Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (12): 2966-2976.DOI: 10.3969/j.issn.1004-1524.20221748
• Biosystems Engineering • Previous Articles Next Articles
ZHU Yongji1,2(), TAO Xinyu1,2, CHEN Xiaofang1,2, SU Xiangxiang1,2, LIU Jikai1,2, LI Xinwei1,2,*(
)
Received:
2022-12-05
Online:
2023-12-25
Published:
2023-12-27
CLC Number:
ZHU Yongji, TAO Xinyu, CHEN Xiaofang, SU Xiangxiang, LIU Jikai, LI Xinwei. Estimation of above-ground biomass of winter wheat based on vegetation indexes and texture features of multispectral images captured by unmanned aerial vehicle[J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2966-2976.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221748
指标 Index | 各时期与生物量的相关系数Coefficients of correlation with biomass at certain growth stage | |||||
---|---|---|---|---|---|---|
拔节期 Jointing stage | 孕穗期 Booting stage | 抽穗期 Heading stage | 开花期 Flowering stage | 灌浆期 Filling stage | 成熟期 Mature stage | |
Mean | -0.84*** | 0.71*** | 0.70*** | -0.66*** | -0.61*** | -0.55*** |
Var | 0.77*** | 0.51** | 0.47*** | 0.57*** | 0.65*** | 0.57*** |
Ent | 0.66*** | 0.51** | 0.34* | 0.43* | 0.55*** | 0.63*** |
NDVI | 0.82*** | 0.64*** | 0.69*** | 0.69*** | 0.75*** | 0.84*** |
DVI | 0.83*** | 0.72*** | 0.72*** | 0.70*** | 0.78*** | 0.82*** |
RVI | 0.80*** | 0.76*** | 0.77*** | 0.78*** | 0.80*** | 0.79*** |
GNDVI | 0.82*** | 0.67*** | 0.71*** | 0.72*** | 0.77*** | 0.85*** |
NDRE | 0.82*** | 0.70*** | 0.75*** | 0.76*** | 0.80*** | 0.56*** |
RECI | 0.81*** | 0.70*** | 0.76*** | 0.77*** | 0.81*** | 0.58*** |
TCARI | 0.80*** | 0.77*** | 0.75*** | 0.76*** | 0.80*** | 0.76*** |
Table 1 Correlations within vegetation indexes, texture features and biomass
指标 Index | 各时期与生物量的相关系数Coefficients of correlation with biomass at certain growth stage | |||||
---|---|---|---|---|---|---|
拔节期 Jointing stage | 孕穗期 Booting stage | 抽穗期 Heading stage | 开花期 Flowering stage | 灌浆期 Filling stage | 成熟期 Mature stage | |
Mean | -0.84*** | 0.71*** | 0.70*** | -0.66*** | -0.61*** | -0.55*** |
Var | 0.77*** | 0.51** | 0.47*** | 0.57*** | 0.65*** | 0.57*** |
Ent | 0.66*** | 0.51** | 0.34* | 0.43* | 0.55*** | 0.63*** |
NDVI | 0.82*** | 0.64*** | 0.69*** | 0.69*** | 0.75*** | 0.84*** |
DVI | 0.83*** | 0.72*** | 0.72*** | 0.70*** | 0.78*** | 0.82*** |
RVI | 0.80*** | 0.76*** | 0.77*** | 0.78*** | 0.80*** | 0.79*** |
GNDVI | 0.82*** | 0.67*** | 0.71*** | 0.72*** | 0.77*** | 0.85*** |
NDRE | 0.82*** | 0.70*** | 0.75*** | 0.76*** | 0.80*** | 0.56*** |
RECI | 0.81*** | 0.70*** | 0.76*** | 0.77*** | 0.81*** | 0.58*** |
TCARI | 0.80*** | 0.77*** | 0.75*** | 0.76*** | 0.80*** | 0.76*** |
生育时期 Growth stage | 回归方程 Regression equation | 植被指数 Vegetation index | R2 | RMSE/(kg·hm-2) | MAE/(kg·hm-2) |
---|---|---|---|---|---|
拔节期Jointing stage | Y=5903.1X-264.18 | DVI | 0.72 | 291.69 | 227.02 |
孕穗期Booting stage | Y=151.98X+2630.5 | TCARI | 0.56 | 1 483.98 | 1 255.93 |
抽穗期Heading stage | Y=288.81X+2876.2 | RVI | 0.66 | 1 625.48 | 1 285.38 |
开花期Flowering stage | Y=531.35X+3407.3 | RVI | 0.59 | 2 790.83 | 2 165.32 |
灌浆期Filling stage | Y=0.7919X+2569.8 | RECI | 0.78 | 2 228.92 | 1 783.60 |
成熟期Mature stage | Y=53795X-14256 | GNDVI | 0.72 | 3 186.10 | 2 550.66 |
Table 2 Linear models based on optimal vegetation indexes for growth stages
生育时期 Growth stage | 回归方程 Regression equation | 植被指数 Vegetation index | R2 | RMSE/(kg·hm-2) | MAE/(kg·hm-2) |
---|---|---|---|---|---|
拔节期Jointing stage | Y=5903.1X-264.18 | DVI | 0.72 | 291.69 | 227.02 |
孕穗期Booting stage | Y=151.98X+2630.5 | TCARI | 0.56 | 1 483.98 | 1 255.93 |
抽穗期Heading stage | Y=288.81X+2876.2 | RVI | 0.66 | 1 625.48 | 1 285.38 |
开花期Flowering stage | Y=531.35X+3407.3 | RVI | 0.59 | 2 790.83 | 2 165.32 |
灌浆期Filling stage | Y=0.7919X+2569.8 | RECI | 0.78 | 2 228.92 | 1 783.60 |
成熟期Mature stage | Y=53795X-14256 | GNDVI | 0.72 | 3 186.10 | 2 550.66 |
Fig.1 Verification of the constructed linear models based on optimal vegetation indexes for growth stages y1-y6 represent the predicted value at joting stage, booting stage, heading stage, flowering stage, filling stage, mature stage, respectively. x represents the measured value at the corresponding stage. R2, Coefficient of determination; RMSE, Root mean squard error; MAE, Mean absolute error. The same as below.
生育期 Growth stage | 回归方程 Regression equation | R2 | RMSE/(kg·hm-2) | MAE/(kg·hm-2) |
---|---|---|---|---|
拔节期Jointing stage | Y=-88.129×XMean+1 538.180×XDVI+4 396.559 | 0.72 | 290.24 | 225.70 |
孕穗期Booting stage | Y=-179.779×XMean+230.607×XTCARI+6 275.049 | 0.57 | 1 470.04 | 1 246.08 |
抽穗期Heading stage | Y=-402.281×XMean+523.738×XRVI+11 134.649 | 0.69 | 1 537.85 | 1 179.70 |
开花期Flowering stage | Y=621.788×XMean+889.089×XRVI-21 373.639 | 0.63 | 2 659.75 | 2 285.44 |
灌浆期Filling stage | Y=653.858×XVar+10 446.017×XRECI+1 338.706 | 0.79 | 2 109.77 | 1 683.14 |
成熟期Mature stage | Y=14 332.459×XEnt+47 702.454×XGNDVI-38 563.559 | 0.74 | 3111.02 | 2 596.56 |
Table 3 Binary linear models based on optimal vegetation indexes and texture features for growth stages
生育期 Growth stage | 回归方程 Regression equation | R2 | RMSE/(kg·hm-2) | MAE/(kg·hm-2) |
---|---|---|---|---|
拔节期Jointing stage | Y=-88.129×XMean+1 538.180×XDVI+4 396.559 | 0.72 | 290.24 | 225.70 |
孕穗期Booting stage | Y=-179.779×XMean+230.607×XTCARI+6 275.049 | 0.57 | 1 470.04 | 1 246.08 |
抽穗期Heading stage | Y=-402.281×XMean+523.738×XRVI+11 134.649 | 0.69 | 1 537.85 | 1 179.70 |
开花期Flowering stage | Y=621.788×XMean+889.089×XRVI-21 373.639 | 0.63 | 2 659.75 | 2 285.44 |
灌浆期Filling stage | Y=653.858×XVar+10 446.017×XRECI+1 338.706 | 0.79 | 2 109.77 | 1 683.14 |
成熟期Mature stage | Y=14 332.459×XEnt+47 702.454×XGNDVI-38 563.559 | 0.74 | 3111.02 | 2 596.56 |
生育期 Growth stage | 植被指数Vegetation indexes | 植被指数+纹理特征Vegetation indexes+texture features | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
建模集Modeling set | 验证集Validation set | 建模集Modeling set | 验证集Validation set | |||||||||
R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | |
拔节期 | 0.93 | 151.48 | 112.68 | 0.46 | 486.82 | 363.89 | 0.98 | 77.61 | 63.17 | 0.56 | 453.26 | 368.62 |
Jointing stage | ||||||||||||
孕穗期 | 0.64 | 1 334.05 | 1 179.94 | 0.60 | 1 372.66 | 1 068.87 | 0.64 | 1 340.06 | 1 144.86 | 0.62 | 1 343.03 | 1 033.66 |
Booting stage | ||||||||||||
抽穗期 | 0.69 | 1 543.34 | 1 172.91 | 0.66 | 2 864.57 | 2 255.11 | 0.78 | 1 289.56 | 984.51 | 0.82 | 2 428.92 | 1 847.91 |
Heading stage | ||||||||||||
开花期 | 0.62 | 2 677.76 | 2 200.77 | 0.51 | 2 632.76 | 2 349.72 | 0.75 | 2 179.16 | 1 841.78 | 0.57 | 2 592.52 | 1 815.60 |
Flowering stage | ||||||||||||
灌浆期 | 0.76 | 2 263.58 | 1 792.08 | 0.51 | 4 007.59 | 3 437.22 | 0.89 | 1 543.50 | 1 416.67 | 0.53 | 3 751.17 | 3 144.52 |
Filling stage | ||||||||||||
成熟期 | 0.82 | 2 582.25 | 2 024.81 | 0.69 | 3 196.87 | 2 788.14 | 0.84 | 2 422.84 | 1 966.21 | 0.73 | 2 949.30 | 2 479.46 |
Mature stage |
Table 4 Prediction models for winter wheat biomass at growth stages based on partial least squares regression (PLSR)
生育期 Growth stage | 植被指数Vegetation indexes | 植被指数+纹理特征Vegetation indexes+texture features | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
建模集Modeling set | 验证集Validation set | 建模集Modeling set | 验证集Validation set | |||||||||
R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | |
拔节期 | 0.93 | 151.48 | 112.68 | 0.46 | 486.82 | 363.89 | 0.98 | 77.61 | 63.17 | 0.56 | 453.26 | 368.62 |
Jointing stage | ||||||||||||
孕穗期 | 0.64 | 1 334.05 | 1 179.94 | 0.60 | 1 372.66 | 1 068.87 | 0.64 | 1 340.06 | 1 144.86 | 0.62 | 1 343.03 | 1 033.66 |
Booting stage | ||||||||||||
抽穗期 | 0.69 | 1 543.34 | 1 172.91 | 0.66 | 2 864.57 | 2 255.11 | 0.78 | 1 289.56 | 984.51 | 0.82 | 2 428.92 | 1 847.91 |
Heading stage | ||||||||||||
开花期 | 0.62 | 2 677.76 | 2 200.77 | 0.51 | 2 632.76 | 2 349.72 | 0.75 | 2 179.16 | 1 841.78 | 0.57 | 2 592.52 | 1 815.60 |
Flowering stage | ||||||||||||
灌浆期 | 0.76 | 2 263.58 | 1 792.08 | 0.51 | 4 007.59 | 3 437.22 | 0.89 | 1 543.50 | 1 416.67 | 0.53 | 3 751.17 | 3 144.52 |
Filling stage | ||||||||||||
成熟期 | 0.82 | 2 582.25 | 2 024.81 | 0.69 | 3 196.87 | 2 788.14 | 0.84 | 2 422.84 | 1 966.21 | 0.73 | 2 949.30 | 2 479.46 |
Mature stage |
生育期 Growth stage | 植被指数Vegetation indexes | 植被指数+纹理特征Vegetation indexes+texture features | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
建模集Modeling set | 验证集Validation set | 建模集Modeling set | 验证集Validation set | |||||||||
R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | |
拔节期 | 0.97 | 118.29 | 68.63 | 0.39 | 510.15 | 399.01 | 0.98 | 102.62 | 61.28 | 0.50 | 466.66 | 366.74 |
Jointing stage | ||||||||||||
孕穗期 | 0.92 | 696.93 | 651.17 | 0.73 | 1 040.43 | 879.69 | 0.91 | 731.27 | 675.75 | 0.71 | 1 100.39 | 904.78 |
Booting stage | ||||||||||||
抽穗期 | 0.89 | 953.83 | 724.40 | 0.78 | 2 464.82 | 1 783.65 | 0.90 | 929.37 | 722.35 | 0.74 | 2 660.78 | 1961.81 |
Heading stage | ||||||||||||
开花期 | 0.86 | 1 691.89 | 1 313.75 | 0.52 | 2 734.51 | 2 341.96 | 0.87 | 1 664.99 | 1 264.36 | 0.62 | 2 628.67 | 2 194.74 |
Flowering stage | ||||||||||||
灌浆期 | 0.94 | 1 183.52 | 951.90 | 0.62 | 3 510.22 | 2 801.53 | 0.95 | 1 069.14 | 851.68 | 0.63 | 3 391.27 | 2 827.37 |
Filling stage | ||||||||||||
成熟期 | 0.94 | 1 525.32 | 1 304.33 | 0.59 | 3 633.37 | 3 035.49 | 0.95 | 1 494.20 | 1 314.25 | 0.61 | 3 467.03 | 2 784.43 |
Mature stage |
Table 5 Prediction models for winter wheat biomass at growth stages based on random forest (RF)
生育期 Growth stage | 植被指数Vegetation indexes | 植被指数+纹理特征Vegetation indexes+texture features | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
建模集Modeling set | 验证集Validation set | 建模集Modeling set | 验证集Validation set | |||||||||
R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | |
拔节期 | 0.97 | 118.29 | 68.63 | 0.39 | 510.15 | 399.01 | 0.98 | 102.62 | 61.28 | 0.50 | 466.66 | 366.74 |
Jointing stage | ||||||||||||
孕穗期 | 0.92 | 696.93 | 651.17 | 0.73 | 1 040.43 | 879.69 | 0.91 | 731.27 | 675.75 | 0.71 | 1 100.39 | 904.78 |
Booting stage | ||||||||||||
抽穗期 | 0.89 | 953.83 | 724.40 | 0.78 | 2 464.82 | 1 783.65 | 0.90 | 929.37 | 722.35 | 0.74 | 2 660.78 | 1961.81 |
Heading stage | ||||||||||||
开花期 | 0.86 | 1 691.89 | 1 313.75 | 0.52 | 2 734.51 | 2 341.96 | 0.87 | 1 664.99 | 1 264.36 | 0.62 | 2 628.67 | 2 194.74 |
Flowering stage | ||||||||||||
灌浆期 | 0.94 | 1 183.52 | 951.90 | 0.62 | 3 510.22 | 2 801.53 | 0.95 | 1 069.14 | 851.68 | 0.63 | 3 391.27 | 2 827.37 |
Filling stage | ||||||||||||
成熟期 | 0.94 | 1 525.32 | 1 304.33 | 0.59 | 3 633.37 | 3 035.49 | 0.95 | 1 494.20 | 1 314.25 | 0.61 | 3 467.03 | 2 784.43 |
Mature stage |
[1] | WHEELER T, VON BRAUN J. Climate change impacts on global food security[J]. Science, 2013, 341(6145): 508-513. |
[2] | PROSEKOV A Y, IVANOVA S A. Food security: the challenge of the present[J]. Geoforum, 2018, 91: 73-77. |
[3] | MOLOTOKS A, SMITH P, DAWSON T P. Impacts of land use, population, and climate change on global food security[J]. Food and Energy Security, 2021, 10(1): e261. |
[4] | 吴宁, 陈涛, 陈奕如. 新时代中国粮食安全问题的挑战与对策[J]. 福州大学学报(哲学社会科学版), 2022, 36(4): 1-10. |
WU N, CHEN T, CHEN Y R. On food security in China in the new era[J]. Journal of Fuzhou University (Philosophy and Social Sciences), 2022, 36(4): 1-10. (in Chinese) | |
[5] | 韩一军, 韩亭辉. “十四五”时期我国小麦增产潜力分析与实现路径[J]. 农业经济问题, 2021, 42(7): 38-46. |
HAN Y J, HAN T H. China’s wheat yield increase potential and realization path during the “14th five-year plan” period[J]. Issues in Agricultural Economy, 2021, 42(7): 38-46. (in Chinese with English abstract) | |
[6] | 陈先冠, 冯利平, 马雪晴, 等. 不同播期和灌水条件下冬小麦生物量变化与产量模拟[J]. 农业机械学报, 2021, 52(10): 349-357. |
CHEN X G, FENG L P, MA X Q, et al. Biomass change and yield simulation of winter wheat under different sowing dates and irrigation conditions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 349-357. (in Chinese with English abstract) | |
[7] | CURTIS T, HALFORD N G. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety[J]. The Annals of Applied Biology, 2014, 164(3): 354-372. |
[8] | 蒋馥根, 孙华, 李成杰, 等. 联合GF-6和Sentinel-2红边波段的森林地上生物量反演[J]. 生态学报, 2021, 41(20): 8222-8236. |
JIANG F G, SUN H, LI C J, et al. Retrieving the forest aboveground biomass by combining the red edge bands of Sentinel-2 and GF-6[J]. Acta Ecologica Sinica, 2021, 41(20): 8222-8236. (in Chinese with English abstract) | |
[9] | BERRA E F, GAULTON R, BARR S. Assessing spring phenology of a temperate woodland: a multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations[J]. Remote Sensing of Environment, 2019, 223: 229-242. |
[10] | BERNI J A J, ZARCO-TEJADA P J, SUAREZ L, et al. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 722-738. |
[11] | WÓJTOWICZ M, WÓJTOWICZ A, PIEKARCZYK J. Application of remote sensing methods in agriculture[J]. Communications in Biometry and Crop Science, 2016, 11(1): 31-50. |
[12] | 张传波, 李卫国, 张宏, 等. 遥感光谱指标和神经网络结合的冬小麦地上部生物量估测[J]. 麦类作物学报, 2022, 42(5): 631-639. |
ZHANG C B, LI W G, ZHANG H, et al. Estimation of winter wheat aboveground biomass based on remote sensing spectral index and neural network[J]. Journal of Triticeae Crops, 2022, 42(5): 631-639. (in Chinese with English abstract) | |
[13] | KONG W P, HUANG W J, MA L L, et al. Biangular-combined vegetation indices to improve the estimation of canopy chlorophyll content in wheat using multi-angle experimental and simulated spectral data[J]. Frontiers in Plant Science, 2022, 13: 866301. |
[14] | MAIMAITIJIANG M, SAGAN V, SIDIKE P, et al. Vegetation Index Weighted Canopy Volume Model (CVMVI) for soybean biomass estimation from Unmanned Aerial System-based RGB imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151: 27-41. |
[15] | 杨普, 赵远洋, 李一鸣, 等. 基于多源信息融合的农业空地一体化研究综述[J]. 农业机械学报, 2021, 52(S1): 185-196. |
YANG P, ZHAO Y Y, LI Y M, et al. Review of research on integration of agricultural air-ground integration based on multi-source information fusion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(S1): 185-196. (in Chinese with English abstract) | |
[16] | 岳学军, 宋庆奎, 李智庆, 等. 田间作物信息监测技术的研究现状与展望[J]. 华南农业大学学报, 2023, 44(1): 43-56. |
YUE X J, SONG Q K, LI Z Q, et al. Research status and prospect of crop information monitoring technology in field[J]. Journal of South China Agricultural University, 2023, 44(1): 43-56. (in Chinese with English abstract) | |
[17] | 刘杨, 黄珏, 孙乾, 等. 利用无人机数码影像估算马铃薯地上生物量[J]. 遥感学报, 2021, 25(9): 2004-2014. |
LIU Y, HUANG J, SUN Q, et al. Estimation of plant height and above ground biomass of potato based on UAV digital image[J]. National Remote Sensing Bulletin, 2021, 25(9): 2004-2014. (in Chinese with English abstract) | |
[18] | LIU Y N, LIU S S, LI J, et al. Estimating biomass of winter oilseed rape using vegetation indices and texture metrics derived from UAV multispectral images[J]. Computers and Electronics in Agriculture, 2019, 166: 105026. |
[19] | FREITAS R G, PEREIRA F R S, DOS REIS A A, et al. Estimating pasture aboveground biomass under an integrated crop-livestock system based on spectral and texture measures derived from UAV images[J]. Computers and Electronics in Agriculture, 2022, 198: 107122. |
[20] | XU T Y, WANG F M, XIE L L, et al. Integrating the textural and spectral information of UAV hyperspectral images for the improved estimation of rice aboveground biomass[J]. Remote Sensing, 2022, 14(11): 2534. |
[21] | WANG F L, YANG M, MA L F, et al. Estimation of above-ground biomass of winter wheat based on consumer-grade multi-spectral UAV[J]. Remote Sensing, 2022, 14(5): 1251. |
[22] | 徐云飞, 程琦, 魏祥平, 等. 变异系数法结合优化神经网络的无人机冬小麦长势监测[J]. 农业工程学报, 2021, 37(20): 71-80. |
XU Y F, CHENG Q, WEI X P, et al. Monitoring of winter wheat growth under UAV using variation coefficient method and optimized neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 71-80. (in Chinese with English abstract) | |
[23] | BANNARI A, MORIN D, BONN F, et al. A review of vegetation indices[J]. Remote Sensing Reviews, 1995, 13(1/2): 95-120. |
[24] | TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127-150. |
[25] | 杭艳红, 苏欢, 于滋洋, 等. 结合无人机光谱与纹理特征和覆盖度的水稻叶面积指数估算[J]. 农业工程学报, 2021, 37(9): 64-71. |
HANG Y H, SU H, YU Z Y, et al. Estimation of rice leaf area index combining UAV spectrum, texture features and vegetation coverage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 64-71. (in Chinese with English abstract) | |
[26] | 李鑫格, 项方林, 吴思雨, 等. 基于植被指数时序动态的冬小麦氮素营养诊断方法[J]. 麦类作物学报, 2022, 42(1): 109-119. |
LI X G, XIANG F L, WU S Y, et al. Diagnosis methods for nitrogen status based on the time-series vegetation index in winter wheat[J]. Journal of Triticeae Crops, 2022, 42(1): 109-119. (in Chinese with English abstract) | |
[27] | 梁继, 郑镇炜, 夏诗婷, 等. 高分六号红边特征的农作物识别与评估[J]. 遥感学报, 2020, 24(10): 1168-1179. |
LIANG J, ZHENG Z W, XIA S T, et al. Crop recognition and evaluation using red edge features of GF-6 satellite[J]. Journal of Remote Sensing, 2020, 24(10): 1168-1179. (in Chinese with English abstract) | |
[28] | HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610-621. |
[29] | 刘杨, 冯海宽, 孙乾, 等. 不同分辨率无人机数码影像的马铃薯地上生物量估算研究[J]. 光谱学与光谱分析, 2021, 41(5): 1470-1476. |
LIU Y, FENG H K, SUN Q, et al. Estimation study of above ground biomass in potato based on UAV digital images with different resolutions[J]. Spectroscopy and Spectral Analysis, 2021, 41(5): 1470-1476. (in Chinese with English abstract) | |
[30] | 周元琦, 王敦亮, 陈晨, 等. 基于无人机RGB图像颜色及纹理特征指数的小麦产量预测[J]. 扬州大学学报(农业与生命科学版), 2021, 42(3): 110-116. |
ZHOU Y Q, WANG D L, CHEN C, et al. Prediction of wheat yield based on color index and texture feature index of unmanned aerial vehicle RGB image[J]. Journal of Yangzhou University(Agricultural and Life Science Edition), 2021, 42(3): 110-116. (in Chinese with English abstract) | |
[31] | SEXTON J, LAAKE P. Standard errors for bagged and random forest estimators[J]. Computational Statistics & Data Analysis, 2009, 53(3): 801-811. |
[32] | WANG W, YAO X A, YAO X F, et al. Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat[J]. Field Crops Research, 2012, 129: 90-98. |
[33] | YUE J B, YANG G J, LI C C, et al. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models[J]. Remote Sensing, 2017, 9(7): 708. |
[34] | 崔日鲜, 刘亚东, 付金东. 基于可见光光谱和BP人工神经网络的冬小麦生物量估算研究[J]. 光谱学与光谱分析, 2015, 35(9): 2596-2601. |
CUI R X, LIU Y D, FU J D. Estimation of winter wheat biomass using visible spectral and BP based artificial neural networks[J]. Spectroscopy and Spectral Analysis, 2015, 35(9): 2596-2601. (in Chinese with English abstract) | |
[35] | 申洋洋, 陈志超, 胡昊, 等. 基于无人机多时相遥感影像的冬小麦产量估算[J]. 麦类作物学报, 2021, 41(10): 1298-1306. |
SHEN Y Y, CHEN Z C, HU H, et al. Estimation of winter wheat yield based on UAV multi-temporal remote sensing image[J]. Journal of Triticeae Crops, 2021, 41(10): 1298-1306. (in Chinese with English abstract) | |
[36] | 张春兰, 杨贵军, 李贺丽, 等. 基于随机森林算法的冬小麦叶面积指数遥感反演研究[J]. 中国农业科学, 2018, 51(5): 855-867. |
ZHANG C L, YANG G J, LI H L, et al. Remote sensing inversion of leaf area index of winter wheat based on random forest algorithm[J]. Scientia Agricultura Sinica, 2018, 51(5): 855-867. (in Chinese with English abstract) |
[1] | WANG Yu, WANG Hong, XIAO Jiujun, LI Kexiang, XING Dan, ZHANG Yongliang, CHEN Yang, ZHANG Lanyue. Numerical estimation of chlorophyll in pepper leaves based on optimized vegetation index combination [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2109-2120. |
[2] | SUN Lijuan, LI Shimin, GUO Huanxian, JIN Youfan, LI Shuping, DONG Qiong. Growth and N, P, K stoichiometric characteristics of Cyphomandra betacea seedlings in response to light and fertilizer [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1793-1804. |
[3] | GUO Faxu, FENG Quan, YANG Sen, YANG Wanxia. Inversion of leaf nitrogen content in potato canopy based on unmanned aerial vehicle hyperspectral images [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1904-1914. |
[4] | XIAO Jiachang, LEI Fengyun, GE Sang, MA Junying, HE Maolin, LI Yanwen, ZHENG Yangxia. Effects of exogenous spraying of amino acid fertilizer on growth and selenium uptake of watercress [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1638-1647. |
[5] | ZHANG Xuenan, WANG Lele, NIU Mingxuan, ZHAN Ni, REN Haojie, XU Haocong, YANG Kun, WU Liquan, KE Jian, YOU Cuicui, HE Haibing. Estimation of rice leaf water content based on leaf reflectance spectrum and chlorophyll fluorescence [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1265-1277. |
[6] | ZHANG Meng, SHE Bao, YANG Yuying, HUANG Linsheng, ZHU Mengqi. Study on extraction method of soybean planting areas based on unmanned aerial vehicle RGB image [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 952-961. |
[7] | WANG Weiwei, MEI Yi, WU Yongcheng, WAN Hongjian, CHEN Changjun, ZHENG Qingsong, ZHENG Jiaqiu. Effects of corncob biochar application on soil characteristics and pepper growth under continuous cropping [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 156-163. |
[8] | JIANG Youyi, ZHANG Chengjian, HAN Shaoyu, YANG Xiaodong, YANG Guijun, YANG Hao. Automatic counting of maize plants based on unmanned aerial vehicle (UAV) 3D point cloud [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 2032-2042. |
[9] | WANG Jun, LU Zhou, LUO Ming, XU Feifei, ZHANG Xu. Inversion of soil moisture content of winter wheat at turning green period based on multispectral remote sensing by unmanned aerial vehicle [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1297-1305. |
[10] | CAI Yao, MIAO Yuxuan, WU Hao, WANG Dan. Hyperspectral characteristics and leaf area index (LAI) and SPAD value inversion of winter wheat under elevated CO2 concentration [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 582-589. |
[11] | WU Hao, ZHANG Xuesong, WANG Dan. Effects of different CO2 concentration and nitrogen rates on photosynthesis and growth of winter wheat [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2594-2602. |
[12] | WU Ningshan, WANG Jiaxi, ZHANG Yan, YUAN Mutian, ZHANG Qi, GAO Chiyu. Determining tree species and crown width from unmanned aerial vehicle imagery in hilly loess region of west Shanxi, China: a case study from Caijiachuan watershed [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1505-1518. |
[13] | HOU Lijuan, LI Zhengpeng, LIN Jinsheng, MA Lin, LI Huiping, QU Shaoxuan, JIANG Jianxin, ZOU Xiulong, YANG Huaping, LI Changtian, JIANG Ning. Effects of different light quality of LED light source on growth rate, mycelium branch and biomass of straw mushroom mycelium [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1110-1116. |
[14] | ZHANG Yuxun, WANG Lei, QU Xiangning, CAO Yuan, WU Mengyao, YU Ruixin, SUN Yuan. Application research of GF-1/WFV data in estimation of maize leaf area index [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 861-872. |
[15] | YAO Zhao, WANG Chongyang, CUI Jing. Effect of nitrogen application amount on grain filling characteristics of winter wheat at different panicle positions under drip irrigation [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 576-585. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||