Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (8): 1915-1926.DOI: 10.3969/j.issn.1004-1524.20221056
• Biosystems Engineering • Previous Articles Next Articles
QIU Xunchao1,2(), CAO Jun2,*(
), ZHANG Yizhuo2
Received:
2022-07-17
Online:
2023-08-25
Published:
2023-08-29
Fig.3 Distribution of fat content in peeled Korean pine seeds 61.14% was the result of mean minus standard deviation, and 65.58% was the result of mean plus standard deviation.
切分次数 Number of segmentation | 样本集 Sample set | 脂肪Fat/% | |||
---|---|---|---|---|---|
最大值 Maximum | 最小值 Minimum | 均值 Mean | 标准差 Standard deviation | ||
1 | 训练集Training set | 69.93 | 60.04 | 63.48 | 2.27 |
验证集Validation set | 67.64 | 60.24 | 62.86 | 1.90 | |
2 | 训练集Training set | 69.93 | 60.04 | 63.25 | 2.19 |
验证集Validation set | 68.87 | 60.46 | 63.78 | 2.27 | |
3 | 训练集Training set | 69.93 | 60.04 | 63.33 | 2.23 |
验证集Validation set | 69.59 | 60.55 | 63.48 | 2.17 | |
4 | 训练集Training set | 69.93 | 60.04 | 63.26 | 2.20 |
验证集Validation set | 69.21 | 60.40 | 63.75 | 2.24 | |
5 | 训练集Training set | 69.93 | 60.04 | 63.36 | 2.17 |
验证集Validation set | 69.59 | 60.23 | 63.35 | 2.46 | |
6 | 训练集Training set | 69.93 | 60.04 | 63.25 | 2.57 |
验证集Validation set | 69.59 | 60.37 | 63.79 | 2.57 | |
7 | 训练集Training set | 69.93 | 60.04 | 63.34 | 2.24 |
验证集Validation set | 68.18 | 60.23 | 63.45 | 2.11 | |
8 | 训练集Training set | 69.93 | 60.04 | 63.45 | 2.22 |
验证集Validation set | 68.87 | 60.37 | 62.99 | 2.15 | |
9 | 训练集Training set | 69.93 | 60.04 | 63.38 | 2.22 |
验证集Validation set | 68.26 | 60.24 | 63.29 | 2.21 | |
10 | 训练集Training set | 69.93 | 60.04 | 63.34 | 2.15 |
验证集Validation set | 69.59 | 60.23 | 63.43 | 2.53 |
Table 1 Ten times segmentation results of fat in peeled Korean pine seeds’ training and validation sets
切分次数 Number of segmentation | 样本集 Sample set | 脂肪Fat/% | |||
---|---|---|---|---|---|
最大值 Maximum | 最小值 Minimum | 均值 Mean | 标准差 Standard deviation | ||
1 | 训练集Training set | 69.93 | 60.04 | 63.48 | 2.27 |
验证集Validation set | 67.64 | 60.24 | 62.86 | 1.90 | |
2 | 训练集Training set | 69.93 | 60.04 | 63.25 | 2.19 |
验证集Validation set | 68.87 | 60.46 | 63.78 | 2.27 | |
3 | 训练集Training set | 69.93 | 60.04 | 63.33 | 2.23 |
验证集Validation set | 69.59 | 60.55 | 63.48 | 2.17 | |
4 | 训练集Training set | 69.93 | 60.04 | 63.26 | 2.20 |
验证集Validation set | 69.21 | 60.40 | 63.75 | 2.24 | |
5 | 训练集Training set | 69.93 | 60.04 | 63.36 | 2.17 |
验证集Validation set | 69.59 | 60.23 | 63.35 | 2.46 | |
6 | 训练集Training set | 69.93 | 60.04 | 63.25 | 2.57 |
验证集Validation set | 69.59 | 60.37 | 63.79 | 2.57 | |
7 | 训练集Training set | 69.93 | 60.04 | 63.34 | 2.24 |
验证集Validation set | 68.18 | 60.23 | 63.45 | 2.11 | |
8 | 训练集Training set | 69.93 | 60.04 | 63.45 | 2.22 |
验证集Validation set | 68.87 | 60.37 | 62.99 | 2.15 | |
9 | 训练集Training set | 69.93 | 60.04 | 63.38 | 2.22 |
验证集Validation set | 68.26 | 60.24 | 63.29 | 2.21 | |
10 | 训练集Training set | 69.93 | 60.04 | 63.34 | 2.15 |
验证集Validation set | 69.59 | 60.23 | 63.43 | 2.53 |
Fig.4 Spectrum curve graph of peeled Korean pine seeds after standard normalized variate+first derivative+orthogonal and compactly supported wavelet transformation pretreatment
Fig.9 Comparison for different dimension reduction, modeling methods and parameters of validation sets’ mean value of mean squared error mean-MSEV, Mean value of mean squared error of validation; Ridge, Ridge regression; SVR, Support vector regression; XGBoost, Extreme gradient boosting; PCA, Principal components analysis; Isomap, Isometric mapping; LLE, Locally linear embedding; MLLE, Modified locally linear embedding; LTSA, Local tangent space alignment; HLLE, Hessian based locally linear embedding.
Fig.10 The comparison of spectral signatures’ heat maps after different dimension reduction PCA, Principal components analysis; Isomap, Isometric mapping; LLE, Locally linear embedding; MLLE, Modified locally linear embedding; LTSA, Local tangent space alignment; HLLE, Hessian based locally linear embedding.
模型 Model | 最优参数 Optimal parameter | 维度 Dimension | mean-MSEV | mean-PCCV |
---|---|---|---|---|
PLS | components=9 | 9 | 1.519 2 | 0.813 3 |
PCA+Ridge | contribution=0.99 | 15/16 | 1.771 2 | 0.788 2 |
PCA+SVR | contribution=0.85 | 3 | 1.481 9 | 0.824 0 |
PCA+XGBoost | contribution=0.96 | 7 | 1.887 9 | 0.745 8 |
Isomap+Ridge | components=18, neighbors=50 | 18 | 1.413 3 | 0.833 5 |
Isomap+SVR | components=3, neighbors=90 | 3 | 1.436 9 | 0.825 4 |
Isomap+XGBoost | components=10, neighbors=100 | 10 | 1.403 7 | 0.838 2 |
LLE+Ridge | components=18, neighbors=70 | 18 | 0.797 4 | 0.874 7 |
LLE+SVR | components=16, neighbors=60 | 16 | 0.682 2 | 0.883 7 |
LLE+XGBoost | components=14, neighbors=60 | 14 | 0.989 5 | 0.851 3 |
MLLE+Ridge | components=18, neighbors=30 | 18 | 0.709 3 | 0.881 7 |
MLLE+SVR | components=16, neighbors=30 | 16 | 0.646 4 | 0.914 5 |
MLLE+XGBoost | components=16, neighbors=80 | 16 | 1.072 7 | 0.849 4 |
LTSA+Ridge | components=18, neighbors=60 | 18 | 0.759 9 | 0.879 6 |
LTSA+SVR | components=16, neighbors=20 | 16 | 0.743 5 | 0.880 2 |
LTSA+XGBoost | components=8, neighbors=70 | 8 | 1.193 7 | 0.841 8 |
HLLE+Ridge | components=10,neighbors=80 | 10 | 0.979 4 | 0.867 9 |
HLLE+SVR | components=8, neighbors=50 | 8 | 0.830 8 | 0.874 1 |
HLLE+XGBoost | components=8, neighbors=70 | 8 | 1.193 7 | 0.841 8 |
Table 2 The evaluating indicator comparison of optimal parameter models
模型 Model | 最优参数 Optimal parameter | 维度 Dimension | mean-MSEV | mean-PCCV |
---|---|---|---|---|
PLS | components=9 | 9 | 1.519 2 | 0.813 3 |
PCA+Ridge | contribution=0.99 | 15/16 | 1.771 2 | 0.788 2 |
PCA+SVR | contribution=0.85 | 3 | 1.481 9 | 0.824 0 |
PCA+XGBoost | contribution=0.96 | 7 | 1.887 9 | 0.745 8 |
Isomap+Ridge | components=18, neighbors=50 | 18 | 1.413 3 | 0.833 5 |
Isomap+SVR | components=3, neighbors=90 | 3 | 1.436 9 | 0.825 4 |
Isomap+XGBoost | components=10, neighbors=100 | 10 | 1.403 7 | 0.838 2 |
LLE+Ridge | components=18, neighbors=70 | 18 | 0.797 4 | 0.874 7 |
LLE+SVR | components=16, neighbors=60 | 16 | 0.682 2 | 0.883 7 |
LLE+XGBoost | components=14, neighbors=60 | 14 | 0.989 5 | 0.851 3 |
MLLE+Ridge | components=18, neighbors=30 | 18 | 0.709 3 | 0.881 7 |
MLLE+SVR | components=16, neighbors=30 | 16 | 0.646 4 | 0.914 5 |
MLLE+XGBoost | components=16, neighbors=80 | 16 | 1.072 7 | 0.849 4 |
LTSA+Ridge | components=18, neighbors=60 | 18 | 0.759 9 | 0.879 6 |
LTSA+SVR | components=16, neighbors=20 | 16 | 0.743 5 | 0.880 2 |
LTSA+XGBoost | components=8, neighbors=70 | 8 | 1.193 7 | 0.841 8 |
HLLE+Ridge | components=10,neighbors=80 | 10 | 0.979 4 | 0.867 9 |
HLLE+SVR | components=8, neighbors=50 | 8 | 0.830 8 | 0.874 1 |
HLLE+XGBoost | components=8, neighbors=70 | 8 | 1.193 7 | 0.841 8 |
[1] | 孟祥茹, 胡乐乾, 琚荧, 等. 食用油中多环芳烃检测的前处理方法研究进展[J]. 食品科学, 2022, 43(11): 373-382. |
MENG X R, HU L Q, JU Y, et al. Recent advances in pretreatment methods for the detection of polycyclic aromatic hydrocarbons in edible oil[J]. Food Science, 2022, 43(11): 373-382. (in Chinese with English abstract) | |
[2] | FERREIRA D S, GALÃO O F, PALLONE J A L, et al. Comparison and application of near-infrared (NIR) and mid-infrared (MIR) spectroscopy for determination of quality parameters in soybean samples[J]. Food Control, 2014, 35(1): 227-232. |
[3] | FERREIRA D, PALLONE J, POPPI R. Comparison and application of near-infrared (NIR) and mid-infrared (MIR) spectroscopy for determination of quality parameters in soybean samples[J]. Food Control, 2014, 35(1): 227. |
[4] | YıLMAZ N. Middle infrared stabilization of individual rice bran milling fractions[J]. Food Chemistry, 2016, 190: 179-185. |
[5] | XIE A G, SUN D W, XU Z Y, et al. Rapid detection of frozen pork quality without thawing by Vis-NIR hyperspectral imaging technique[J]. Talanta, 2015, 139: 208-215. |
[6] | LÉNÁRT J, SZIGEDI T, DERNOVICS M, et al. Application of FT-NIR spectroscopy on the determination of the fat and protein contents of lyophilized cheeses[J]. Acta Alimentaria, 2012, 41(3): 351-362. |
[7] | 刘丽娜, 马世伟, 芮玲. 基于可信赖性和连续性的流形降维效果评价方法[J]. 计算机应用研究, 2018, 35(6): 1707-1711. |
LIU L N, MA S W, RUI L. Evaluation method for manifold dimensionality reduction effect based on trustworthiness and continuity[J]. Application Research of Computers, 2018, 35(6): 1707-1711. (in Chinese with English abstract) | |
[8] | 吕飞, 韩敏. 基于深度极限学习机的高光谱遥感影像分类研究[J]. 大连理工大学学报, 2018, 58(2): 166-173. |
LYU F, HAN M. Hyperspectral remote sensing image classification based on deep extreme learning machine[J]. Journal of Dalian University of Technology, 2018, 58(2): 166-173. (in Chinese with English abstract) | |
[9] | 李路, 黄汉英, 赵思明, 等. 大米蛋白质、脂肪、总糖、水分近红外检测模型研究[J]. 中国粮油学报, 2017, 32(7): 121-126. |
LI L, HUANG H Y, ZHAO S M, et al. NIR spectra detection model of protein, fat, total sugar and moisture in rice[J]. Journal of the Chinese Cereals and Oils Association, 2017, 32(7): 121-126. (in Chinese with English abstract) | |
[10] | 周菲, 王文军, 刘岩, 等. 向日葵籽仁脂肪和脂肪酸含量近红外光谱模型的建立[J]. 作物杂志, 2021(2): 200-206. |
ZHOU F, WANG W J, LIU Y, et al. Establishment of near-infrared spectroscopy model for the contents of fat and fatty acids in sunflower husked seeds[J]. Crops, 2021(2): 200-206. (in Chinese with English abstract) | |
[11] | LOPEZ E, GONZALEZ D, AGUADO J V, et al. A manifold learning approach for integrated computational materials engineering[J]. Archives of Computational Methods in Engineering, 2018, 25(1): 59-68. |
[12] | LIANG Y M, SHIH S W, SHIH A C C. Human action segmentation and classification based on the Isomap algorithm[J]. Multimedia Tools and Applications, 2013, 62(3): 561-580. |
[13] | 杨福臣, 孙兆远, 孙芝杨. 乳粉中蛋白质和脂肪近红外测定模型研究[J]. 食品研究与开发, 2017, 38(2): 169-173. |
YANG F C, SUN Z Y, SUN Z Y. Research on near infrared determination model of milk powder protein and fat[J]. Food Research and Development, 2017, 38(2): 169-173. (in Chinese with English abstract) | |
[14] | 王海莲, 万向元, 胡培松, 等. 稻米脂肪含量近红外光谱分析技术研究[J]. 中国农业科学, 2005, 38(8): 1540-1546. |
WANG H L, WAN X Y, HU P S, et al. Quantitative analysis of fat content in brown rice by near infrared spectroscopy (NIRS) technique[J]. Scientia Agricultura Sinica, 2005, 38(8): 1540-1546. (in Chinese with English abstract) | |
[15] | 李跑, 吴红艳, 李尚科, 等. 近红外光谱技术结合化学计量方法用于大米的快速分析[J]. 食品研究与开发, 2018, 39(19): 117-124. |
LI P, WU H Y, LI S K, et al. Near infrared spectroscopy combined with chemometrics method for rapid analysis of rice[J]. Food Research and Development, 2018, 39(19): 117-124. (in Chinese with English abstract) | |
[16] | 张中卫, 温志渝, 曾甜玲, 等. 微型近红外光纤光谱仪用于奶粉中蛋白质脂肪的定量检测研究[J]. 光谱学与光谱分析, 2013, 33(7): 1796-1800. |
ZHANG Z W, WEN Z Y, ZENG T L, et al. Miniature near-infrared fibre optic spectrometer for the quantitative detection of protein and fat in milk powder[J]. Spectroscopy and Spectral Analysis, 2013, 33(7): 1796-1800. (in Chinese with English abstract) | |
[17] | 洛曲, 于修烛, 张建新, 等. 基于近红外光谱的藏区酥油脂肪和蛋白质含量快速检测分析[J]. 中国油脂, 2018, 43(3): 136-140. |
LUO Q, YU X Z, ZHANG J X, et al. Rapid determination of fat and protein contents in ghee using near-infrared spectroscopy[J]. China Oils and Fats, 2018, 43(3): 136-140. (in Chinese with English abstract) | |
[18] | 雷雨梦, 闫国超, 杨静, 等. 青花菜中矿质元素的近红外光谱快速测定[J]. 浙江农业学报, 2022, 34(3): 548-556. |
LEI Y M, YAN G C, YANG J, et al. Rapid determination of mineral elements in broccoli by near-infrared spectroscopy[J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 548-556. (in Chinese with English abstract) | |
[19] | 谢德红, 李俊锋, 刘菂, 等. 基于改进Hodrick-Prescott分解模型的近红外自适应降噪方法[J]. 光谱学与光谱分析, 2020, 40(5): 1650-1655. |
XIE D H, LI J F, LIU D, et al. An improved hodrick-prescott decomposition based near-infrared adaptive denoising method[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1650-1655. (in Chinese with English abstract) | |
[20] | 李耀翔, 李颖, 姜立春. 基于小波压缩的木材密度近红外光谱的预处理研究[J]. 北京林业大学学报, 2016, 38(3): 89-94. |
LI Y X, LI Y, JIANG L C. Pretreatment of near-infrared spectroscopy of wood based on wavelet compression[J]. Journal of Beijing Forestry University, 2016, 38(3): 89-94. (in Chinese with English abstract) | |
[21] | CORTÉS V, RODRÍGUEZ A, BLASCO J, et al. Prediction of the level of astringency in persimmon using visible and near-infrared spectroscopy[J]. Journal of Food Engineering, 2017, 204: 27-37. |
[22] | ZHANG Y C, DUCHI J C, WAINWRIGHT M J. Divide and conquer kernel ridge regression: a distributed algorithm with minimax optimal rates[EB/OL]. 2013: arXiv: 1305.5029. https://arxiv.org/abs/1305.5029. |
[23] | CALDERÓN R, NAVAS-CORTÉS J, ZARCO-TEJADA P. Early detection and quantification of Verticillium wilt in olive using hyperspectral and thermal imagery over large areas[J]. Remote Sensing, 2015, 7(5): 5584-5610. |
[24] | LI K, RÜDIGER H, ZIEMSSEN T. Spectral analysis of heart rate variability: time window matters[J]. Frontiers in Neurology, 2019, 10: 545. |
[25] | 付波霖, 邓良超, 张丽, 等. 联合星载高光谱影像和堆栈集成学习回归算法的红树林冠层叶绿素含量遥感反演[J]. 遥感学报, 2022, 26(6): 1182-1205. |
FU B L, DENG L C, ZHANG L, et al. Estimation of mangrove canopy chlorophyll content using hyperspectral image and stacking ensemble regression algorithm[J]. National Remote Sensing Bulletin, 2022, 26(6): 1182-1205. (in Chinese with English abstract) |
[1] | SONG Biqing, YANG Xiaodong, ZHENG Yunye, WANG Guoping, XU Shengchun, ZHAO Yan, ZHAO Shanshan, MA Yuxuan, LI Sujuan. Evaluation of physicochemical properties, fatty acids and volatile components of different tobacco seed oils [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1152-1161. |
[2] | LI Yanle, ZHONG Huairong, XUAN Ning, ZHANG Yan, CHEN Gao, JI Xiang. Effects of over expression of phosphopantetheinyl transferases gene on fatty acid synthesis in Synechocystis sp. PCC6803 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1316-1325. |
[3] | LI Wenlue, LUO Xiahong, LIU Tingting, JIN Guanrong, GE Yaying, CHEN Changli, AN Xia. Determination and comparative analysis of physicochemical properties of different sunflower seeds [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 671-677. |
[4] | LIN Yuqing, LU Shengmin, ZHOU Wanyi, XING Jianrong, YANG Ying. Preliminary investigation about structure and probiotic properties of polysaccharides from Dendrobium officinale leaves [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2504-2511. |
[5] | TANG Jianing, WANG Yongxia, LIU Jinsong, ZENG Xinfu, YANG Caimei. Bacteriostatic effect of medium-chain fatty acids and their esters on pathogenic bacteria [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1611-1616. |
[6] | ZHU Haixia, MA Yongqiang, XIAN Wenrong. Effect of Trichoderma polysporum HZ-31 infection on physiological mechanism of Avena fatua L. [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 490-496. |
[7] | LU Wenjing, CHEN Di, YE Qin, CHEN Yidan, ZHAO Wensheng, XIAO Chaogeng. Development of dietary fiber pork floss for children [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2137-2144. |
[8] | DU Jinliang, CAO Liping, JIA Rui, GU Zhengyan, HE Qin, XU Pao, JENEY Galina, MA Yuzhong, YIN Guojun. Protective effects of Glycyrrhiza total flavones on liver injury of tilapia (Oreochromis niloticus) under high fat condition [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1826-1835. |
[9] | JIANG Qiufei, CAI Zhengyun, HUANG Zengwen, FENG Xiaofang, ZHANG Juan, GU Yaling. Functional analysis of EEF1D mutation site in dairy cow milk fat traits candidate gene [J]. , 2020, 32(7): 1155-1159. |
[10] | LU Xiaoyuan, ZHONG Huairong, XIA Zhijie, CAO Yuelei, CHEN Gao, DAI Meixue. Effects of overexpression of acyl carrier protein gene in Synechocystis on fatty acids synthesis [J]. , 2020, 32(7): 1253-1262. |
[11] | LIU Tao, ZHANG Chipeng, HAO Yaoling, QIU Lijuan, HUANG Chenchen. Effects of sulfate on reduction and transformation of soil iron minerals and arsenic release [J]. , 2020, 32(4): 678-684. |
[12] | LIU Bin, CHEN Ying, JIANG Xiaobing, GUO Zhixian, HE Zhiping, ZHONG Zhijun, ZHANG Shunhua, ZHU Li. Effect of backfat thickness on body condition score and reproductive performance of sows during pregnancy [J]. , 2020, 32(3): 390-397. |
[13] | LI Meilin, CHEN Yutiao, HONG Xiaofu, QIAO Yuying, WANG Qingxia, CHEN Xijing, SHEN Alin, YU Man. Effects of nitrogen management on soil microbial community structure in paddy fields [J]. , 2020, 32(2): 308-316. |
[14] | SHAO Jiahao, WANG Jie, JIA Xianbo, CHEN Shiyi, LAI Songjia. Research progress of microRNA in rabbits [J]. , 2020, 32(1): 176-182. |
[15] | ZHU Yingkun, XIAO Jinbang, QIAN Bolin, JIANG Sixun, YOU Liuchao, ZHANG Yue, LIU Hong, MA Li, CAO Suizhong, YU Shumin, SHEN Liuhong. Correlations between adipokine, biochemical indicators in early lactation cows with fatty liver [J]. , 2019, 31(5): 722-729. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 413
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 158
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||