Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (5): 1107-1120.DOI: 10.3969/j.issn.1004-1524.20240522
• Plant Protection • Previous Articles Next Articles
LI Tao1,2(), JIANG Haiyan1, ZHANG Yuanpeng1, ZHAO Qin1, WU Fang1,*(
), ZHU Yanguang3, LI Dandan3, HE Yang4
Received:
2024-06-18
Online:
2025-05-25
Published:
2025-06-11
CLC Number:
LI Tao, JIANG Haiyan, ZHANG Yuanpeng, ZHAO Qin, WU Fang, ZHU Yanguang, LI Dandan, HE Yang. Potential geographical distribution of Cryptolestes turcicus (Grouville) in China based on MaxEnt model[J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1107-1120.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240522
环境因子代号 Code of environmrntal factor | 环境因子含义 Description for environment factor | 单位 Unit |
---|---|---|
Bio1 | 年平均气温Annual average temperature | ℃ |
Bio2 | 平均气温日较差Mean daily temperature range | ℃ |
Bio3 | 等温性Isothermality | |
Bio4 | 气温季节性变动系数Seasonal variation coefficient of temperature | |
Bio5 | 最热月份最高温度Maximum temperature in the hottest month | ℃ |
Bio6 | 最冷月份最低温度Minimum temperature in the coldest month | ℃ |
Bio7 | 最冷月份最低温度差The minimum temperature difference in the coldest month | ℃ |
Bio8 | 最湿季度平均温度Average temperature of the wettest quarter | ℃ |
Bio9 | 最干季度平均温度Average temperature of the driest quarter | ℃ |
Bio10 | 最暖季度平均温度Average temperature of the warmest quarter | ℃ |
Bio11 | 最冷季度平均温度Average temperature of the coldest quarter | ℃ |
Bio12 | 年降水量Annual precipitation | mm |
Bio13 | 最湿月份降水量Precipitation in the wettest month | mm |
Bio14 | 最干月份降水量Precipitation in the driest month | mm |
Bio15 | 降水量季节性变化Seasonal variation of precipitation | mm |
Bio16 | 最干季度降水量Precipitation in the driest quarter | mm |
Bio17 | 最湿季度降水量Precipitation in the wettest quarter | mm |
Bio18 | 最暖季度降水量Precipitation in the warmest quarter | mm |
Bio19 | 最冷季度降水量Precipitation in the coldest quarter | mm |
Prec1-12 | 1~12月平均降水量 Average precipitation from January to December | mm |
Tmin1-12 | 1~12月平均最低温度 Average minimum temperature from January to December | ℃ |
Tmax1-12 | 1~12月平均最高温度Average maximum temperature from January to December | ℃ |
Altitude | 海拔Altitude | m |
Table 1 Environmental factors for potential geographical distribution modeling of Cryptolestes turcicus
环境因子代号 Code of environmrntal factor | 环境因子含义 Description for environment factor | 单位 Unit |
---|---|---|
Bio1 | 年平均气温Annual average temperature | ℃ |
Bio2 | 平均气温日较差Mean daily temperature range | ℃ |
Bio3 | 等温性Isothermality | |
Bio4 | 气温季节性变动系数Seasonal variation coefficient of temperature | |
Bio5 | 最热月份最高温度Maximum temperature in the hottest month | ℃ |
Bio6 | 最冷月份最低温度Minimum temperature in the coldest month | ℃ |
Bio7 | 最冷月份最低温度差The minimum temperature difference in the coldest month | ℃ |
Bio8 | 最湿季度平均温度Average temperature of the wettest quarter | ℃ |
Bio9 | 最干季度平均温度Average temperature of the driest quarter | ℃ |
Bio10 | 最暖季度平均温度Average temperature of the warmest quarter | ℃ |
Bio11 | 最冷季度平均温度Average temperature of the coldest quarter | ℃ |
Bio12 | 年降水量Annual precipitation | mm |
Bio13 | 最湿月份降水量Precipitation in the wettest month | mm |
Bio14 | 最干月份降水量Precipitation in the driest month | mm |
Bio15 | 降水量季节性变化Seasonal variation of precipitation | mm |
Bio16 | 最干季度降水量Precipitation in the driest quarter | mm |
Bio17 | 最湿季度降水量Precipitation in the wettest quarter | mm |
Bio18 | 最暖季度降水量Precipitation in the warmest quarter | mm |
Bio19 | 最冷季度降水量Precipitation in the coldest quarter | mm |
Prec1-12 | 1~12月平均降水量 Average precipitation from January to December | mm |
Tmin1-12 | 1~12月平均最低温度 Average minimum temperature from January to December | ℃ |
Tmax1-12 | 1~12月平均最高温度Average maximum temperature from January to December | ℃ |
Altitude | 海拔Altitude | m |
省级 Provincial level(number) | 地市级 Municipal level | 经度 Longitude | 纬度 Latitude | 海拔 Altitude | 省级 Provincial level(number) | 地市级 Municipal level | 经度 Longitude | 纬度 Latitude | 海拔 Altitude |
---|---|---|---|---|---|---|---|---|---|
安徽 Anhui(5) | 安庆Anqing | 116.51 | 30.55 | 30 | 吉林Jilin(5) | 白城Baicheng | 122.80 | 45.66 | 160 |
滁州Chuzhou | 118.10 | 32.88 | 30 | 四平Siping | 124.34 | 43.19 | 301 | ||
阜阳Fuyang | 116.26 | 32.65 | 20 | 松源Songyuan | 124.82 | 45.15 | 180 | ||
黄山Huangshan | 118.60 | 29.74 | 122 | 延边Yanbian | 129.14 | 43.17 | 190 | ||
六安Lu'an | 116.52 | 31.56 | 60 | 长春Changchun | 125.31 | 43.86 | 276 | ||
福建 Fujian(5) | 福州Fuzhou | 119.30 | 26.14 | 10 | 湖南Hunan(2) | 益阳Yiyang | 112.37 | 28.58 | 81 |
龙岩Longyan | 117.02 | 25.08 | 329 | 岳阳Yueyang | 113.13 | 29.39 | 37 | ||
南平Nanping | 117.33 | 27.35 | 6 | 江西Jiangxi(3) | 高安Gaoan | 115.38 | 28.42 | 47 | |
厦门Xiamen | 118.08 | 24.49 | 2 | 南昌Nanchang | 115.84 | 28.72 | 16 | ||
漳州Zhangzhou | 117.65 | 24.54 | 19 | 萍乡Pingxiang | 113.85 | 27.65 | 96 | ||
甘肃 Gansu(2) | 陇南Longnan | 105.27 | 33.25 | 1 688 | 江苏 Jiangsu(2) | 连云港Lianyungang | 119.12 | 34.84 | 20 |
武威Wuwei | 102.56 | 38.09 | 1 632 | 南通Nantong | 119.12 | 32.07 | 20 | ||
广东 Guangdong(6) | 东莞Dongguan | 113.76 | 23.04 | 6 | 湖北 Hubei(6) | 恩施Enshi | 109.49 | 30.30 | 490 |
惠州Huizhou | 114.42 | 23.12 | 21 | 黄冈Huanggang | 114.87 | 30.46 | 49 | ||
茂名Maoming | 110.93 | 21.70 | 30 | 荆门Jingmen | 112.19 | 31.08 | 87 | ||
梅州Meizhou | 116.12 | 24.32 | 86 | 荆州Jingzhou | 112.21 | 30.39 | 34 | ||
汕头Shantou | 116.68 | 23.37 | 8 | 武汉Wuhan | 114.29 | 30.63 | 16 | ||
阳江Yangjiang | 111.98 | 21.91 | 4 | 襄阳Xiangyang | 112.10 | 32.04 | 70 | ||
广西 Guangxi(2) | 北海Beihai | 109.13 | 21.49 | 21 | 四川 Sichuan(2) | 成都Chengdu | 104.08 | 30.66 | 500 |
南宁Nanning | 108.37 | 22.82 | 79 | 西昌Xichang | 102.27 | 27.90 | 1 590 | ||
贵州 Guizhou(3) | 贵阳Guiyang | 106.41 | 26.33 | 1 758 | 陕西 Shannxi(3) | 宝鸡Baoji | 107.24 | 34.37 | 618 |
六盘水Liupanshui | 104.84 | 26.60 | 1 797 | 商洛Shangluo | 110.07 | 33.81 | 673 | ||
遵义Zunyi | 106.93 | 27.73 | 1 100 | 咸阳Xianyang | 108.72 | 34.34 | 383 | ||
河北 Hebei(5) | 承德Chengde | 117.93 | 40.98 | 325 | 宁夏 Ningxia(3) | 固原Guyuan | 106.57 | 36.19 | 1 219 |
邯郸Handan | 114.51 | 36.65 | 55 | 吴忠Wuzhong | 106.54 | 36.17 | 1 173 | ||
秦皇岛Qinghuangdao | 119.59 | 39.95 | 4 | 银川Yinchuan | 106.24 | 38.49 | 1 200 | ||
石家庄Shijiazhuang | 114.47 | 38.07 | 82 | 新疆 Xijiang(2) | 喀什Kashi | 76.00 | 39.48 | 1 289 | |
张家口Zhangjiakou | 114.86 | 40.79 | 716 | 伊宁Yining | 81.54 | 43.99 | 836 | ||
黑龙江 Heilongjiang(6) | 哈尔滨Harbin | 126.52 | 45.83 | 118 | 山东 Shandong(4) | 济南Jinan | 117.11 | 36.70 | 149 |
黑河Heihe | 127.54 | 50.25 | 122 | 聊城Liaocheng | 115.99 | 36.50 | 37 | ||
牡丹江Mudanjiang | 129.63 | 44.56 | 234 | 青岛Qingdao | 120.36 | 36.09 | 6 | ||
齐齐哈尔Qiqihar | 123.92 | 47.39 | 149 | 日照Rizhao | 119.52 | 35.45 | 37 | ||
双鸭山Shuangyashan | 131.17 | 46.66 | 179 | 云南 Yunnan(2) | 昆明Kunming | 102.84 | 24.91 | 1930 | |
绥化Suihua | 126.95 | 46.69 | 175 | 曲靖Qujing | 103.78 | 25.54 | 1 874 | ||
北京Beijing(1) | 北京Beijing | 115.98 | 40.46 | 484 | 内蒙古 Inner Mongolia(4) | 巴彦淖尔Bayannur | 107.36 | 40.79 | 1 042 |
海南Hainan(1) | 琼海Qionghai | 110.20 | 20.04 | 18 | 鄂尔多斯Ordos | 109.79 | 39.64 | 1 311 | |
重庆Chongqing(1) | 重庆Chongqing | 106.06 | 29.85 | 444 | 呼和浩特Hohhot | 111.76 | 40.89 | 1 072 | |
浙江Zhejiang(1) | 宁波Ningbo | 121.56 | 29.89 | 10 | 锡林郭勒Xilin Gol League | 116.12 | 43.93 | 987 |
Table 2 Distribution points of Cryptolestes turcicus
省级 Provincial level(number) | 地市级 Municipal level | 经度 Longitude | 纬度 Latitude | 海拔 Altitude | 省级 Provincial level(number) | 地市级 Municipal level | 经度 Longitude | 纬度 Latitude | 海拔 Altitude |
---|---|---|---|---|---|---|---|---|---|
安徽 Anhui(5) | 安庆Anqing | 116.51 | 30.55 | 30 | 吉林Jilin(5) | 白城Baicheng | 122.80 | 45.66 | 160 |
滁州Chuzhou | 118.10 | 32.88 | 30 | 四平Siping | 124.34 | 43.19 | 301 | ||
阜阳Fuyang | 116.26 | 32.65 | 20 | 松源Songyuan | 124.82 | 45.15 | 180 | ||
黄山Huangshan | 118.60 | 29.74 | 122 | 延边Yanbian | 129.14 | 43.17 | 190 | ||
六安Lu'an | 116.52 | 31.56 | 60 | 长春Changchun | 125.31 | 43.86 | 276 | ||
福建 Fujian(5) | 福州Fuzhou | 119.30 | 26.14 | 10 | 湖南Hunan(2) | 益阳Yiyang | 112.37 | 28.58 | 81 |
龙岩Longyan | 117.02 | 25.08 | 329 | 岳阳Yueyang | 113.13 | 29.39 | 37 | ||
南平Nanping | 117.33 | 27.35 | 6 | 江西Jiangxi(3) | 高安Gaoan | 115.38 | 28.42 | 47 | |
厦门Xiamen | 118.08 | 24.49 | 2 | 南昌Nanchang | 115.84 | 28.72 | 16 | ||
漳州Zhangzhou | 117.65 | 24.54 | 19 | 萍乡Pingxiang | 113.85 | 27.65 | 96 | ||
甘肃 Gansu(2) | 陇南Longnan | 105.27 | 33.25 | 1 688 | 江苏 Jiangsu(2) | 连云港Lianyungang | 119.12 | 34.84 | 20 |
武威Wuwei | 102.56 | 38.09 | 1 632 | 南通Nantong | 119.12 | 32.07 | 20 | ||
广东 Guangdong(6) | 东莞Dongguan | 113.76 | 23.04 | 6 | 湖北 Hubei(6) | 恩施Enshi | 109.49 | 30.30 | 490 |
惠州Huizhou | 114.42 | 23.12 | 21 | 黄冈Huanggang | 114.87 | 30.46 | 49 | ||
茂名Maoming | 110.93 | 21.70 | 30 | 荆门Jingmen | 112.19 | 31.08 | 87 | ||
梅州Meizhou | 116.12 | 24.32 | 86 | 荆州Jingzhou | 112.21 | 30.39 | 34 | ||
汕头Shantou | 116.68 | 23.37 | 8 | 武汉Wuhan | 114.29 | 30.63 | 16 | ||
阳江Yangjiang | 111.98 | 21.91 | 4 | 襄阳Xiangyang | 112.10 | 32.04 | 70 | ||
广西 Guangxi(2) | 北海Beihai | 109.13 | 21.49 | 21 | 四川 Sichuan(2) | 成都Chengdu | 104.08 | 30.66 | 500 |
南宁Nanning | 108.37 | 22.82 | 79 | 西昌Xichang | 102.27 | 27.90 | 1 590 | ||
贵州 Guizhou(3) | 贵阳Guiyang | 106.41 | 26.33 | 1 758 | 陕西 Shannxi(3) | 宝鸡Baoji | 107.24 | 34.37 | 618 |
六盘水Liupanshui | 104.84 | 26.60 | 1 797 | 商洛Shangluo | 110.07 | 33.81 | 673 | ||
遵义Zunyi | 106.93 | 27.73 | 1 100 | 咸阳Xianyang | 108.72 | 34.34 | 383 | ||
河北 Hebei(5) | 承德Chengde | 117.93 | 40.98 | 325 | 宁夏 Ningxia(3) | 固原Guyuan | 106.57 | 36.19 | 1 219 |
邯郸Handan | 114.51 | 36.65 | 55 | 吴忠Wuzhong | 106.54 | 36.17 | 1 173 | ||
秦皇岛Qinghuangdao | 119.59 | 39.95 | 4 | 银川Yinchuan | 106.24 | 38.49 | 1 200 | ||
石家庄Shijiazhuang | 114.47 | 38.07 | 82 | 新疆 Xijiang(2) | 喀什Kashi | 76.00 | 39.48 | 1 289 | |
张家口Zhangjiakou | 114.86 | 40.79 | 716 | 伊宁Yining | 81.54 | 43.99 | 836 | ||
黑龙江 Heilongjiang(6) | 哈尔滨Harbin | 126.52 | 45.83 | 118 | 山东 Shandong(4) | 济南Jinan | 117.11 | 36.70 | 149 |
黑河Heihe | 127.54 | 50.25 | 122 | 聊城Liaocheng | 115.99 | 36.50 | 37 | ||
牡丹江Mudanjiang | 129.63 | 44.56 | 234 | 青岛Qingdao | 120.36 | 36.09 | 6 | ||
齐齐哈尔Qiqihar | 123.92 | 47.39 | 149 | 日照Rizhao | 119.52 | 35.45 | 37 | ||
双鸭山Shuangyashan | 131.17 | 46.66 | 179 | 云南 Yunnan(2) | 昆明Kunming | 102.84 | 24.91 | 1930 | |
绥化Suihua | 126.95 | 46.69 | 175 | 曲靖Qujing | 103.78 | 25.54 | 1 874 | ||
北京Beijing(1) | 北京Beijing | 115.98 | 40.46 | 484 | 内蒙古 Inner Mongolia(4) | 巴彦淖尔Bayannur | 107.36 | 40.79 | 1 042 |
海南Hainan(1) | 琼海Qionghai | 110.20 | 20.04 | 18 | 鄂尔多斯Ordos | 109.79 | 39.64 | 1 311 | |
重庆Chongqing(1) | 重庆Chongqing | 106.06 | 29.85 | 444 | 呼和浩特Hohhot | 111.76 | 40.89 | 1 072 | |
浙江Zhejiang(1) | 宁波Ningbo | 121.56 | 29.89 | 10 | 锡林郭勒Xilin Gol League | 116.12 | 43.93 | 987 |
区域 Region | 非适生区 Unsuitable area | 低适生区 Marginally suitable area | 中适生区 Moderate suitable area | 高适生区 Highly suitable area | 最佳适生区 Most suitable area |
---|---|---|---|---|---|
安徽Anhui | 0.01 | 0.35 | 2.18 | 3.33 | 7.49 |
北京Beijing | 0 | 0.01 | 0.09 | 1.45 | 0.19 |
福建Fujian | 0.01 | 0.86 | 5.29 | 2.98 | 1.76 |
甘肃Gansu | 25.63 | 6.78 | 7.95 | 2.92 | 0.33 |
广东Guangdong | 0.03 | 0.79 | 4.89 | 4.67 | 5.16 |
广西Guangxi | 0.18 | 1.89 | 9.00 | 5.84 | 4.01 |
贵州Guizhou | 0.01 | 0.60 | 12.34 | 3.03 | 0 |
海南Hainan | 0.02 | 1.16 | 0.97 | 0.27 | 0.46 |
河北Hebei | 0.03 | 3.14 | 5.19 | 7.36 | 3.90 |
河南Henan | 0 | 0 | 0.15 | 6.12 | 9.87 |
黑龙江Heilongjiang | 16.15 | 16.84 | 16.92 | 4.41 | 0.07 |
湖北Hubei | 0.01 | 1.18 | 3.16 | 6.24 | 6.97 |
湖南Hunan | 0.02 | 1.90 | 10.58 | 5.09 | 1.79 |
吉林Jilin | 0.29 | 10.71 | 5.55 | 4.60 | 0.14 |
江苏Jiangsu | 0 | 0.80 | 2.31 | 2.31 | 4.30 |
江西Jiangxi | 0.02 | 0.78 | 7.53 | 4.54 | 2.41 |
辽宁Liaoning | 0 | 2.15 | 5.18 | 7.36 | 0.87 |
内蒙古Inner Mongolia | 52.47 | 52.73 | 16.55 | 7.19 | 0.01 |
宁夏Ningxia | 0 | 1.27 | 3.58 | 0.43 | 0 |
青海Qinghai | 67.59 | 1.48 | 0.27 | 0.05 | 0 |
山东Shandong | 0 | 0.06 | 0.62 | 4.14 | 10.54 |
山西Shanxi | 0.68 | 6.42 | 5.66 | 3.06 | 0.16 |
陕西Shaanxi | 0.02 | 3.12 | 6.38 | 9.61 | 1.23 |
上海Shanghai | 0 | 0.01 | 0.10 | 0.15 | 0.34 |
四川Sichuan | 21.57 | 5.33 | 7.36 | 8.80 | 2.68 |
天津Tianjin | 0 | 0.05 | 0.59 | 0.55 | 0.01 |
西藏Xizang | 107.89 | 4.35 | 1.81 | 0.05 | 0.08 |
新疆Xinjiang | 142.44 | 30.35 | 2.07 | 0.14 | 0 |
云南Yunnan | 2.51 | 10.74 | 16.07 | 4.65 | 0.32 |
浙江Zhejiang | 0.02 | 1.58 | 3.39 | 3.39 | 1.03 |
重庆Chongqing | 0.02 | 1.26 | 4.79 | 1.63 | 0 |
港澳台与其他Hong Kong, Macao, Taiwan and other | 2.58 | 0.78 | 0.36 | 0.17 | 0.25 |
合计Total | 440.21 | 169.44 | 168.87 | 116.53 | 66.35 |
Table 3 Suitable areas for Cryptolestes turcicus under current climate 104 km2
区域 Region | 非适生区 Unsuitable area | 低适生区 Marginally suitable area | 中适生区 Moderate suitable area | 高适生区 Highly suitable area | 最佳适生区 Most suitable area |
---|---|---|---|---|---|
安徽Anhui | 0.01 | 0.35 | 2.18 | 3.33 | 7.49 |
北京Beijing | 0 | 0.01 | 0.09 | 1.45 | 0.19 |
福建Fujian | 0.01 | 0.86 | 5.29 | 2.98 | 1.76 |
甘肃Gansu | 25.63 | 6.78 | 7.95 | 2.92 | 0.33 |
广东Guangdong | 0.03 | 0.79 | 4.89 | 4.67 | 5.16 |
广西Guangxi | 0.18 | 1.89 | 9.00 | 5.84 | 4.01 |
贵州Guizhou | 0.01 | 0.60 | 12.34 | 3.03 | 0 |
海南Hainan | 0.02 | 1.16 | 0.97 | 0.27 | 0.46 |
河北Hebei | 0.03 | 3.14 | 5.19 | 7.36 | 3.90 |
河南Henan | 0 | 0 | 0.15 | 6.12 | 9.87 |
黑龙江Heilongjiang | 16.15 | 16.84 | 16.92 | 4.41 | 0.07 |
湖北Hubei | 0.01 | 1.18 | 3.16 | 6.24 | 6.97 |
湖南Hunan | 0.02 | 1.90 | 10.58 | 5.09 | 1.79 |
吉林Jilin | 0.29 | 10.71 | 5.55 | 4.60 | 0.14 |
江苏Jiangsu | 0 | 0.80 | 2.31 | 2.31 | 4.30 |
江西Jiangxi | 0.02 | 0.78 | 7.53 | 4.54 | 2.41 |
辽宁Liaoning | 0 | 2.15 | 5.18 | 7.36 | 0.87 |
内蒙古Inner Mongolia | 52.47 | 52.73 | 16.55 | 7.19 | 0.01 |
宁夏Ningxia | 0 | 1.27 | 3.58 | 0.43 | 0 |
青海Qinghai | 67.59 | 1.48 | 0.27 | 0.05 | 0 |
山东Shandong | 0 | 0.06 | 0.62 | 4.14 | 10.54 |
山西Shanxi | 0.68 | 6.42 | 5.66 | 3.06 | 0.16 |
陕西Shaanxi | 0.02 | 3.12 | 6.38 | 9.61 | 1.23 |
上海Shanghai | 0 | 0.01 | 0.10 | 0.15 | 0.34 |
四川Sichuan | 21.57 | 5.33 | 7.36 | 8.80 | 2.68 |
天津Tianjin | 0 | 0.05 | 0.59 | 0.55 | 0.01 |
西藏Xizang | 107.89 | 4.35 | 1.81 | 0.05 | 0.08 |
新疆Xinjiang | 142.44 | 30.35 | 2.07 | 0.14 | 0 |
云南Yunnan | 2.51 | 10.74 | 16.07 | 4.65 | 0.32 |
浙江Zhejiang | 0.02 | 1.58 | 3.39 | 3.39 | 1.03 |
重庆Chongqing | 0.02 | 1.26 | 4.79 | 1.63 | 0 |
港澳台与其他Hong Kong, Macao, Taiwan and other | 2.58 | 0.78 | 0.36 | 0.17 | 0.25 |
合计Total | 440.21 | 169.44 | 168.87 | 116.53 | 66.35 |
Fig.2 The importance of environmental factor variables evaluated by Jackknife testing under current climate Tmin8, Average minimum temperature in August; Prec8, Aaverage precipitation in August. The other codes of environmental factors are the same as in Table 1. The same as below.
变量 Variable | 贡献率 Percent contribution/% | 随机分布重要性 Permutation importance |
---|---|---|
Tmin8 | 34.6 | 30.5 |
Altitude | 22.6 | 11.1 |
Prec8 | 10.5 | 9.9 |
Prec11 | 10.4 | 7.9 |
Prec5 | 6.3 | 13.0 |
Tmax9 | 6.0 | 5.6 |
Bio2 | 4.4 | 9.9 |
Bio4 | 2.8 | 7.4 |
Bio15 | 1.6 | 2.4 |
Bio3 | 0.8 | 2.3 |
Table 4 Results of Jackknife test of environmental factor variable importance of Cryptolestes turcicus
变量 Variable | 贡献率 Percent contribution/% | 随机分布重要性 Permutation importance |
---|---|---|
Tmin8 | 34.6 | 30.5 |
Altitude | 22.6 | 11.1 |
Prec8 | 10.5 | 9.9 |
Prec11 | 10.4 | 7.9 |
Prec5 | 6.3 | 13.0 |
Tmax9 | 6.0 | 5.6 |
Bio2 | 4.4 | 9.9 |
Bio4 | 2.8 | 7.4 |
Bio15 | 1.6 | 2.4 |
Bio3 | 0.8 | 2.3 |
气候模型 Climate model | 共享社会经济路 Shared socio-economic pathway | 时期 Period | AUC | 面积Area/10104 km2 | 占比Ratio/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
非适生区 Unsuitable area | 低适生区 Marginally suitable area | 中适生区 Moderate suitable area | 高适生区 Highly suitable area | 最佳适生区 Most suitable area | 非适生区 Unsuitable area | 低适生区 Marginally suitable area | 中适生区 Moderate suitable area | 高适生区 Highly suitable area | 最佳适生区 Most suitable area | ||||
BCC_CSM2_MR | SSP245 | 2021--2040 | 0.888 | 439.59(−) | 168.60(−) | 162.89(−) | 127.82 | 62.50(−) | 45.7 | 17.5 | 16.9 | 13.3 | 6.5 |
2041--2060 | 0.858 | 373.62(−) | 186.93 | 173.81 | 143.53 | 83.51 | 38.9 | 19.4 | 18.1 | 14.9 | 8.7 | ||
SSP585 | 2021--2040 | 0.878 | 410.60(−) | 139.43(−) | 184.06 | 145.95 | 81.35 | 42.7 | 14.5 | 19.1 | 15.2 | 8.5 | |
2041--2060 | 0.881 | 414.27(−) | 170.79 | 176.92 | 135.90 | 63.52(−) | 43.1 | 17.8 | 18.4 | 14.1 | 6.6 | ||
IPSL_CM6A_LR | SSP245 | 2021--2040 | 0.873 | 408.22(−) | 160.54(−) | 191.82 | 125.93 | 74.88 | 42.5 | 16.7 | 20.0 | 13.1 | 7.8 |
2041--2060 | 0.875 | 409.05(−) | 160.92(−) | 175.25 | 139.89 | 76.28 | 42.5 | 16.7 | 18.2 | 14.6 | 7.9 | ||
SSP585 | 2021--2040 | 0.863 | 424.02(−) | 142.43(−) | 153.06(−) | 132.32 | 109.58 | 44.1 | 14.8 | 15.9 | 13.8 | 11.4 | |
2041--2060 | 0.884 | 414.21(−) | 165.44(−) | 165.50(−) | 140.23 | 76.02 | 43.1 | 17.2 | 17.2 | 14.6 | 7.9 | ||
MIROC6 | SSP245 | 2021--2040 | 0.851 | 400.60(−) | 146.35(−) | 183.63 | 152.73 | 78.08 | 41.7 | 15.2 | 19.1 | 15.9 | 8.1 |
2041--2060 | 0.87 | 393.58(−) | 185.75 | 168.39(−) | 128.45 | 85.22 | 40.9 | 19.3 | 17.5 | 13.4 | 8.9 | ||
SSP585 | 2021--2040 | 0.879 | 430.46(−) | 146.13(−) | 163.13(−) | 119.45 | 102.23 | 44.8 | 15.2 | 17.0 | 12.4 | 10.6 | |
2041--2060 | 0.878 | 440.14(−) | 174.37 | 158.86(−) | 91.93(−) | 96.10 | 45.8 | 18.1 | 16.5 | 9.6 | 10.0 | ||
MRI_ESM2_0 | SSP245 | 2021--2040 | 0.865 | 403.25(−) | 165.43(−) | 191.48 | 124.10 | 77.14 | 41.9 | 17.2 | 19.9 | 12.9 | 8.0 |
2041--2060 | 0.875 | 406.53(−) | 169.61 | 182.63 | 121.67 | 80.96 | 42.3 | 17.6 | 19.0 | 12.7 | 8.4 | ||
SSP585 | 2021--2040 | 0.882 | 408.35(−) | 160.42(−) | 208.57 | 127.43 | 56.62(−) | 42.5 | 16.7 | 21.7 | 13.3 | 5.9 | |
2041--2060 | 0.874 | 406.38(−) | 173.13 | 157.14(−) | 132.54 | 92.21 | 42.3 | 18.0 | 16.3 | 13.8 | 9.6 |
Table 5 AUC and hierarchical suitable area under different climate scenarios
气候模型 Climate model | 共享社会经济路 Shared socio-economic pathway | 时期 Period | AUC | 面积Area/10104 km2 | 占比Ratio/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
非适生区 Unsuitable area | 低适生区 Marginally suitable area | 中适生区 Moderate suitable area | 高适生区 Highly suitable area | 最佳适生区 Most suitable area | 非适生区 Unsuitable area | 低适生区 Marginally suitable area | 中适生区 Moderate suitable area | 高适生区 Highly suitable area | 最佳适生区 Most suitable area | ||||
BCC_CSM2_MR | SSP245 | 2021--2040 | 0.888 | 439.59(−) | 168.60(−) | 162.89(−) | 127.82 | 62.50(−) | 45.7 | 17.5 | 16.9 | 13.3 | 6.5 |
2041--2060 | 0.858 | 373.62(−) | 186.93 | 173.81 | 143.53 | 83.51 | 38.9 | 19.4 | 18.1 | 14.9 | 8.7 | ||
SSP585 | 2021--2040 | 0.878 | 410.60(−) | 139.43(−) | 184.06 | 145.95 | 81.35 | 42.7 | 14.5 | 19.1 | 15.2 | 8.5 | |
2041--2060 | 0.881 | 414.27(−) | 170.79 | 176.92 | 135.90 | 63.52(−) | 43.1 | 17.8 | 18.4 | 14.1 | 6.6 | ||
IPSL_CM6A_LR | SSP245 | 2021--2040 | 0.873 | 408.22(−) | 160.54(−) | 191.82 | 125.93 | 74.88 | 42.5 | 16.7 | 20.0 | 13.1 | 7.8 |
2041--2060 | 0.875 | 409.05(−) | 160.92(−) | 175.25 | 139.89 | 76.28 | 42.5 | 16.7 | 18.2 | 14.6 | 7.9 | ||
SSP585 | 2021--2040 | 0.863 | 424.02(−) | 142.43(−) | 153.06(−) | 132.32 | 109.58 | 44.1 | 14.8 | 15.9 | 13.8 | 11.4 | |
2041--2060 | 0.884 | 414.21(−) | 165.44(−) | 165.50(−) | 140.23 | 76.02 | 43.1 | 17.2 | 17.2 | 14.6 | 7.9 | ||
MIROC6 | SSP245 | 2021--2040 | 0.851 | 400.60(−) | 146.35(−) | 183.63 | 152.73 | 78.08 | 41.7 | 15.2 | 19.1 | 15.9 | 8.1 |
2041--2060 | 0.87 | 393.58(−) | 185.75 | 168.39(−) | 128.45 | 85.22 | 40.9 | 19.3 | 17.5 | 13.4 | 8.9 | ||
SSP585 | 2021--2040 | 0.879 | 430.46(−) | 146.13(−) | 163.13(−) | 119.45 | 102.23 | 44.8 | 15.2 | 17.0 | 12.4 | 10.6 | |
2041--2060 | 0.878 | 440.14(−) | 174.37 | 158.86(−) | 91.93(−) | 96.10 | 45.8 | 18.1 | 16.5 | 9.6 | 10.0 | ||
MRI_ESM2_0 | SSP245 | 2021--2040 | 0.865 | 403.25(−) | 165.43(−) | 191.48 | 124.10 | 77.14 | 41.9 | 17.2 | 19.9 | 12.9 | 8.0 |
2041--2060 | 0.875 | 406.53(−) | 169.61 | 182.63 | 121.67 | 80.96 | 42.3 | 17.6 | 19.0 | 12.7 | 8.4 | ||
SSP585 | 2021--2040 | 0.882 | 408.35(−) | 160.42(−) | 208.57 | 127.43 | 56.62(−) | 42.5 | 16.7 | 21.7 | 13.3 | 5.9 | |
2041--2060 | 0.874 | 406.38(−) | 173.13 | 157.14(−) | 132.54 | 92.21 | 42.3 | 18.0 | 16.3 | 13.8 | 9.6 |
Fig.4 Potential geographical distribution of Cryptolestes turcicus under different climates in future period Ⅰ, Ⅱ, Ⅲ, Ⅳ and Ⅴ are respectively expressed as unsuitable area, marginally suitable area, moderate suitable area, highly suitable area and most suitable area. A, B, C and D represent BCC_CSM2_MR, IPSL_CM6A_LR, MIROC6 and MRI_ESM2_0 climate models, respectively. 1 and 2 represent 2021—2040 and 2041—2060 year, respectively.
[1] | 赵慧龙. 土耳其扁谷盗生态学特性及其防治技术研究[D]. 广州: 华南农业大学, 2016. |
ZHAO H L. Study on the ecological characteristics of Cryptolestes trucicus Grouvilleandits control[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese with English abstract) | |
[2] | 孙田依. 锈赤扁谷盗和土耳其扁谷盗线粒体基因组特征及系统发育研究[D]. 南昌: 南昌大学, 2016. |
SUN T Y. Characterization of the complete mitochondrial genomes of Cryptolestes ferrugineus and Cryptolestes turcicus and their phylogenetic analysis[D]. Nanchang: Nanchang University, 2016. (in Chinese with English abstract) | |
[3] | 李占鳌. 粮食安全视角下的粮食储备治理研究: 以H市为例[D]. 广州: 广东财经大学, 2022. |
LI Z A. Research on grain reserve management based on the view of food security[D]. Guangzhou: Guangdong University of Finance & Economics, 2022. (in Chinese with English abstract) | |
[4] | 罗屹, 黄东, 武拉平, 等. 储粮损失与农户储粮决策: 基于23省1199户玉米种植户的实证分析[J]. 中国农业大学学报, 2022, 27(9): 30-42. |
LUO Y, HUANG D, WU L P, et al. Storage losses and households' storage decision in China: based on the survey data of 1199 corn growers from 23 provinces[J]. Journal of China Agricultural University, 2022, 27(9): 30-42. (in Chinese with English abstract) | |
[5] | 赵霞, 陶亚萍, 曹宝明. 中国粮食产后损失评估分析[J]. 干旱区资源与环境, 2022, 36(6): 1-7. |
ZHAO X, TAO Y P, CAO B M. Assessment on post-harvest losses of grains in China[J]. Journal of Arid Land Resources and Environment, 2022, 36(6): 1-7. (in Chinese with English abstract) | |
[6] | 程开禄, 黄富, 潘学贤, 等. 酒曲害虫的发生及危害规律研究[J]. 西南农业学报, 2001, 14(1): 74-77. |
CHENG K L, HUANG F, PAN X X, et al. Studies on the occurrence and harm regularities of the pests of distillers yeast[J]. Southwest China Journal of Agricultural Sciences, 2001, 14(1): 74-77. (in Chinese with English abstract) | |
[7] | 王培生, 刘传奎, 吴健, 等. 利用土耳其扁谷盗控制桑梢小蠹虫的调查研究[J]. 江苏蚕业, 1991, 13(2): 11-15. |
WANG P S, LIU C K, WU J, et al. Investigation and study on the control of mulberry bark beetle by Turkish flat-valley thief[J]. Jiangsu Sericulture, 1991, 13(2): 11-15. (in Chinese) | |
[8] | 武万里, 刘垚, 马菁, 等. 基于MaxEnt模型的宁夏枸杞瘿螨适生性分析[J]. 山地农业生物学报, 2022, 41(2): 66-70. |
WU W L, LIU Y, MA J, et al. Adaptability analysis of Aceria macrodonis keifer in Ningxia based on MaxEnt model[J]. Journal of Mountain Agriculture and Biology, 2022, 41(2): 66-70. (in Chinese with English abstract) | |
[9] | 刘学琴, 白明, 贺达汉, 等. 基于MaxEnt模型的草原步甲属潜在地理分布研究[J]. 生态学报, 2022, 42(10): 4217-4224. |
LIU X Q, BAI M, HE D H, et al. Simulating potential distribution of Carabus beetle in the steppe based on MaxEnt model[J]. Acta Ecologica Sinica, 2022, 42(10): 4217-4224. (in Chinese with English abstract) | |
[10] | PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231-259. |
[11] | PHILLIPS S J, DUDÍK M. Modeling of species distributions with maxent: new extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2): 161-175. |
[12] | LI Y X, SHAO W H, JIANG J M. Predicting the potential global distribution of Sapindus mukorossi under climate change based on MaxEnt modelling[J]. Environmental Science and Pollution Research, 2022, 29(15): 21751-21768. |
[13] | 唐杨欣, 皮杰, 刘新华, 等. 基于最大熵模型预测气候变化下河蚬在中国的潜在分布[J]. 生态学报, 2023, 43(10): 4250-4259. |
TANG Y X, PI J, LIU X H, et al. Predicting potential distribution of Corbicula fluminea under climate change scenarios using MaxEnt model[J]. Acta Ecologica Sinica, 2023, 43(10): 4250-4259. (in Chinese with English abstract) | |
[14] | 祝梓杰, 王桂瑶, 乔飞, 等. 基于MaxEnt模型的两种捕食性盲蝽潜在分布区及其适生性分析[J]. 昆虫学报, 2017, 60(3): 335-346. |
ZHU Z J, WANG G Y, QIAO F, et al. Potential geographical distribution and habitat suitability analysis for two mirid predators Tytthus chinensis and Cyrtorhinus lividipennis(Hemiptera: Miridae) in rice fields based on MaxEnt model[J]. Acta Entomologica Sinica, 2017, 60(3): 335-346. (in Chinese with English abstract) | |
[15] | LI A N, WANG J W, WANG R L, et al. MaxEnt modeling to predict current and future distributions of Batocera lineolata(Coleoptera: Cerambycidae) under climate change in China[J]. Écoscience, 2020, 27(1): 23-31. |
[16] | 徐养诚, 刘孝贤, 王婷, 等. 基于MaxEnt模型的菜豆象全球潜在适生区预测[J]. 生物安全学报, 2021, 30(3): 213-219. |
XU Y C, LIU X X, WANG T, et al. Potential suitable distribution of Acanthoscelides obtectus(Say) based on the MaxEnt model[J]. Journal of Biosafety, 2021, 30(3): 213-219. (in Chinese with English abstract) | |
[17] | 易山青, 彭硕, 贾涛, 等. 基于MaxEnt模型的菜豆象和蚕豆象在中国的适生区预测[J]. 植物保护学报, 2023, 50(6): 1480-1490. |
YI S Q, PENG S, JIA T, et al. Prediction of the potential suitable areas for bean weevil Acanthoscelides obtectus and the broad bean weevil Bruchus rufimanus in China based on the MaxEnt model[J]. Journal of Plant Protection, 2023, 50(6): 1480-1490. (in Chinese with English abstract) | |
[18] | 马菁, 刘垚, 张学俭. 基于MaxEnt模型的宁夏枸杞蚜虫适生分布预测研究[J]. 地理与地理信息科学, 2019, 35(5): 40-45. |
MA J, LIU Y, ZHANG X J. Prediction on potential establishment area of Aphis sp. in Ningxia based on MaxEnt model[J]. Geography and Geo-Information Science, 2019, 35(5): 40-45. (in Chinese with English abstract) | |
[19] | MA W D, JIA W, ZHOU Y T, et al. Prediction of suitable future natural areas for highland barley on the Qinghai-Tibet Plateau under representative concentration pathways (RCPs)[J]. Sustainability, 2022, 14(11): 6617. |
[20] | 刘小燕. 基于最大熵模型的白鹤栖息地适宜性评价研究[D]. 南京: 南京林业大学, 2023. |
LIU X Y. Study on habitat suitability assessment of Grus leucogeranus based on MaxEnt model[D]. Nanjing: Nanjing Forestry University, 2023. (in Chinese with English abstract) | |
[21] | 刘明明, 刘丹丹, 芦星, 等. 基于MaxEnt模型的新疆地区钝缘蜱适生区分布研究[J]. 中国媒介生物学及控制杂志, 2023, 34(5): 671-678. |
LIU M M, LIU D D, LU X, et al. MaxEnt model-based analysis of distribution of suitable habitats of Ornithodoros ticks in Xinjiang Uygur Autonomous Region, China[J]. Chinese Journal of Vector Biology and Control, 2023, 34(5): 671-678. (in Chinese with English abstract) | |
[22] | 聂守明, 曾庆柏. 湖南储粮昆虫在不同地理环境的分布分析[J]. 粮食科技与经济, 1995, 20(4): 19-21. |
NIE S M, ZENG Q B. Distribution analysis of stored grain insects in different geographical environments in Hunan Province[J]. Grain Tecnnology and Economy, 1995, 20(4): 19-21. (in Chinese) | |
[23] | 云昌杰, 顾文毅, 贺明强, 等. 湖北省储粮害虫调查研究[J]. 粮油仓储科技通讯, 1992, 8(6): 40-45. |
YUN C J, GU W Y, HE M Q, et al. Investigation on stored grain pests in Hubei Province[J]. Grain and Oil Storage Technology and Communication, 1992, 8(6): 40-45. (in Chinese with English abstract) | |
[24] | 李娜, 周国磊, 贺培欢, 等. 河北省储粮昆虫与螨类分布调查[J]. 粮油食品科技, 2018, 26(6): 84-89. |
LI N, ZHOU G L, HE P H, et al. Investigation on species and distribution of insects and mites in stored grain in Hebei Province[J]. Science and Technology of Cereals, Oils and Foods, 2018, 26(6): 84-89. (in Chinese with English abstract) | |
[25] | 李慧, 王殿轩, 洪习文, 等. 山东省储粮昆虫种类分布调查研究[J]. 中国粮油学报, 2022, 37(11): 32-37. |
LI H, WANG D X, HONG X W, et al. Investigation on the species and distribution of stored product insect species in Shandong Province[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(11): 32-37. (in Chinese with English abstract) | |
[26] | 崔淼, 伍祎, 曹阳, 等. 安徽省涉粮场所近期储粮虫螨调查[J]. 粮油食品科技, 2021, 29(3): 215-221. |
CUI M, WU Y, CAO Y, et al. Recent investigation of stored-grain insects and mites in grain-related sites in Anhui Province[J]. Science and Technology of Cereals, Oils and Foods, 2021, 29(3): 215-221. (in Chinese with English abstract) | |
[27] | 贺培欢, 曹阳, 林丽莎, 等. 江西省储粮昆虫调查[J]. 粮油食品科技, 2017, 25(4): 76-81. |
HE P H, CAO Y, LIN L S, et al. Research on stored grain insects in Jiangxi Province[J]. Science and Technology of Cereals, Oils and Foods, 2017, 25(4): 76-81. (in Chinese with English abstract) | |
[28] | ENGLER R, GUISAN A, RECHSTEINER L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data[J]. Journal of Applied Ecology, 2004, 41(2): 263-274. |
[29] | HERNANDEZ P A, GRAHAM C H, MASTER L L, et al. The effect of sample size and species characteristics on performance of different species distribution modeling methods[J]. Ecography, 2006, 29(5): 773-785. |
[30] | 陈李林, 钟文玉, 胡海琴, 等. 气候变化情景下茶丽纹象甲在中国的潜在适生区预测[J]. 环境昆虫学报, 2024, 46(6): 1445-1456. |
CHEN L L, ZHONG W Y, HU H Q, et al. Prediction of potential geographical distribution of Myllocerinus aurolineatus in China under climate change[J]. Journal of Environmental Entomology, 2024, 46(6): 1445-1456. (in Chinese with English abstract) | |
[31] | 程雪蓉, 任立良, 杨肖丽, 等. CMIP5多模式对中国及各分区气温和降水时空特征的预估[J]. 水文, 2016, 36(4): 37-43. |
CHENG X R, REN L L, YANG X L, et al. A CMIP5 multi-model estimation of spatio-temporal characteristics of temperature, precipitation in 7 regions of China[J]. Journal of China Hydrology, 2016, 36(4): 37-43. (in Chinese with English abstract) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||