Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (12): 2977-2987.DOI: 10.3969/j.issn.1004-1524.20221763
• Biosystems Engineering • Previous Articles Next Articles
LI Rongpeng(), MAMAT Sawut(
), SHENG Yanfang, HE Xugang
Received:
2022-12-12
Online:
2023-12-25
Published:
2023-12-27
CLC Number:
LI Rongpeng, MAMAT Sawut, SHENG Yanfang, HE Xugang. Identification and application of walnut disease based on CA-MobileNet-V2[J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2977-2987.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221763
病害类型 Disease category | 标签 Labels | 样本数量Number of samples | |||
---|---|---|---|---|---|
增强前Before augmentation | 增强后After augmentation | ||||
数据集A Dataset A | 数据集B Dataset B | 数据集A Dataset A | 数据集B Dataset B | ||
虫蛀叶Insect pest | 0 | 152 | 261 | 679 | 1 139 |
健康叶Healthy | 1 | 123 | 145 | 616 | 1 012 |
褐斑病Brown spot | 2 | 105 | 125 | 630 | 1 000 |
黑斑病Black spot | 3 | 98 | 189 | 686 | 1 134 |
缺素病Element deficiency | 4 | 162 | 242 | 656 | 1 210 |
炭疽病Anthrax | 5 | 116 | 168 | 696 | 1 008 |
总计Total | 756 | 1 130 | 3 963 | 6 503 |
Table 1 Data augmentation
病害类型 Disease category | 标签 Labels | 样本数量Number of samples | |||
---|---|---|---|---|---|
增强前Before augmentation | 增强后After augmentation | ||||
数据集A Dataset A | 数据集B Dataset B | 数据集A Dataset A | 数据集B Dataset B | ||
虫蛀叶Insect pest | 0 | 152 | 261 | 679 | 1 139 |
健康叶Healthy | 1 | 123 | 145 | 616 | 1 012 |
褐斑病Brown spot | 2 | 105 | 125 | 630 | 1 000 |
黑斑病Black spot | 3 | 98 | 189 | 686 | 1 134 |
缺素病Element deficiency | 4 | 162 | 242 | 656 | 1 210 |
炭疽病Anthrax | 5 | 116 | 168 | 696 | 1 008 |
总计Total | 756 | 1 130 | 3 963 | 6 503 |
迁移方式 Transfer methods | 数据集 Dataset | 准确率 Accuracy/ % |
---|---|---|
无迁移 No transfer | 数据集B Dataset B | 86.62 |
learning | ||
跨域迁移 Cross-domain | ImageNet数据集+数据集B Datase ImageNet+Dataset B | 93.53 |
transfer | ||
域内迁移 Intra-domain | 数据集A+数据集B Dataset A+Dataset B | 78.40 |
transfer | ||
混合迁移 Mixed transfer | ImageNet数据集+数据集A+数据集B Dataset ImageNet+Dataset A+Dataset B | 96.97 |
Table 2 Comparison of recognition results of different transfer learning methods
迁移方式 Transfer methods | 数据集 Dataset | 准确率 Accuracy/ % |
---|---|---|
无迁移 No transfer | 数据集B Dataset B | 86.62 |
learning | ||
跨域迁移 Cross-domain | ImageNet数据集+数据集B Datase ImageNet+Dataset B | 93.53 |
transfer | ||
域内迁移 Intra-domain | 数据集A+数据集B Dataset A+Dataset B | 78.40 |
transfer | ||
混合迁移 Mixed transfer | ImageNet数据集+数据集A+数据集B Dataset ImageNet+Dataset A+Dataset B | 96.97 |
模型 Models | 类别 Classification | 精确率 Precision/% | 召回率 Recall/% | F1值 F1score/% | 平均准确率 Mean accuracy% | 参数量 Params/M | 内存占有 Memory/MB |
---|---|---|---|---|---|---|---|
VGG16 | 虫害Insect pest | 87.27 | 63.44 | 73.47 | 64.48 | 138.23 | 512.27 |
健康Healthy | 79.12 | 35.64 | 49.15 | ||||
褐斑Brown spot | 51.30 | 49.50 | 50.38 | ||||
黑斑Black spot | 49.54 | 94.25 | 64.94 | ||||
缺素Element deficiency | 78.73 | 71.90 | 75.16 | ||||
炭疽Anthrax | 68.18 | 67.16 | 67.66 | ||||
ResNet18 | 虫害Insect pest | 95.63 | 96.48 | 96.05 | 97.31 | 11.82 | 42.72 |
健康Healthy | 99.50 | 100.00 | 99.75 | ||||
褐斑Brown spot | 94.17 | 96.04 | 95.10 | ||||
黑斑Black spot | 99.06 | 94.20 | 96.57 | ||||
缺素Element deficiency | 98.00 | 99.49 | 98.74 | ||||
炭疽Anthrax | 98.02 | 98.51 | 98.26 | ||||
Mobilenet-V3-Large | 虫害Insect pest | 87.34 | 92.17 | 89.69 | 92.58 | 5.42 | 21.65 |
健康Healthy | 96.55 | 96.55 | 96.55 | ||||
褐斑Brown spot | 86.41 | 89.48 | 87.92 | ||||
黑斑Black spot | 92.96 | 85.71 | 89.19 | ||||
缺素Element deficiency | 93.00 | 93.00 | 93.00 | ||||
炭疽Anthrax | 95.05 | 94.12 | 94.58 | ||||
ShuffulNet-V2 | 虫害Insect pest | 83.84 | 91.87 | 87.67 | 90.34 | 2.28 | 9.03 |
健康Healthy | 92.12 | 92.57 | 92.35 | ||||
褐斑Brown spot | 85.92 | 85.55 | 85.71 | ||||
黑斑Black spot | 92.96 | 85.71 | 89.19 | ||||
缺素Element deficiency | 93.00 | 93.00 | 93.00 | ||||
炭疽Anthrax | 95.05 | 94.12 | 97.57 | ||||
EfficientNet-V2-S | 虫害Insect pest | 87.77 | 93.50 | 90.54 | 92.66 | 23.25 | 81.28 |
健康Healthy | 95.07 | 94.61 | 94.84 | ||||
褐斑Brown spot | 88.35 | 90.55 | 89.44 | ||||
黑斑Black spot | 94.67 | 88.55 | 91.36 | ||||
缺素Element deficiency | 95.00 | 93.60 | 94.29 | ||||
炭疽Anthrax | 96.04 | 95.57 | 95.80 | ||||
CA-Mobilenet-V2 | 虫害Insect pest | 95.20 | 96.04 | 95.61 | 96.97 | 3.95 | 10.50 |
健康Healthy | 99.02 | 99.51 | 99.26 | ||||
褐斑Brown spot | 93.20 | 96.00 | 94.58 | ||||
黑斑Black spot | 98.59 | 92.92 | 95.67 | ||||
缺素Element deficiency | 98.00 | 99.49 | 98.74 | ||||
炭疽Anthrax | 98.02 | 98.51 | 98.26 |
Table 3 Comparison of recognition results of different CNN models
模型 Models | 类别 Classification | 精确率 Precision/% | 召回率 Recall/% | F1值 F1score/% | 平均准确率 Mean accuracy% | 参数量 Params/M | 内存占有 Memory/MB |
---|---|---|---|---|---|---|---|
VGG16 | 虫害Insect pest | 87.27 | 63.44 | 73.47 | 64.48 | 138.23 | 512.27 |
健康Healthy | 79.12 | 35.64 | 49.15 | ||||
褐斑Brown spot | 51.30 | 49.50 | 50.38 | ||||
黑斑Black spot | 49.54 | 94.25 | 64.94 | ||||
缺素Element deficiency | 78.73 | 71.90 | 75.16 | ||||
炭疽Anthrax | 68.18 | 67.16 | 67.66 | ||||
ResNet18 | 虫害Insect pest | 95.63 | 96.48 | 96.05 | 97.31 | 11.82 | 42.72 |
健康Healthy | 99.50 | 100.00 | 99.75 | ||||
褐斑Brown spot | 94.17 | 96.04 | 95.10 | ||||
黑斑Black spot | 99.06 | 94.20 | 96.57 | ||||
缺素Element deficiency | 98.00 | 99.49 | 98.74 | ||||
炭疽Anthrax | 98.02 | 98.51 | 98.26 | ||||
Mobilenet-V3-Large | 虫害Insect pest | 87.34 | 92.17 | 89.69 | 92.58 | 5.42 | 21.65 |
健康Healthy | 96.55 | 96.55 | 96.55 | ||||
褐斑Brown spot | 86.41 | 89.48 | 87.92 | ||||
黑斑Black spot | 92.96 | 85.71 | 89.19 | ||||
缺素Element deficiency | 93.00 | 93.00 | 93.00 | ||||
炭疽Anthrax | 95.05 | 94.12 | 94.58 | ||||
ShuffulNet-V2 | 虫害Insect pest | 83.84 | 91.87 | 87.67 | 90.34 | 2.28 | 9.03 |
健康Healthy | 92.12 | 92.57 | 92.35 | ||||
褐斑Brown spot | 85.92 | 85.55 | 85.71 | ||||
黑斑Black spot | 92.96 | 85.71 | 89.19 | ||||
缺素Element deficiency | 93.00 | 93.00 | 93.00 | ||||
炭疽Anthrax | 95.05 | 94.12 | 97.57 | ||||
EfficientNet-V2-S | 虫害Insect pest | 87.77 | 93.50 | 90.54 | 92.66 | 23.25 | 81.28 |
健康Healthy | 95.07 | 94.61 | 94.84 | ||||
褐斑Brown spot | 88.35 | 90.55 | 89.44 | ||||
黑斑Black spot | 94.67 | 88.55 | 91.36 | ||||
缺素Element deficiency | 95.00 | 93.60 | 94.29 | ||||
炭疽Anthrax | 96.04 | 95.57 | 95.80 | ||||
CA-Mobilenet-V2 | 虫害Insect pest | 95.20 | 96.04 | 95.61 | 96.97 | 3.95 | 10.50 |
健康Healthy | 99.02 | 99.51 | 99.26 | ||||
褐斑Brown spot | 93.20 | 96.00 | 94.58 | ||||
黑斑Black spot | 98.59 | 92.92 | 95.67 | ||||
缺素Element deficiency | 98.00 | 99.49 | 98.74 | ||||
炭疽Anthrax | 98.02 | 98.51 | 98.26 |
模型 Model | 准确率 Accuracy/ % | 漏检率 Missing/ % | 误检率 Error/% | 耗时 Time consuming/s |
---|---|---|---|---|
CA-MobileNet-V2 | 90.83 | 4.17 | 5.00 | 0.53 |
ResNet18 | 92.50 | 4.17 | 3.33 | 3.37 |
MobileNet-V3-Large | 87.50 | 5.83 | 6.67 | 1.05 |
ShuffulNet-V2 | 82.50 | 5.00 | 12.50 | 0.36 |
EfficientNet-V2-S | 86.67 | 7.50 | 5.83 | 5.09 |
Table 4 Walnut disease identification program test results
模型 Model | 准确率 Accuracy/ % | 漏检率 Missing/ % | 误检率 Error/% | 耗时 Time consuming/s |
---|---|---|---|---|
CA-MobileNet-V2 | 90.83 | 4.17 | 5.00 | 0.53 |
ResNet18 | 92.50 | 4.17 | 3.33 | 3.37 |
MobileNet-V3-Large | 87.50 | 5.83 | 6.67 | 1.05 |
ShuffulNet-V2 | 82.50 | 5.00 | 12.50 | 0.36 |
EfficientNet-V2-S | 86.67 | 7.50 | 5.83 | 5.09 |
[1] | 奚声珂, 郗荣庭, 马杰. 世界核桃生产与研究动态[J]. 经济林研究, 1990, 8(1): 76-79. |
XI S K, XI R T, MA J. Trends of walnut production and research in the world[J]. Non-Wood Forest Research, 1990, 8(1): 76-79. (in Chinese) | |
[2] | 王彦翔, 张艳, 杨成娅, 等. 基于深度学习的农作物病害图像识别技术进展[J]. 浙江农业学报, 2019, 31(4): 669-676. |
WANG Y X, ZHANG Y, YANG C Y, et al. Advances in new nondestructive detection and identification techniques of crop diseases based on deep learning[J]. Acta Agriculturae Zhejiangensis, 2019, 31(4): 669-676. (in Chinese with English abstract) | |
[3] | 张建华, 孔繁涛, 吴建寨, 等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报, 2018, 23(11): 161-171. |
ZHANG J H, KONG F T, WU J Z, et al. Cotton disease identification model based on improved VGG convolution neural network[J]. Journal of China Agricultural University, 2018, 23(11): 161-171. (in Chinese with English abstract) | |
[4] | FERENTINOS K P. Deep learning models for plant disease detection and diagnosis[J]. Computers and Electronics in Agriculture, 2018, 145: 311-318. |
[5] | TOO E C, LI Y J, NJUKI S, et al. A comparative study of fine-tuning deep learning models for plant disease identification[J]. Computers and Electronics in Agriculture, 2019, 161: 272-279. |
[6] | 葛道辉, 李洪升, 张亮, 等. 轻量级神经网络架构综述[J]. 软件学报, 2020, 31(9): 2627-2653. |
GE D H, LI H S, ZHANG L, et al. Survey of lightweight neural network[J]. Journal of Software, 2020, 31(9): 2627-2653. (in Chinese with English abstract) | |
[7] | ELFATIMI E, ERYIGIT R, ELFATIMI L. Beans leaf diseases classification using MobileNet models[J]. IEEE Access, 2022, 10: 9471-9482. |
[8] | CHEN J D, ZHANG D F, SUZAUDDOLA M, et al. Identifying crop diseases using attention embedded MobileNet-V2 model[J]. Applied Soft Computing, 2021, 113: 107901. |
[9] | LU L, LIU W, YANG W B, et al. Lightweight corn seed disease identification method based on improved ShuffleNetV2[J]. Agriculture, 2022, 12(11): 1929. |
[10] | 孙道宗, 刘锦源, 丁郑, 等. 基于改进EfficientNetv2模型的多品种南药叶片分类方法[J]. 华中农业大学学报, 2023, 42(1): 258-267. |
SUN D Z, LIU J Y, DING Z, et al. Classification of leaves of multi-variety southern traditional Chinese medicine based on improved EfficientNetv2 model[J]. Journal of Huazhong Agricultural University, 2023, 42(1): 258-267. (in Chinese with English abstract) | |
[11] | SINGH P, VERMA A, ALEX J S R. Disease and pest infection detection in coconut tree through deep learning techniques[J]. Computers and Electronics in Agriculture, 2021, 182: 105986. |
[12] | 刘洋, 冯全, 王书志. 基于轻量级CNN的植物病害识别方法及移动端应用[J]. 农业工程学报, 2019, 35(17): 194-204. |
LIU Y, FENG Q, WANG S Z. Plant disease identification method based on lightweight CNN and mobile application[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 194-204. (in Chinese with English abstract) | |
[13] | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City. IEEE, 2018: 4510-4520. |
[14] | NIU Z Y, ZHONG G Q, YU H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62. |
[15] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City. IEEE, 2018: 7132-7141. |
[16] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision- ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
[17] | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021, Nashville. IEEE, 2021: 13708-13717. |
[18] | LIU H X, LV H C, LI J J, et al. Research on maize disease identification methods in complex environments based on cascade networks and two-stage transfer learning[J]. Scientific Reports, 2022, 12: 18914. |
[19] | ZHAO X, LI K Y, LI Y X, et al. Identification method of vegetable diseases based on transfer learning and attention mechanism[J]. Computers and Electronics in Agriculture, 2022, 193: 106703. |
[20] | CHEN J D, CHEN J X, ZHANG D F, et al. Using deep transfer learning for image-based plant disease identification[J]. Computers and Electronics in Agriculture, 2020, 173: 105393. |
[21] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]// 2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice. IEEE, 2017: 618-626. |
[1] | YU Shuai, HUANG Jun, YING Junjie, ZHANG Juan, MAO Xueqin, ZHANG Zhijun, LYU Yaobin, LI Yan. Attractant activity of banana peel powder to Drosophila melanogaster and analysis of its chemical components of volatiles [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2415-2424. |
[2] | SONG Chuansheng, KANG Xiaofei, FAN Qingzhong, WANG Jungang, SHI Xue, ZHANG Ziru, TAN Qingqing, ZENG Xiaojiao, LIU Fang, LI Yingsai, HOU Changyue. Cloning, sequence analysis, prokaryotic expression of thymidine kinase from jujube witches’-broom phytoplasma [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1763-1772. |
[3] | ZENG Yating, XIONG Tao, LI Hongye. Rapid molecular detection of Diaporthe citri, the pathogen of citrus melanose [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1457-1465. |
[4] | YANG Xiujuan, LI Weiya, LI Caimiao, CHENG Bijun, GAO Fen, ZHAO Jun. Antifungal effect of Camellia seed cake on root rot pathogens of Astragalus membranaceus and Panax notoginseng [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1227-1235. |
[5] | WU Jiawei, YAO Zhangliang, HU Qiqi, ZHANG Jie, CHEN Yi, JIANG Jianrong, ZHOU Guoxin, WANG Xia. Fungicides and optimum time for control of pear rust in Tongxiang City, north Zhejiang, China [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1668-1675. |
[6] | MENG Youqing, WANG Enguo, CHEN Wujian, LI Yanmin, CHENG Fan, MENG Minxia. Distribution and growth dynamics of Candidatus Liberibacter asiaticus positive Asian citrus psyllid in Zhejiang Province [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 464-469. |
[7] | HUANG Zhendong, PU Zhanxu, HU Xiurong, CHEN Guoqing, LYU Jia, ZHAN Hongmu. Effects of processed petroleum-based horticultural mineral oils on settling behavior of Diaphorina citri Kuwayama (Hemiptera: Lividae) [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 87-95. |
[8] | LAI Jiahao, SONG Shuilin, LIU Bing. Effects of three endophytic bacteria with the characteristic of controlling citrus canker on the activity of several defensive enzymes in navel orange [J]. , 2020, 32(11): 1994-2000. |
[9] | ZHANG Xiaoyan, HE Jing, HOU Caixia, ZHANG Shuheng. Screening and identification of antagonistic strains of wolfberry root rot [J]. , 2020, 32(5): 858-865. |
[10] | GUO Xuesong, TIAN Libo, SHANG Sang, ZOU Kaixi, CHEN Hongrong, LI Wanyu, YUE Xiaoqi. Isolation, identification and characterization of antagonistic actinomycetes A10 and A17 against Botryodiplodia theobromae [J]. , 2020, 32(3): 460-468. |
[11] | QIU Xiaohong, ZHENG Lumin, CHU Shupin, ZHU Youli. Population dynamics of three kinds of fruit-eating male adult in peach orchard and their correlation with temperature and rainfall [J]. , 2020, 32(3): 469-474. |
[12] | LIN Rui, REN Haiying, AN Xiaoxiao, ZHENG Xiliang, LIANG Senmiao, ZHANG Shuwen, QI Xingjiang. Effects of bio-organic fertilizer on twig blight disease control and recovery of tree vigor in bayberry [J]. , 2019, 31(7): 1096-1104. |
[13] | QIAO Zhongquan, WANG Xiaoming, LI Yongxin, ZENG Huijie, CAI Neng, LIU Sisi, CHEN Yi. Phylogenetic relationships among 38 cultivars of Lagerstroemia indica based on ISSR molecular markers [J]. , 2019, 31(4): 565-571. |
[14] | MENG Youqing, WENG Haiyong, CEN Haiyan, LI Hongye, HE Yong. Carbohydrate metabolism and near-infrared spectral characteristics in asymptomatic Huang-longbing infected leaves [J]. , 2019, 31(3): 428-435. |
[15] | KANG Haiting, LING Danyan, WU Zhijuan, LU Mei, ZONG Yu, GUO Weidong. Pathogen isolation and identification of blueberry stem canker and screening of disease resistant cultivars [J]. , 2019, 31(3): 436-443. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||