Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (8): 1904-1914.DOI: 10.3969/j.issn.1004-1524.20221475
• Biosystems Engineering • Previous Articles Next Articles
GUO Faxu(), FENG Quan*(
), YANG Sen, YANG Wanxia
Received:
2022-10-24
Online:
2023-08-25
Published:
2023-08-29
CLC Number:
GUO Faxu, FENG Quan, YANG Sen, YANG Wanxia. Inversion of leaf nitrogen content in potato canopy based on unmanned aerial vehicle hyperspectral images[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1904-1914.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221475
样本类型 Sample category | 样本数量 Sample size | LNC/% | |||
---|---|---|---|---|---|
最大值 Maximum value | 最小值 Minimum value | 平均值 Mean value | 标准偏差 Standard deviation | ||
总样本Whole set | 110 | 4.850 0 | 2.580 0 | 3.960 5 | 0.531 6 |
建模集Calibration set | 73 | 4.850 0 | 2.720 0 | 3.967 4 | 0.524 5 |
验证集Validation set | 37 | 4.790 0 | 2.580 0 | 3.946 8 | 0.545 1 |
Table 1 Statistics of leaf nitrogen content (LNC) of samples
样本类型 Sample category | 样本数量 Sample size | LNC/% | |||
---|---|---|---|---|---|
最大值 Maximum value | 最小值 Minimum value | 平均值 Mean value | 标准偏差 Standard deviation | ||
总样本Whole set | 110 | 4.850 0 | 2.580 0 | 3.960 5 | 0.531 6 |
建模集Calibration set | 73 | 4.850 0 | 2.720 0 | 3.967 4 | 0.524 5 |
验证集Validation set | 37 | 4.790 0 | 2.580 0 | 3.946 8 | 0.545 1 |
Fig.1 Spectral reflectance curves before and after transformation R, Raw; 1/R, Reciprocal; D(R), First-order differential; D(2R), Second-order differential; lg(1/R), Common logarithm of reciprocal value.
数据 Data | PLSR | SVM | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
R | 0.672 0 | 0.300 4 | 0.713 1 | 0.281 3 |
1/R | 0.638 0 | 0.320 9 | 0.704 9 | 0.291 0 |
D(R) | 0.733 6 | 0.270 8 | 0.701 3 | 0.290 1 |
D(2R) | 0.856 9 | 0.201 7 | 0.777 2 | 0.268 0 |
lg(1/R) | 0.642 5 | 0.313 7 | 0.721 0 | 0.277 5 |
Table 2 Comparison of modeling effects based on spectral reflectance curves before and after transformation
数据 Data | PLSR | SVM | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
R | 0.672 0 | 0.300 4 | 0.713 1 | 0.281 3 |
1/R | 0.638 0 | 0.320 9 | 0.704 9 | 0.291 0 |
D(R) | 0.733 6 | 0.270 8 | 0.701 3 | 0.290 1 |
D(2R) | 0.856 9 | 0.201 7 | 0.777 2 | 0.268 0 |
lg(1/R) | 0.642 5 | 0.313 7 | 0.721 0 | 0.277 5 |
Fig.3 Running results of competitive adaptive reweighted sampling (CARS) algorithm a, The relationship between the number of variables and the number of sampling runs; b, The relationship between the root mean square error of cross-validation (RMSECV) and the number of sampling runs; c, The relationship between regression coefficient and the number of sampling runs, in which the column marked with an asterisk (*) indicates the number of sampling runs associated with the minimum regression coefficient, and the various colored curves reflect the fluctuations in regression coefficients of distinct spectral variables.
方法 Method | 特征波段数 Characteristic band number | 特征波长 Characteristic wavelength/nm |
---|---|---|
CA | 26 | 643.8、647.3、640.3、654.2、650.7、657.7、592.0、633.4、636.8、588.6、595.5、571.5、661.2、568.1、585.2、470.6、473.9、699.7、703.3、692.7、696.2、564.7、520.7、517.4、514.0、689.2 |
CARS | 12 | 431.0、557.9、592.0、633.4、657.7、668.2、682.2、735.1、738.6、749.3、788.7、810.3 |
UVE | 19 | 557.9、581.8、592.0、602.3、633.4、643.8、647.3、654.2、657.7、668.2、678.7、682.2、731.5、738.6、770.8、788.7、835.7、890.6、901.7 |
Table 3 Characteristic band screening result
方法 Method | 特征波段数 Characteristic band number | 特征波长 Characteristic wavelength/nm |
---|---|---|
CA | 26 | 643.8、647.3、640.3、654.2、650.7、657.7、592.0、633.4、636.8、588.6、595.5、571.5、661.2、568.1、585.2、470.6、473.9、699.7、703.3、692.7、696.2、564.7、520.7、517.4、514.0、689.2 |
CARS | 12 | 431.0、557.9、592.0、633.4、657.7、668.2、682.2、735.1、738.6、749.3、788.7、810.3 |
UVE | 19 | 557.9、581.8、592.0、602.3、633.4、643.8、647.3、654.2、657.7、668.2、678.7、682.2、731.5、738.6、770.8、788.7、835.7、890.6、901.7 |
波段 Band | 特征波段数量 Number of characteristic bands | 建模集Calibration set | 验证集Validation set | ||
---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||
D(2R)全波段Whole bands of D(2R) | 176 | 0.856 9 | 0.201 7 | 0.712 0 | 0.235 8 |
CA-D(2R) | 26 | 0.669 7 | 0.306 5 | 0.699 3 | 0.241 0 |
CARS-D(2R) | 12 | 0.825 4 | 0.222 9 | 0.783 9 | 0.204 3 |
UVE-D(2R) | 19 | 0.780 1 | 0.250 1 | 0.806 8 | 0.193 2 |
Table 4 Comparison of PLSR modeling results based on different bands
波段 Band | 特征波段数量 Number of characteristic bands | 建模集Calibration set | 验证集Validation set | ||
---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||
D(2R)全波段Whole bands of D(2R) | 176 | 0.856 9 | 0.201 7 | 0.712 0 | 0.235 8 |
CA-D(2R) | 26 | 0.669 7 | 0.306 5 | 0.699 3 | 0.241 0 |
CARS-D(2R) | 12 | 0.825 4 | 0.222 9 | 0.783 9 | 0.204 3 |
UVE-D(2R) | 19 | 0.780 1 | 0.250 1 | 0.806 8 | 0.193 2 |
波段 Band | C | λ | ε | 特征波段数量 Number of characteristic bands | 建模集Calibration set | 验证集Validation set | ||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||||
D(2R)全波段 | 1 | 0.002 76 | 0.01 | 176 | 0.777 2 | 0.268 0 | 0.618 7 | 0.342 0 |
Whole bands of D(2R) | ||||||||
CA-D(2R) | 4 | 0.001 95 | 0.01 | 26 | 0.687 6 | 0.299 8 | 0.708 4 | 0.240 6 |
CARS-D(2R) | 91 | 0.001 95 | 0.01 | 12 | 0.839 0 | 0.215 2 | 0.831 6 | 0.183 0 |
UVE-D(2R) | 512 | 0.000 98 | 0.01 | 19 | 0.852 6 | 0.205 4 | 0.786 9 | 0.206 2 |
Table 5 Comparison of SVM modeling results based on different bands
波段 Band | C | λ | ε | 特征波段数量 Number of characteristic bands | 建模集Calibration set | 验证集Validation set | ||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||||
D(2R)全波段 | 1 | 0.002 76 | 0.01 | 176 | 0.777 2 | 0.268 0 | 0.618 7 | 0.342 0 |
Whole bands of D(2R) | ||||||||
CA-D(2R) | 4 | 0.001 95 | 0.01 | 26 | 0.687 6 | 0.299 8 | 0.708 4 | 0.240 6 |
CARS-D(2R) | 91 | 0.001 95 | 0.01 | 12 | 0.839 0 | 0.215 2 | 0.831 6 | 0.183 0 |
UVE-D(2R) | 512 | 0.000 98 | 0.01 | 19 | 0.852 6 | 0.205 4 | 0.786 9 | 0.206 2 |
[1] | 宋娜, 王凤新, 杨晨飞, 等. 水氮耦合对膜下滴灌马铃薯产量、品质及水分利用的影响[J]. 农业工程学报, 2013, 29(13): 98-105. |
SONG N, WANG F X, YANG C F, et al. Coupling effects of water and nitrogen on yield, quality and water use of potato with drip irrigation under plastic film mulch[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(13): 98-105. (in Chinese with English abstract) | |
[2] | TANG J Z, XIAO D P, WANG J, et al. Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China[J]. Agricultural Water Management, 2021, 253: 106945. |
[3] | WANG N, REIDSMA P, PRONK A A, et al. Can potato add to China’s food self-sufficiency?: the scope for increasing potato production in China[J]. European Journal of Agronomy, 2018, 101: 20-29. |
[4] | FENG W, YAO X, ZHU Y, et al. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat[J]. European Journal of Agronomy, 2008, 28(3): 394-404. |
[5] | ZHAO C J, WANG Z J, WANG J H, et al. Relationships of leaf nitrogen concentration and canopy nitrogen density with spectral features parameters and narrow-band spectral indices calculated from field winter wheat (Triticum aestivum L.) spectra[J]. International Journal of Remote Sensing, 2012, 33(11): 3472-3491. |
[6] | ZHANG X, SUN H, QIAO X X, et al. Hyperspectral estimation of canopy chlorophyll of winter wheat by using the optimized vegetation indices[J]. Computers and Electronics in Agriculture, 2022, 193: 106654. |
[7] | 陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5): 748-767. |
CHEN Z X, REN J Q, TANG H J, et al. Progress and perspectives on agricultural remote sensing research and applications in China[J]. Journal of Remote Sensing, 2016, 20(5): 748-767. (in Chinese with English abstract) | |
[8] | DELAVARPOUR N, KOPARAN C, NOWATZKI J, et al. A technical study on UAV characteristics for precision agriculture applications and associated practical challenges[J]. Remote Sensing, 2021, 13(6): 1204. |
[9] | 王玉娜, 李粉玲, 王伟东, 等. 基于无人机高光谱的冬小麦氮素营养监测[J]. 农业工程学报, 2020, 36(22): 31-39. |
WANG Y N, LI F L, WANG W D, et al. Monitoring of winter wheat nitrogen nutrition based on UAV hyperspectral images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22): 31-39. (in Chinese with English abstract) | |
[10] | 张瑶, 郑立华, 李民赞, 等. 基于光谱特征分析的苹果树叶片营养素预测模型构建[J]. 农业工程学报, 2013, 29(8): 171-178. |
ZHANG Y, ZHENG L H, LI M Z, et al. Construction of apple tree leaves nutrients prediction model based on spectral analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(8): 171-178. (in Chinese with English abstract) | |
[11] | 李金梦, 叶旭君, 王巧男, 等. 高光谱成像技术的柑橘植株叶片含氮量预测模型[J]. 光谱学与光谱分析, 2014, 34(1): 212-216. |
LI J M, YE X J, WANG Q N, et al. Development of prediction models for determining N content in citrus leaves based on hyperspectral imaging technology[J]. Spectroscopy and Spectral Analysis, 2014, 34(1): 212-216. (in Chinese with English abstract) | |
[12] | 张筱蕾, 刘飞, 聂鹏程, 等. 高光谱成像技术的油菜叶片氮含量及分布快速检测[J]. 光谱学与光谱分析, 2014, 34(9): 2513-2518. |
ZHANG X L, LIU F, NIE P C, et al. Rapid detection of nitrogen content and distribution in oilseed rape leaves based on hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2513-2518. (in Chinese with English abstract) | |
[13] | 于雷, 章涛, 朱亚星, 等. 基于IRIV算法优选大豆叶片高光谱特征波长变量估测SPAD值[J]. 农业工程学报, 2018, 34(16): 148-154. |
YU L, ZHANG T, ZHU Y X, et al. Determination of soybean leaf SPAD value using characteristic wavelength variables preferably selected by IRIV algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 148-154. (in Chinese with English abstract) | |
[14] | 吴伟斌, 李佳雨, 张震邦, 等. 基于高光谱图像的茶树LAI与氮含量反演[J]. 农业工程学报, 2018, 34(3): 195-201. |
WU W B, LI J Y, ZHANG Z B, et al. Estimation model of LAI and nitrogen content in tea tree based on hyperspectral image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(3): 195-201. (in Chinese with English abstract) | |
[15] | 李粉玲, 常庆瑞. 基于连续统去除法的冬小麦叶片全氮含量估算[J]. 农业机械学报, 2017, 48(7): 174-179. |
LI F L, CHANG Q R. Estimation of winter wheat leaf nitrogen content based on continuum removed spectra[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 174-179. (in Chinese with English abstract) | |
[16] | 张银杰, 王磊, 白由路, 等. 基于高光谱分析的玉米叶片氮含量分层诊断研究[J]. 光谱学与光谱分析, 2019, 39(9): 2829-2835. |
ZHANG Y J, WANG L, BAI Y L, et al. Nitrogen nutrition diagnostic based on hyperspectral analysis about different layers leaves in maize[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2829-2835. (in Chinese with English abstract) | |
[17] | ZHAO B, DUAN A W, ATA-UL-KARIM S T, et al. Exploring new spectral bands and vegetation indices for estimating nitrogen nutrition index of summer maize[J]. European Journal of Agronomy, 2018, 93: 113-125. |
[18] | 秦占飞, 常庆瑞, 谢宝妮, 等. 基于无人机高光谱影像的引黄灌区水稻叶片全氮含量估测[J]. 农业工程学报, 2016, 32(23): 77-85. |
QIN Z F, CHANG Q R, XIE B N, et al. Rice leaf nitrogen content estimation based on hysperspectral imagery of UAV in Yellow River diversion irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(23): 77-85. (in Chinese with English abstract) | |
[19] | 李岚涛, 马驿, 魏全全, 等. 基于高光谱的冬油菜植株氮素积累量监测模型[J]. 农业工程学报, 2015, 31(20): 147-156. |
LI L T, MA Y, WEI Q Q, et al. Monitoring models of plant N accumulation of winter oilseed rape based on hyperspectral technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(20): 147-156. (in Chinese with English abstract) | |
[20] | GOFFART J P, OLIVIER M, FRANKINET M. Potato crop nitrogen status assessment to improve N fertilization management and efficiency: past-present-future[J]. Potato Research, 2008, 51(3): 355-383. |
[21] | 孙伟, 王虎存, 赵武云, 等. 残膜回收型全膜覆土垄播马铃薯挖掘机设计与试验[J]. 农业机械学报, 2018, 49(9): 105-114. |
SUN W, WANG H C, ZHAO W Y, et al. Design and experiment of potato digger with waste film recollection for complete film mulching, soil covering and ridge sowing pattern[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9): 105-114. (in Chinese with English abstract) | |
[22] | 刘善梅, 李小昱, 钟雄斌, 等. 基于高光谱成像技术的生鲜猪肉含水率无损检测[J]. 农业机械学报, 2013, 44(S1): 165-170. |
LIU S M, LI X Y, ZHONG X B, et al. Non-destructive detection of water content in fresh pork based on hyperspectral imaging technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(S1): 165-170. (in Chinese with English abstract) | |
[23] | 郑涛, 刘宁, 孙红, 等. 基于高光谱成像的马铃薯叶片叶绿素分布可视化研究[J]. 农业机械学报, 2017, 48(S1): 153-159. |
ZHENG T, LIU N, SUN H, et al. Visualization of chlorophyll distribution of potato leaves based on hyperspectral imaging technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 153-159. (in Chinese with English abstract) | |
[24] | MOROS J, KULIGOWSKI J, QUINTÁS G, et al. New cut-off criterion for uninformative variable elimination in multivariate calibration of near-infrared spectra for the determination of heroin in illicit street drugs[J]. Analytica Chimica Acta, 2008, 630(2): 150-160. |
[25] | 刘云宏, 王庆庆, 石晓微, 等. 金银花贮藏过程中绿原酸含量的高光谱无损检测模型研究[J]. 农业工程学报, 2019, 35(13): 291-299. |
LIU Y H, WANG Q Q, SHI X W, et al. Hyperspectral nondestructive detection model of chlorogenic acid content during storage of honeysuckle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 291-299. (in Chinese with English abstract) | |
[26] | GRIMM R, BEHRENS T, MÄRKER M, et al. Soil organic carbon concentrations and stocks on Barro Colorado Island: digital soil mapping using Random Forests analysis[J]. Geoderma, 2008, 146(1/2): 102-113. |
[27] | SURENDRAN U, SANDEEP O, JOSEPH E J. The impacts of magnetic treatment of irrigation water on plant, water and soil characteristics[J]. Agricultural Water Management, 2016, 178: 21-29. |
[28] | 冯海宽, 杨福芹, 杨贵军, 等. 基于特征光谱参数的苹果叶片叶绿素含量估算[J]. 农业工程学报, 2018, 34(6): 182-188. |
FENG H K, YANG F Q, YANG G J, et al. Estimation of chlorophyll content in apple leaves base on spectral feature parameters[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(6): 182-188. (in Chinese with English abstract) | |
[29] | YU K, LI F, GNYP M L, et al. Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 78: 102-115. |
[30] | 马怡茹, 吕新, 易翔, 等. 基于机器学习的棉花叶面积指数监测[J]. 农业工程学报, 2021, 37(13): 152-162. |
MA Y R, LYU X, YI X, et al. Monitoring of cotton leaf area index using machine learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(13): 152-162. (in Chinese with English abstract) | |
[31] | 郭阳, 郭俊先, 史勇, 等. CARS-SVM预测哈密瓜可溶性固形物含量[J]. 食品与机械, 2021, 37(6): 81-85. |
GUO Y, GUO J X, SHI Y, et al. Prediction of soluble solids in Hami melon by CARS-SVM[J]. Food & Machinery, 2021, 37(6): 81-85. (in Chinese with English abstract) | |
[32] | 韩康, 于静, 石晓华, 等. 不同光谱指数反演马铃薯叶片氮累积量的研究[J]. 作物学报, 2020, 46(12): 1979-1990. |
HAN K, YU J, SHI X H, et al. Inversion of nitrogen accumulation in potato leaf with different spectral indices[J]. Acta Agronomica Sinica, 2020, 46(12): 1979-1990. (in Chinese with English abstract) |
[1] | LUO Qinchuan, TANG Wei, MA Jukui, CHEN Jingwei, YANG Dongjing, GAO Fangyuan, SUN Houjun, XIE Yiping, ZHANG Chengling. Transcriptomic analysis of Fusarium solani infecting sweetpotato [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1097-1107. |
[2] | MENG Yusha, WANG Yin, LAI Qixian, LIU Lei, XIANG Chao, WU Yonghua, ZHENG Yanran, GU Xingguo, FANG Hao, MIAO Miao, WU Liehong, TANG Yong. Assessment of genetic diversity and variety identification based on insertion site-based polymorphism (ISBP) markers developed in wild species related to sweet potato [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 489-498. |
[3] | LI Wenxiang, WANG Fang, WANG Jian. Cloning and target gene screening of miR397 in potato [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1141-1151. |
[4] | WANG Jun, LU Zhou, LUO Ming, XU Feifei, ZHANG Xu. Inversion of soil moisture content of winter wheat at turning green period based on multispectral remote sensing by unmanned aerial vehicle [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1297-1305. |
[5] | LI Yongmei, WANG Hao, ZHAO Yong, ZHANG Ligen. Hyperspectral estimation of leaf water content of Lycium barbarum based on continuum-removed method [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 781-789. |
[6] | YUAN Wenya, KANG Yichen, YANG Xinyu, ZHNAG Ruyan, ZHOU Chuntao, WANG Yong, CHEN Xipeng, YU Huifang, QIN Shuhao. Effects of rhizosphere soil extract of Qingshui alfalfa (Medicago sativa L.) on enzyme activities and microbial communities in rhizosphere soil of continuous cropping potato [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 240-247. |
[7] | SHEN Shengfa, XIANG Chao, LI Bing, LUO Zhigao, WU Liehong. Phenotypic identification and diversity analysis of potato germplasm resources in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2319-2328. |
[8] | WANG Haiyi, ZHANG Zhaoguo, IBRAHIM Issa, XIE Kaiting, Wael EL-KOLALY, CAO Qinzhou. Design and experiment of small-sized potato harvester suitable for hilly and mountainous areas [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 724-738. |
[9] | XIE Ziyu, WANG Ke’er, ZHAO Wenliang, WEN Zuhui, CHEN Linrun, XU Lishan. Nutritional components and bioactivities of sweet potatoes with different flesh colors [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 183-192. |
[10] | ZHAO Lin, YE Xiafang, DONG Wei, SHI Jiang, LUO Letan, LUO Guoquan. Changes of nutritional quality and starch properties of different types of sweet potato roots during storage [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2224-2233. |
[11] | LIANG Liqin, YANG Rui, GAO Gang. Bioinformatics analysis of StUOXs gene family in potato [J]. , 2020, 32(9): 1523-1532. |
[12] | LU Muyuan, LIU Yuan, LIU Guijian. Predictive analysis of soil organic matter content in black soil region based on combined model [J]. , 2020, 32(8): 1427-1436. |
[13] | XU Jianmin, SHI Hedi, SHI Peihua, ZHANG Zeyang, XU Zhigang. Comparison of fitting models of light response curve of potato under different light quality [J]. , 2020, 32(5): 753-761. |
[14] | LIU Ziying, YUAN Bin, XIAO Huamei, WU Yongfei, LIU Xiaolin, HU Xiangfei. Screening, identification of Phytophthora infestans and its antagonistic bacterial strain [J]. , 2020, 32(5): 840-848. |
[15] | WU Weicheng, DAI Jianbo, CAO Yan, XIA Qile, CHEN Jianbing, MENG Xianghe. Effects of physical modification on content, polysaccharide composition and structure of dietary fiber in sweet potato peels [J]. , 2020, 32(3): 490-498. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||