Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (6): 1462-1472.DOI: 10.3969/j.issn.1004-1524.2023.06.23
• Biosystems Engineering • Previous Articles Next Articles
ZHU Dongqin1(), FENG Quan1,*(
), ZHANG Jianhua2
Received:
2022-07-04
Online:
2023-06-25
Published:
2023-07-04
CLC Number:
ZHU Dongqin, FENG Quan, ZHANG Jianhua. Plant disease identification based on pruning[J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1462-1472.
模型 Model | 准确率 Accuracy/% | 参数量 Parameter/106 | 删减比例 Pruned/% | 浮点运算数 FLOPs/109 | 删减比例 Pruned/% | 模型尺寸 Model size/MB | 删减比例 Pruned/% |
---|---|---|---|---|---|---|---|
Vgg16(Normal) | 96.76 | 14.74 | — | 0.31 | — | 118 | — |
Vgg16(Sparse) | 96.60 | 14.74 | — | 0.31 | — | 118 | — |
Vgg16-70% | 98.19 | 0.90 | 93.89 | 0.03 | 90.32 | 7.3 | 93.81 |
Vgg16-80% | 97.46 | 0.32 | 97.83 | 0.01 | 96.77 | 2.6 | 97.80 |
ResNet164(Normal) | 99.55 | 1.72 | — | 0.26 | — | 14.1 | — |
ResNet164(Sparse) | 98.84 | 1.72 | — | 0.26 | — | 14.1 | — |
ResNet164-70% | 99.28 | 0.51 | 70.35 | 0.07 | 73.08 | 4.4 | 68.79 |
ResNet164-80% | 99.12 | 0.37 | 78.49 | 0.05 | 80.77 | 3.3 | 76.60 |
DenseNet40(Normal) | 99.62 | 1.08 | — | 0.29 | — | 8.8 | — |
DenseNet40(Sparse) | 99.66 | 1.08 | — | 0.29 | — | 8.8 | — |
DenseNet40-70% | 99.64 | 0.37 | 65.74 | 0.13 | 55.17 | 3.1 | 64.77 |
DenseNet40-80% | 99.68 | 0.27 | 75.00 | 0.10 | 65.52 | 2.3 | 73.86 |
DenseNet40-90% | 99.51 | 0.16 | 85.19 | 0.06 | 79.31 | 1.4 | 84.09 |
Table 1 Comparison of parameters before and after compression of disease identification model
模型 Model | 准确率 Accuracy/% | 参数量 Parameter/106 | 删减比例 Pruned/% | 浮点运算数 FLOPs/109 | 删减比例 Pruned/% | 模型尺寸 Model size/MB | 删减比例 Pruned/% |
---|---|---|---|---|---|---|---|
Vgg16(Normal) | 96.76 | 14.74 | — | 0.31 | — | 118 | — |
Vgg16(Sparse) | 96.60 | 14.74 | — | 0.31 | — | 118 | — |
Vgg16-70% | 98.19 | 0.90 | 93.89 | 0.03 | 90.32 | 7.3 | 93.81 |
Vgg16-80% | 97.46 | 0.32 | 97.83 | 0.01 | 96.77 | 2.6 | 97.80 |
ResNet164(Normal) | 99.55 | 1.72 | — | 0.26 | — | 14.1 | — |
ResNet164(Sparse) | 98.84 | 1.72 | — | 0.26 | — | 14.1 | — |
ResNet164-70% | 99.28 | 0.51 | 70.35 | 0.07 | 73.08 | 4.4 | 68.79 |
ResNet164-80% | 99.12 | 0.37 | 78.49 | 0.05 | 80.77 | 3.3 | 76.60 |
DenseNet40(Normal) | 99.62 | 1.08 | — | 0.29 | — | 8.8 | — |
DenseNet40(Sparse) | 99.66 | 1.08 | — | 0.29 | — | 8.8 | — |
DenseNet40-70% | 99.64 | 0.37 | 65.74 | 0.13 | 55.17 | 3.1 | 64.77 |
DenseNet40-80% | 99.68 | 0.27 | 75.00 | 0.10 | 65.52 | 2.3 | 73.86 |
DenseNet40-90% | 99.51 | 0.16 | 85.19 | 0.06 | 79.31 | 1.4 | 84.09 |
模型 Model | 准确率 Accuracy/ % | 参数量 Parameter/ 106 | 浮点运算数 FLOPs/109 | 模型尺寸 Model size/MB |
---|---|---|---|---|
Vgg16-80% | 97.46 | 0.32 | 0.010 | 2.6 |
ResNet164-80% | 99.12 | 0.37 | 0.050 | 3.3 |
DenseNet40-80% | 99.68 | 0.27 | 0.100 | 2.3 |
MobileNetV2 | 97.40 | 2.27 | 0.006 | 18.4 |
EfficientnetV2-S | 97.12 | 20.22 | 0.060 | 162.7 |
ShuffleNetV2 | 97.98 | 1.29 | 0.003 | 10.5 |
Table 2 Performance test of different models on PlantVillage dataset
模型 Model | 准确率 Accuracy/ % | 参数量 Parameter/ 106 | 浮点运算数 FLOPs/109 | 模型尺寸 Model size/MB |
---|---|---|---|---|
Vgg16-80% | 97.46 | 0.32 | 0.010 | 2.6 |
ResNet164-80% | 99.12 | 0.37 | 0.050 | 3.3 |
DenseNet40-80% | 99.68 | 0.27 | 0.100 | 2.3 |
MobileNetV2 | 97.40 | 2.27 | 0.006 | 18.4 |
EfficientnetV2-S | 97.12 | 20.22 | 0.060 | 162.7 |
ShuffleNetV2 | 97.98 | 1.29 | 0.003 | 10.5 |
基础模型 Basic model | 分类数量 Category number | 存储空间 Storage space/MB | 平均准确率 Average accuracy/% |
---|---|---|---|
AlexNet[ | 38 | 2.60 | 99.56 |
MobileNet V1[ | 38 | 17.1 | 95.02 |
Inception V3[ | 38 | 87.5 | 95.62 |
SqueezeNet[ | 38 | 0.62 | 98.13 |
DenseNet40-90% | 38 | 0.64 | 99.51 |
Table 3 Comparison of model performance under different methods
基础模型 Basic model | 分类数量 Category number | 存储空间 Storage space/MB | 平均准确率 Average accuracy/% |
---|---|---|---|
AlexNet[ | 38 | 2.60 | 99.56 |
MobileNet V1[ | 38 | 17.1 | 95.02 |
Inception V3[ | 38 | 87.5 | 95.62 |
SqueezeNet[ | 38 | 0.62 | 98.13 |
DenseNet40-90% | 38 | 0.64 | 99.51 |
[1] | 周长建, 宋佳, 向文胜. 基于人工智能的作物病害识别研究进展[J]. 植物保护学报, 2022, 49(1): 316-324. |
ZHOU C J, SONG J, XIANG W S. Research progresses in artificial intelligence-based crop disease identification[J]. Journal of Plant Protection, 2022, 49(1): 316-324. (in Chinese with English abstract) | |
[2] | MOHANTY S P, HUGHES D P, SALATHÉ M. Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science, 2016, 7: 14-19. |
[3] | 孙俊, 谭文军, 毛罕平, 等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19): 209-215. |
SUN J, TAN W J, MAO H P, et al. Recognition of multiple plant leaf diseases based on improved convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 209-215. (in Chinese with English abstract) | |
[4] | TOO E C, LI Y J, NJUKI S, et al. A comparative study of fine-tuning deep learning models for plant disease identification[J]. Computers and Electronics in Agriculture, 2019, 161: 272-279. |
[5] | 何欣, 李书琴, 刘斌. 基于多尺度残差神经网络的葡萄叶片病害识别[J]. 计算机工程, 2021, 47(5): 285-291. |
HE X, LI S Q, LIU B. Identification of grape leaf diseases based on multi-scale residual neural network[J]. Computer Engineering, 2021, 47(5): 285-291. (in Chinese with English abstract) | |
[6] | 许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020, 51(2): 230-236. |
XU J H, SHAO M Y, WANG Y C, et al. Recognition of corn leaf spot and rust based on transfer learning with convolutional neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 230-236. (in Chinese with English abstract) | |
[7] | 王林柏, 张博, 姚竟发, 等. 基于卷积神经网络马铃薯叶片病害识别和病斑检测[J]. 中国农机化学报, 2021, 42(11): 122-129. |
WANG L B, ZHANG B, YAO J F, et al. Potato leaf disease recognition and potato leaf disease spot detection based on Convolutional Neural Network[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 122-129. (in Chinese with English abstract) | |
[8] | 马宇, 单玉刚, 袁杰. 基于三通道注意力网络的番茄叶部病害识别[J]. 科学技术与工程, 2021, 21(25): 10789-10795. |
MA Y, SHAN Y G, YUAN J. Tomato leaf disease recognition based on three-channel attention network[J]. Science Technology and Engineering, 2021, 21(25): 10789-10795. (in Chinese with English abstract) | |
[9] | 刘洋, 冯全, 王书志. 基于轻量级CNN的植物病害识别方法及移动端应用[J]. 农业工程学报, 2019, 35(17): 194-204. |
LIU Y, FENG Q, WANG S Z. Plant disease identification method based on lightweight CNN and mobile application[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 194-204. (in Chinese with English abstract) | |
[10] | 刘阳, 高国琴. 采用改进的SqueezeNet模型识别多类叶片病害[J]. 农业工程学报, 2021, 37(2): 187-195. |
LIU Y, GAO G Q. Identification of multiple leaf diseases using improved SqueezeNet model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(2): 187-195. (in Chinese with English abstract) | |
[11] | ANWAR S, HWANG K, SUNG W. Structured pruning of deep convolutional neural networks[J]. ACM Journal on Emerging Technologies in Computing Systems, 2017, 13(3): 1-18. |
[12] | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. [2022-06-30]. 2015: arXiv: 1503.02531. https://arxiv.org/abs/1503.0253. |
[13] | HARTIGAN J A, WONG M A. Algorithm AS 136: a K-means clustering algorithm[J]. Applied Statistics, 1979, 28(1): 100. |
[14] | IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5MB model size[EB/OL]. [2022-06-30]. 2016: arXiv: 1602.07360. https://arxiv.org/abs/1602.07360. |
[15] | ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 6848-6856. |
[16] | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2022-06-30]. 2017: arXiv: 1704.04861. https://arxiv.org/abs/1704.04861. |
[17] | LUO J H, WU J X, LIN W Y. ThiNet: a filter level pruning method for deep neural network compression[C]// 2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017: 5068-5076. |
[18] | HE Y, LIU P, WANG Z W, et al. Filter pruning via geometric Median for deep convolutional neural networks acceleration[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2020: 4335-4344. |
[19] | LIN M B, JI R R, WANG Y, et al. HRank: filter pruning using high-rank feature map[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020: 1526-1535. |
[20] | 樊湘鹏, 许燕, 周建平, 等. 基于迁移学习和改进CNN的葡萄叶部病害检测系统[J]. 农业工程学报, 2021, 37(6): 151-159. |
FAN X P, XU Y, ZHOU J P, et al. Detection system for grape leaf diseases based on transfer learning and updated CNN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 151-159. (in Chinese with English abstract) | |
[21] | 何东健, 王鹏, 牛童, 等. 基于改进残差网络的田间葡萄霜霉病病害程度分级模型[J]. 农业机械学报, 2022, 53(1): 235-243. |
HE D J, WANG P, NIU T, et al. Classification model of grape downy mildew disease degree in field based on improved residual network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 235-243. (in Chinese with English abstract) | |
[22] | 赵辉, 曹宇航, 岳有军, 等. 基于改进DenseNet的田间杂草识别[J]. 农业工程学报, 2021, 37(18): 136-142. |
ZHAO H, CAO Y H, YUE Y J, et al. Field weed recognition based on improved DenseNet[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 136-142. (in Chinese with English abstract) | |
[23] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2022-06-30]. 2014: arXiv: 1409.1556. https://arxiv.org/abs/1409.1556. |
[24] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-778. |
[25] | HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]// European Conference on Computer Vision. Cham: Springer, 2016: 630-645. |
[26] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 2261-2269. |
[27] | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. [2022-06-30]. 2015: arXiv: 1502.03167. https://arxiv.org/abs/1502.03167. |
[28] | LIU Z, LI J G, SHEN Z Q, et al. Learning efficient convolutional networks through network slimming[C]// 2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017: 2755-2763. |
[29] | HUGHES D P, SALATHE M. An open access repository of images on plant health to enable the development of mobile disease diagnostics[EB/OL]. [2022-06-30]. 2015: arXiv: 1511.08060. https://arxiv.org/abs/1511.08060. |
[1] | CHAI Qinqin, ZENG Jian, ZHANG Xun. Identification of fake Anoectochilus roxburghii based on Bayesian optimized convolutional neural network [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 391-396. |
[2] | ZHANG Qingqing, LIU Lianzhong, NING Jingming, WU Guodong, JIANG Zhaohui, LI Mengjie, LI Dongliang. Tea buds recognition under complex scenes based on optimized YOLOV3 model [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1740-1747. |
[3] | HUANG Yongming, SONG Fang, WANG Ce, YAO Jinglei, WANG Zhijing, HE Ligang, WU Liming, JIANG Yingchun. Effects of root pruning on growth and expression of related genes in Poncirus trifoliata [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 270-277. |
[4] | BAO Lie, WANG Mantao, LIU Jiangchuan, WEN Bo, MING Yue. Estimation method of wheat yield based on convolution neural network [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2244-2252. |
[5] | SHANG Jiayin, LI Kai, WANG Chaoxia, JI Xian, SUN Jianjun, WANG Dan, SU Hong, TIAN Shufen. Effects of leaf-to-fruit ratio on pruning efficiency and leaf physiological characteristics of Kyoho grape [J]. , 2019, 31(11): 1855-1862. |
[6] | SHANG Jiayin, LI Kai, WANG Chaoxia, SUN Jianjun, JI Xian, WANG Dan, SU Hong, ZHANG Xiaolei, TIAN Shufen. Effects of summer pruning on fruit quality and 6 kinds of aromatic compounds of Jumeigui grape [J]. , 2019, 31(10): 1639-1646. |
[7] | YANG Guoliang, XU Nan, KANG Lele, GONG Man, HONG Zhiyang. Identification of navel orange lesions leaves based on parametric exponential non-linear residual neural network [J]. , 2018, 30(6): 1073-1081. |
[8] | ZHANG Shanwen, HUANG Wenzhun, YOU Zhuhong. Recognition method of winter jujube diseases based on internet of things and deep convolutional neural network [J]. , 2017, 29(11): 1868-1874. |
[9] | ZHENG Ji-rong;WANG Hui-li. Resistance identification and genetic analysis of Tomato yellow leaf curl virus(TYLCV) [J]. , 2010, 22(4): 0-447. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 516
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 360
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||