Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (3): 603-611.DOI: 10.3969/j.issn.1004-1524.20240107
• Plant Protection • Previous Articles Next Articles
CAO Mengjiao1(), BAI Shi2, TANG Panpan2, WANG Yeqing1, XU Hongxing3,*(
), ZHOU Guoxin4
Received:
2024-01-25
Online:
2025-03-25
Published:
2025-04-02
CLC Number:
CAO Mengjiao, BAI Shi, TANG Panpan, WANG Yeqing, XU Hongxing, ZHOU Guoxin. Evaluation of damage degree of Chilo suppressalis on early rice based on unmanned aerial vehicle multispectral remote sensing[J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 603-611.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240107
编号 No. | 为害率 Damage ratio/% | 编号 No. | 为害率 Damage ratio/% | 编号 No. | 为害率 Damage ratio/% | 编号 No. | 为害率 Damage ratio/% | 编号 No. | 为害率 Damage ratio/% |
---|---|---|---|---|---|---|---|---|---|
1 | 1.39 | 2 | 1.67 | 3 | 0.69 | 4 | 2.36 | 5 | 3.16 |
6 | 2.22 | 7 | 2.78 | 8 | 2.78 | 9 | 3.19 | 10 | 7.92 |
11 | 2.08 | 12 | 3.47 | 13 | 3.61 | 14 | 3.75 | 15 | 6.81 |
16 | 28.33 | 17 | 45.14 | 18 | 3.19 | 19 | 2.78 | 20 | 7.36 |
21 | 3.61 | 22 | 16.53 | 23 | 1.81 | 24 | 11.53 | 25 | 2.92 |
26 | 1.25 | 27 | 2.08 | 28 | 1.67 | 29 | 1.11 | 30 | 1.94 |
31 | 1.81 | 32 | 4.03 | 33 | 9.44 | 34 | 2.22 | 35 | 3.06 |
36 | 11.67 | 37 | 3.33 | 38 | 3.33 | 39 | 1.25 | 40 | 8.33 |
41 | 2.78 | 42 | 4.03 | 43 | 12.22 | 44 | 2.36 | 45 | 4.03 |
46 | 41.60 | 47 | 28.30 | 48 | 24.60 | 49 | 4.60 | 50 | 29.60 |
51 | 7.60 | 52 | 11.50 | 53 | 12.50 | 54 | 15.70 | 55 | 19.70 |
56 | 30.20 | 57 | 31.60 | 58 | 23.90 | 59 | 20.00 |
Table 1 Measured damage ratio of samples
编号 No. | 为害率 Damage ratio/% | 编号 No. | 为害率 Damage ratio/% | 编号 No. | 为害率 Damage ratio/% | 编号 No. | 为害率 Damage ratio/% | 编号 No. | 为害率 Damage ratio/% |
---|---|---|---|---|---|---|---|---|---|
1 | 1.39 | 2 | 1.67 | 3 | 0.69 | 4 | 2.36 | 5 | 3.16 |
6 | 2.22 | 7 | 2.78 | 8 | 2.78 | 9 | 3.19 | 10 | 7.92 |
11 | 2.08 | 12 | 3.47 | 13 | 3.61 | 14 | 3.75 | 15 | 6.81 |
16 | 28.33 | 17 | 45.14 | 18 | 3.19 | 19 | 2.78 | 20 | 7.36 |
21 | 3.61 | 22 | 16.53 | 23 | 1.81 | 24 | 11.53 | 25 | 2.92 |
26 | 1.25 | 27 | 2.08 | 28 | 1.67 | 29 | 1.11 | 30 | 1.94 |
31 | 1.81 | 32 | 4.03 | 33 | 9.44 | 34 | 2.22 | 35 | 3.06 |
36 | 11.67 | 37 | 3.33 | 38 | 3.33 | 39 | 1.25 | 40 | 8.33 |
41 | 2.78 | 42 | 4.03 | 43 | 12.22 | 44 | 2.36 | 45 | 4.03 |
46 | 41.60 | 47 | 28.30 | 48 | 24.60 | 49 | 4.60 | 50 | 29.60 |
51 | 7.60 | 52 | 11.50 | 53 | 12.50 | 54 | 15.70 | 55 | 19.70 |
56 | 30.20 | 57 | 31.60 | 58 | 23.90 | 59 | 20.00 |
数据 Data | 不同时期的相关系数 Correlation coefficients of different periods | ||
---|---|---|---|
2023-07-05 | 2023-07-11 | 2023-07-31 | |
b1 | 0.19 | 0.02 | 0.16 |
b2 | 0.10 | 0.05 | 0.17 |
b3 | 0.06 | 0.08 | 0.15 |
b4 | 0.06 | 0.09 | 0.18 |
b5 | 0.01 | 0.04 | 0.18 |
b6 | 0.09 | 0.16 | 0.19 |
NDVI | 0.04 | 0.17 | 0.24 |
Table 2 Correlation coefficient between the reflectance data of six bands and the normalized difference vegetation index (NDVI) values from unmanned aerial vehicle (UAV) and the measured damage ratio of Chilo suppressalis
数据 Data | 不同时期的相关系数 Correlation coefficients of different periods | ||
---|---|---|---|
2023-07-05 | 2023-07-11 | 2023-07-31 | |
b1 | 0.19 | 0.02 | 0.16 |
b2 | 0.10 | 0.05 | 0.17 |
b3 | 0.06 | 0.08 | 0.15 |
b4 | 0.06 | 0.09 | 0.18 |
b5 | 0.01 | 0.04 | 0.18 |
b6 | 0.09 | 0.16 | 0.19 |
NDVI | 0.04 | 0.17 | 0.24 |
回归方法 Regression method | 基于三时相数据的相关系数 Correlation coefficient obtained by triple temporal phases data | 基于双时相数据的相关系数 Correlation coefficient obtained by double temporal phases data | 基于单时相数据的相关系数 Correlation coefficient obtained by single temporal phase data | |||
---|---|---|---|---|---|---|
训练集 Training set | 验证集 Verification set | 训练集 Training set | 验证集 Verification set | 训练集 Training set | 验证集 Verification set | |
线性回归Linear regression | 0.88 | 0.45 | 0.81 | 0.45 | 0.65 | 0.31 |
支持向量机Support vector machine | 0.70 | 0.85 | 0.92 | 0.94 | 0.82 | 0.87 |
随机森林Random forest | 0.92 | 0.56 | 0.92 | 0.42 | 0.90 | 0.58 |
岭回归Ridge regression | 0.73 | 0.60 | 0.61 | 0.66 | 0.72 | 0.66 |
Lasso回归 | 0.40 | 0.56 | 0.65 | 0.66 | 0.61 | 0.66 |
least absolute shrinkage and selection operator (Lasso) regression | ||||||
贝叶斯回归Bayesian regression | 0.72 | 0.45 | 0.68 | 0.48 | 0.74 | 0.45 |
Table 3 Correlation coefficients of the measured damage ratio obtained by multi-temporal data and regression methods and the measured damage ratio
回归方法 Regression method | 基于三时相数据的相关系数 Correlation coefficient obtained by triple temporal phases data | 基于双时相数据的相关系数 Correlation coefficient obtained by double temporal phases data | 基于单时相数据的相关系数 Correlation coefficient obtained by single temporal phase data | |||
---|---|---|---|---|---|---|
训练集 Training set | 验证集 Verification set | 训练集 Training set | 验证集 Verification set | 训练集 Training set | 验证集 Verification set | |
线性回归Linear regression | 0.88 | 0.45 | 0.81 | 0.45 | 0.65 | 0.31 |
支持向量机Support vector machine | 0.70 | 0.85 | 0.92 | 0.94 | 0.82 | 0.87 |
随机森林Random forest | 0.92 | 0.56 | 0.92 | 0.42 | 0.90 | 0.58 |
岭回归Ridge regression | 0.73 | 0.60 | 0.61 | 0.66 | 0.72 | 0.66 |
Lasso回归 | 0.40 | 0.56 | 0.65 | 0.66 | 0.61 | 0.66 |
least absolute shrinkage and selection operator (Lasso) regression | ||||||
贝叶斯回归Bayesian regression | 0.72 | 0.45 | 0.68 | 0.48 | 0.74 | 0.45 |
Fig.2 Predicted damage ratio of Chilo suppressalisa by linear regression (a), random forest (b), support vector machine (c), Bayesian regression (d), least absolute shrinkage and selection operator (Lasso) regression (e), ridge regression (f)
[1] | 范承啸, 韩俊, 熊志军, 等. 无人机遥感技术现状与应用[J]. 测绘科学, 2009, 34(5): 214-215. |
FAN C X, HAN J, XIONG Z J, et al. Application and status of unmanned aerial vehicle remote sensing technology[J]. Science of Surveying and Mapping, 2009, 34(5): 214-215. (in Chinese with English abstract) | |
[2] | 张宏鸣, 谭紫薇, 韩文霆, 等. 基于无人机遥感的玉米株高提取方法[J]. 农业机械学报, 2019, 50(5): 241-250. |
ZHANG H M, TAN Z W, HAN W T, et al. Extraction method of maize height based on UAV remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 241-250. (in Chinese with English abstract) | |
[3] | 李广, 张立元, 宋朝阳, 等. 小麦倒伏信息无人机多时相遥感提取方法[J]. 农业机械学报, 2019, 50(4): 211-220. |
LI G, ZHANG L Y, SONG C Y, et al. Extraction method of wheat lodging information based on multi-temporal UAV remote sensing data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 211-220. (in Chinese with English abstract) | |
[4] | NIU Y X, ZHANG L Y, ZHANG H H, et al. Estimating above-ground biomass of maize using features derived from UAV-based RGB imagery[J]. Remote Sensing, 2019, 11(11): 1261. |
[5] | 张玲, 陈新平, 贾良良. 基于无人机可见光遥感的夏玉米氮素营养动态诊断参数研究[J]. 植物营养与肥料学报, 2018, 24(1): 261-269. |
ZHANG L, CHEN X P, JIA L L. Parameter research of using UAV-based visible spectral analysis technology in dynamical diagnosis of nitrogen status of summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 261-269. (in Chinese with English abstract) | |
[6] | 高开秀, 高雯晗, 明金, 等. 无人机载多光谱遥感监测冬油菜氮素营养研究[J]. 中国油料作物学报, 2019, 41(2): 232-242. |
GAO K X, GAO W H, MING J, et al. Monitoring of nitrogen nutrition in winter rapeseed using UAV-borne multispectral data[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(2): 232-242. (in Chinese with English abstract) | |
[7] | ZHANG M N, ZHOU J F, SUDDUTH K A, et al. Estimation of maize yield and effects of variable-rate nitrogen application using UAV-based RGB imagery[J]. Biosystems Engineering, 2020, 189: 24-35. |
[8] | 田婷, 张青, 张海东, 等. 基于无人机遥感的水稻产量估测[J]. 中国稻米, 2022, 28(1): 67-71. |
TIAN T, ZHANG Q, ZHANG H D, et al. Estimating yield of rice based on remote sensing by unmanned aerial vehicle[J]. China Rice, 2022, 28(1): 67-71. (in Chinese with English abstract) | |
[9] | 闫征远, 范洁茹, 刘伟, 等. 基于田间空气中病菌孢子浓度的小麦白粉病病情估计模型研究[J]. 植物病理学报, 2017, 47(2): 253-261. |
YAN Z Y, FAN J R, LIU W, et al. Models of disease index estimation of wheat powdery mildew based on the concentrations of Blumeria graminis f. sp. tritici conidia in the fields[J]. Acta Phytopathologica Sinica, 2017, 47(2): 253-261. (in Chinese with English abstract) | |
[10] | 严海军, 卓越, 李茂娜, 等. 基于机器学习和无人机多光谱遥感的苜蓿产量预测[J]. 农业工程学报, 2022, 38(11): 64-71. |
YAN H J, ZHUO Y, LI M N, et al. Alfalfa yield prediction using machine learning and UAV multispectral remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(11): 64-71. (in Chinese with English abstract) | |
[11] | 韩文霆, 张立元, 牛亚晓, 等. 无人机遥感技术在精量灌溉中应用的研究进展[J]. 农业机械学报, 2020, 51(2): 1-14. |
HAN W T, ZHANG L Y, NIU Y X, et al. Review on UAV remote sensing application in precision irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 1-14. (in Chinese with English abstract) | |
[12] | 吴才聪, 胡冰冰, 赵明, 等. 基于无人机影像和半变异函数的玉米螟空间分布预报方法[J]. 农业工程学报, 2017, 33(9): 84-91. |
WU C C, HU B B, ZHAO M, et al. Prediction method for spatial distribution of corn borer based on unmanned aerial vehicle images and semivariance function[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 84-91. (in Chinese with English abstract) | |
[13] | 马书英, 郭增长, 王双亭, 等. 板栗树红蜘蛛虫害无人机高光谱遥感监测研究[J]. 农业机械学报, 2021, 52(4): 171-180. |
MA S Y, GUO Z Z, WANG S T, et al. Hyperspectral remote sensing monitoring of Chinese chestnut red mite insect pests in UAV[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 171-180. (in Chinese with English abstract) | |
[14] | ABDULRIDHA J, BATUMAN O, AMPATZIDIS Y. UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning[J]. Remote Sensing, 2019, 11(11): 1373. |
[15] | 孙钰, 周焱, 袁明帅, 等. 基于深度学习的森林虫害无人机实时监测方法[J]. 农业工程学报, 2018, 34(21): 74-81. |
SUN Y, ZHOU Y, YUAN M S, et al. UAV real-time monitoring for forest pest based on deep learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 74-81. (in Chinese with English abstract) | |
[16] | BACKOULOU G F, ELLIOTT N C, GILES K, et al. Spatially discriminating Russian wheat aphid induced plant stress from other wheat stressing factors[J]. Computers and Electronics in Agriculture, 2011, 78(2): 123-129. |
[17] | 崔美娜. 基于无人机遥感的棉花螨害动态监测研究[D]. 石河子: 石河子大学, 2019. |
CUI M N. Study on dynamic monitoring of cotton spider mites based on remote sensing of UAV[D]. Shihezi: Shihezi University, 2019. (in Chinese with English abstract) | |
[18] | 钟雪明, 王晔青, 曹梦娇, 等. 耕作制度演变对水稻螟虫发生为害的影响[J]. 中国植保导刊, 2018, 38(6): 30-35. |
ZHONG X M, WANG Y Q, CAO M J, et al. Impact of farming system development on occurring of rice borers[J]. China Plant Protection, 2018, 38(6): 30-35. (in Chinese) | |
[19] | KASINATHAN T, SINGARAJU D, UYYALA S R. Insect classification and detection in field crops using modern machine learning techniques[J]. Information Processing in Agriculture, 2021, 8(3): 446-457. |
[20] | TUDA M, LUNA-MALDONADO A I. Image-based insect species and gender classification by trained supervised machine learning algorithms[J]. Ecological Informatics, 2020, 60: 101135. |
[21] | MARKOVIĆ D, VUJIČIĆ D, TANASKOVIĆ S, et al. Prediction of pest insect appearance using sensors and machine learning[J]. Sensors, 2021, 21(14): 4846. |
[22] | 汪航, 师茁, 王岩, 等. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究: 以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695. |
WANG H, SHI Z, WANG Y, et al. A method for detecting the damage of Apocheima cinerarius erschoff based on MODIS time series: case studies in Bachu Populus euphratica forest of Xinjiang Province[J]. Remote Sensing Technology and Application, 2018, 33(4): 686-695. (in Chinese with English abstract) | |
[23] | OLSSON P O, LINDSTRÖM J, EKLUNDH L. Near real-time monitoring of insect induced defoliation in subalpine birch forests with MODIS derived NDVI[J]. Remote Sensing of Environment, 2016, 181: 42-53. |
[24] | GREENE A D, REAY-JONES F P F, KIRK K R, et al. Spatial associations of key lepidopteran pests with defoliation, NDVI, and plant height in soybean[J]. Environmental Entomology, 2021, 50(6): 1378-1392. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||