]// 2021 IEEE International Symposium on Circuits and Systems (ISCAS). May 22-28, 2021, Daegu, Korea. IEEE, 2021:1-5. |
[19] | TANG S N, ZHU Y, YUAN S Q. An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump[J]. Advanced Engineering Informatics, 2021, 50:101406. |
[20] | WEN L, GAO L, LI X Y, et al. Convolutional neural network with automatic learning rate scheduler for fault classification[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:3509912. |
[1] | CHENG Chen, DONG Chaoyang, ZHENG Shenghong, ZHOU Yubo, ZHONG Ning, LI Wenming, ZHU Yangchun, DING Fenghua, FENG Liping, LI Zhenfa. Comparison of simulation accuracy of leaf age models for horticultural crops driven by light and temperature factors [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1368-1378. |
[2] | MA Qiliang, YANG Xiaoming, HU Shuixing, HUANG Zihong, QI Hengnian. Automatic detection method of corn seed germination based on Mask RCNN and vision technology [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1927-1936. |
[3] | ZHU Dongqin, FENG Quan, ZHANG Jianhua. Plant disease identification based on pruning [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1462-1472. |
[4] | FAN Chuang, ZHAO Zihao, ZHANG Xuesong, YANG Shenbin. Prediction model of one season rice development period based on BP neural network [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 434-444. |
[5] | CHAI Qinqin, ZENG Jian, ZHANG Xun. Identification of fake Anoectochilus roxburghii based on Bayesian optimized convolutional neural network [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 391-396. |
[6] | LI Chao, LI Feng, HUANG Weijia. Fruit variety recognition based on parallel convolutional neural network [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2533-2541. |
[7] | JI Xunsheng, JIANG Xiaowei, XIA Shengkui. Research on prediction of laying rate by hens based on LSTM-Kalman model [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1730-1739. |
[8] | ZHANG Qingqing, LIU Lianzhong, NING Jingming, WU Guodong, JIANG Zhaohui, LI Mengjie, LI Dongliang. Tea buds recognition under complex scenes based on optimized YOLOV3 model [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1740-1747. |
[9] | YANG Hongyun, LUO Jianjun, SUN Aizhen, WAN Ying, YI Wenlong. Study on estimation model of total nitrogen content in rice leaves based on image characteristics [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2232-2243. |
[10] | BAO Lie, WANG Mantao, LIU Jiangchuan, WEN Bo, MING Yue. Estimation method of wheat yield based on convolution neural network [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2244-2252. |
[11] | WANG Xiaoxuan, MENG Qingyan, ZHANG Haixiang, WEI Xiangqin, YANG Zenan. Inversion of maize and wheat leaf area index based on particle swarm optimization neural network model [J]. , 2019, 31(7): 1170-1176. |
[12] | JIANG Fengqian, LI Yang, YU Dawei, SUN Min, ZHANG Enbao. Soybean disease detection system based on convolutional neural network under Caffe framework [J]. , 2019, 31(7): 1177-1183. |
[13] | LI Qi, ZHAO Jie, YANG Liu, WANG Jun, GAO Yixing. Cucumber leaf lesion identification based on GA-BP neural network and feature vector optimization combination [J]. , 2019, 31(3): 487-495. |
[14] | JIN Xiu, LU Jie, FU Yunzhi, WANG Shuai, XU Gaojian, LI Shaowen. A classification method for hyperspectral imaging of Fusarium head blight disease symptom based on deep convolutional neural network [J]. , 2019, 31(2): 315-325. |
[15] | YANG Guoliang, XU Nan, KANG Lele, GONG Man, HONG Zhiyang. Identification of navel orange lesions leaves based on parametric exponential non-linear residual neural network [J]. , 2018, 30(6): 1073-1081. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||