Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (5): 1121-1129.DOI: 10.3969/j.issn.1004-1524.20240469
• Environmental Science • Previous Articles Next Articles
ZHUO Wenqi1,2(), MA Wanzhu2,*(
), ZHUO Zhiqing2, ZHU Kangying2
Received:
2024-05-28
Online:
2025-05-25
Published:
2025-06-11
CLC Number:
ZHUO Wenqi, MA Wanzhu, ZHUO Zhiqing, ZHU Kangying. Comparison of properties between soils developed from eluvium and deluvium in subtropical low mountain forest land[J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1121-1129.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240469
土壤样本 Soil samples | 深度 Depth/cm | 砾石含量 Gravel content/% | 细土组成Fine soil composition/% | ||
---|---|---|---|---|---|
砂粒含量Sand content | 粉砂含量Silt content | 黏粒含量Clay content | |||
残积物发育土壤Eluvium-derived soils(n=6) | 0~15 | 21.3±9.6 c | 35.2±5.3 bc | 37.3±4.6 ab | 27.5±4.2 b |
>15~30 | 7.8±3.5 d | 31.4±4.9 c | 37.1±5.8 ab | 31.5±3.5 ab | |
>30~50 | 5.7±2.8 d | 32.8±5.8 c | 32.0±6.3 bc | 35.2±4.1 a | |
>50~70 | 9.7±4.3 d | 35.9±5.7 bc | 29.8±5.2 c | 34.3±5.3 a | |
>70~100 | 35.4±17.5 ab | 38.6±4.5 ab | 29.8±3.8 c | 31.6±4.4 ab | |
坡积物发育土壤Deluvium-derived soils(n=6) | 0~15 | 32.5±6.3 ab | 42.4±7.5 ab | 41.1±9.5 a | 16.5±3.2 c |
>15~30 | 27.4±10.2 bc | 38.6±5.8 ab | 43.6±6.4 a | 17.8±4.2 c | |
>30~50 | 34.5±11.7 ab | 41.7±6.3 ab | 40.7±7.5 a | 17.6±4.7 c | |
>50~70 | 36.8±10.4 ab | 44.3±5.4 a | 39.2±5.2 ab | 16.5±5.6 c | |
>70~100 | 42.4±15.6 a | 42.4±8.9 ab | 42.4±8.4 a | 15.2±8.5 c |
Table 1 Composition of soil particles
土壤样本 Soil samples | 深度 Depth/cm | 砾石含量 Gravel content/% | 细土组成Fine soil composition/% | ||
---|---|---|---|---|---|
砂粒含量Sand content | 粉砂含量Silt content | 黏粒含量Clay content | |||
残积物发育土壤Eluvium-derived soils(n=6) | 0~15 | 21.3±9.6 c | 35.2±5.3 bc | 37.3±4.6 ab | 27.5±4.2 b |
>15~30 | 7.8±3.5 d | 31.4±4.9 c | 37.1±5.8 ab | 31.5±3.5 ab | |
>30~50 | 5.7±2.8 d | 32.8±5.8 c | 32.0±6.3 bc | 35.2±4.1 a | |
>50~70 | 9.7±4.3 d | 35.9±5.7 bc | 29.8±5.2 c | 34.3±5.3 a | |
>70~100 | 35.4±17.5 ab | 38.6±4.5 ab | 29.8±3.8 c | 31.6±4.4 ab | |
坡积物发育土壤Deluvium-derived soils(n=6) | 0~15 | 32.5±6.3 ab | 42.4±7.5 ab | 41.1±9.5 a | 16.5±3.2 c |
>15~30 | 27.4±10.2 bc | 38.6±5.8 ab | 43.6±6.4 a | 17.8±4.2 c | |
>30~50 | 34.5±11.7 ab | 41.7±6.3 ab | 40.7±7.5 a | 17.6±4.7 c | |
>50~70 | 36.8±10.4 ab | 44.3±5.4 a | 39.2±5.2 ab | 16.5±5.6 c | |
>70~100 | 42.4±15.6 a | 42.4±8.9 ab | 42.4±8.4 a | 15.2±8.5 c |
土壤样本 Soil samples | 深度 Depth/cm | 容重 Bulk density/ (g·cm-3) | 饱和导水率 Saturated hydraulic conductivity/(mm·d-1) | 饱和持水量 Saturated water capacity/% |
---|---|---|---|---|
残积物发育土壤Eluvium-derived soils(n=6) | 0~15 | 1.14±0.12 d | 46.8±5.54 a | 49.94±3.78 a |
>15~30 | 1.29±0.08 c | 37.5±3.41 ab | 39.82±2.24 b | |
>30~50 | 1.38±0.05 bc | 32.6±3.64 b | 34.70±1.54 c | |
>50~70 | 1.43±0.03 b | 24.6±4.98 c | 32.15±1.22 c | |
>70~100 | 1.61±0.05 a | 17.5±5.22 d | 24.36±1.42 d | |
坡积物发育土壤Deluvium-derived soils(n=6) | 0~15 | 1.19±0.21 cd | 45.2±6.14 a | 46.33±7.24 ab |
>15~30 | 1.21±0.13 cd | 41.6±5.24 a | 44.94±4.52 ab | |
>30~50 | 1.19±0.12 cd | 35.4±4.87 b | 46.33±4.72 ab | |
>50~70 | 1.28±0.09 c | 38.7±5.23 ab | 40.42±3.14 b | |
>70~100 | 1.35±0.07 bc | 32.5±7.32 b | 36.32±2.14 bc |
Table 2 Soil bulk density, saturated hydraulic conductivity and saturated water capacity
土壤样本 Soil samples | 深度 Depth/cm | 容重 Bulk density/ (g·cm-3) | 饱和导水率 Saturated hydraulic conductivity/(mm·d-1) | 饱和持水量 Saturated water capacity/% |
---|---|---|---|---|
残积物发育土壤Eluvium-derived soils(n=6) | 0~15 | 1.14±0.12 d | 46.8±5.54 a | 49.94±3.78 a |
>15~30 | 1.29±0.08 c | 37.5±3.41 ab | 39.82±2.24 b | |
>30~50 | 1.38±0.05 bc | 32.6±3.64 b | 34.70±1.54 c | |
>50~70 | 1.43±0.03 b | 24.6±4.98 c | 32.15±1.22 c | |
>70~100 | 1.61±0.05 a | 17.5±5.22 d | 24.36±1.42 d | |
坡积物发育土壤Deluvium-derived soils(n=6) | 0~15 | 1.19±0.21 cd | 45.2±6.14 a | 46.33±7.24 ab |
>15~30 | 1.21±0.13 cd | 41.6±5.24 a | 44.94±4.52 ab | |
>30~50 | 1.19±0.12 cd | 35.4±4.87 b | 46.33±4.72 ab | |
>50~70 | 1.28±0.09 c | 38.7±5.23 ab | 40.42±3.14 b | |
>70~100 | 1.35±0.07 bc | 32.5±7.32 b | 36.32±2.14 bc |
土壤样本 Soil samples | 深度 Depth/cm | 有机碳含量 Organic carbon content/(g·kg-1) | 全氮含量 Total N content/ (g·kg-1) | 碳氮比 C/N ratio | 微生物生物量碳含量 Microbial biomass carbon content/(mg·kg-1) | 微生物生物量熵 Soil microbial entropy |
---|---|---|---|---|---|---|
残积物发育土壤Eluvium-derived soils (n=6) | 0~15 | 37.24±5.32 a | 2.48±0.32 a | 15.02±3.65 a | 542±58 a | 0.014 3±0.001 1 b |
>15~30 | 21.48±5.14 c | 1.50±0.23 bc | 14.32±2.54 ab | 324±41 b | 0.015 2±0.001 2 b | |
>30~50 | 9.86±2.41 e | 0.74±0.14 e | 13.32±2.13 bc | 82±9 e | 0.008 2±0.000 7 d | |
>50~70 | 6.87±2.31 ef | 0.55±0.11 ef | 12.49±3.15 bc | 45±5 f | 0.006 6±0.000 5 e | |
>70~100 | 4.57±1.54 f | 0.40±0.12 f | 11.43±2.67 c | 29±3 f | 0.006 2±0.000 4 e | |
坡积物发育土壤Deluvium-derived soils (n=6) | 0~15 | 28.54±4.66 b | 1.87±0.43 a | 15.26±4.21 a | 512±61 a | 0.017 8±0.001 4 a |
>15~30 | 24.65±5.84 b | 1.65±0.29 b | 14.94±3.11 ab | 354±32 b | 0.014 5±0.001 2 b | |
>30~50 | 17.59±4.67 cd | 1.24±0.24 cd | 14.18±2.74 b | 198±22 c | 0.011 3±0.001 0 c | |
>50~70 | 19.25±4.13 cd | 1.47±0.27 bc | 13.10±2.65 bc | 153±12 c | 0.008 1±0.000 9 d | |
>70~100 | 14.25±3.25 d | 1.05±0.23 d | 13.58±3.14 bc | 124±10 d | 0.008 8±0.000 7 d |
Table 3 Soil organic carbon and total nitrogen content
土壤样本 Soil samples | 深度 Depth/cm | 有机碳含量 Organic carbon content/(g·kg-1) | 全氮含量 Total N content/ (g·kg-1) | 碳氮比 C/N ratio | 微生物生物量碳含量 Microbial biomass carbon content/(mg·kg-1) | 微生物生物量熵 Soil microbial entropy |
---|---|---|---|---|---|---|
残积物发育土壤Eluvium-derived soils (n=6) | 0~15 | 37.24±5.32 a | 2.48±0.32 a | 15.02±3.65 a | 542±58 a | 0.014 3±0.001 1 b |
>15~30 | 21.48±5.14 c | 1.50±0.23 bc | 14.32±2.54 ab | 324±41 b | 0.015 2±0.001 2 b | |
>30~50 | 9.86±2.41 e | 0.74±0.14 e | 13.32±2.13 bc | 82±9 e | 0.008 2±0.000 7 d | |
>50~70 | 6.87±2.31 ef | 0.55±0.11 ef | 12.49±3.15 bc | 45±5 f | 0.006 6±0.000 5 e | |
>70~100 | 4.57±1.54 f | 0.40±0.12 f | 11.43±2.67 c | 29±3 f | 0.006 2±0.000 4 e | |
坡积物发育土壤Deluvium-derived soils (n=6) | 0~15 | 28.54±4.66 b | 1.87±0.43 a | 15.26±4.21 a | 512±61 a | 0.017 8±0.001 4 a |
>15~30 | 24.65±5.84 b | 1.65±0.29 b | 14.94±3.11 ab | 354±32 b | 0.014 5±0.001 2 b | |
>30~50 | 17.59±4.67 cd | 1.24±0.24 cd | 14.18±2.74 b | 198±22 c | 0.011 3±0.001 0 c | |
>50~70 | 19.25±4.13 cd | 1.47±0.27 bc | 13.10±2.65 bc | 153±12 c | 0.008 1±0.000 9 d | |
>70~100 | 14.25±3.25 d | 1.05±0.23 d | 13.58±3.14 bc | 124±10 d | 0.008 8±0.000 7 d |
土壤 Soils | 深度 Depth/cm | 游离态轻组有机碳 Free light group organic carbon/(g·kg-1) | 粗颗粒有机碳 Coarse particulate organic carbon/(g·kg-1) | 细颗粒有机碳 Fine particulate organic carbon/(g·kg-1) | 矿物结合态有机碳 Mineral bound organic carbon/(g·kg-1) |
---|---|---|---|---|---|
残积物发育土壤Eluvium-derived Soils (n=6) | 0~15 | 8.47±2.14 a | 20.63±2.24 a | 10.58±2.21 a | 60.32±3.25 e |
>15~30 | 6.97±1.14 ab | 12.21±1.65 c | 11.24±1.98 a | 69.58±4.25 cd | |
>30~50 | 4.58±1.03 bc | 4.65±1.14 e | 8.52±2.69 b | 82.25±3.98 b | |
>50~70 | 2.28±0.56 d | 4.12±0.98 ef | 5.97±1.59 c | 87.63±4.26 ab | |
>70~100 | 1.12±0.45 e | 3.05±0.52 f | 6.58±2.21 bc | 89.25±4.98 a | |
坡积物发育土壤Deluvium-derived soils (n=6) | 0~15 | 7.52±1.65 a | 16.79±2.45 b | 11.21±1.96 a | 64.48±3.42 de |
>15~30 | 5.89±1.14 b | 13.25±1.89 bc | 10.25±2.33 a | 70.61±3.77 cd | |
>30~50 | 5.35±0.68 b | 8.54±1.45 d | 9.57±2.14 ab | 76.54±3.54 bc | |
>50~70 | 4.63±0.52 bc | 9.14±1.14 d | 8.68±1.98 b | 77.55±4.25 bc | |
>70~100 | 3.58±0.49 c | 5.89±0.65 e | 9.99±2.03 ab | 80.54±3.98 b |
Table 4 Composition of different forms of soil organic carbon
土壤 Soils | 深度 Depth/cm | 游离态轻组有机碳 Free light group organic carbon/(g·kg-1) | 粗颗粒有机碳 Coarse particulate organic carbon/(g·kg-1) | 细颗粒有机碳 Fine particulate organic carbon/(g·kg-1) | 矿物结合态有机碳 Mineral bound organic carbon/(g·kg-1) |
---|---|---|---|---|---|
残积物发育土壤Eluvium-derived Soils (n=6) | 0~15 | 8.47±2.14 a | 20.63±2.24 a | 10.58±2.21 a | 60.32±3.25 e |
>15~30 | 6.97±1.14 ab | 12.21±1.65 c | 11.24±1.98 a | 69.58±4.25 cd | |
>30~50 | 4.58±1.03 bc | 4.65±1.14 e | 8.52±2.69 b | 82.25±3.98 b | |
>50~70 | 2.28±0.56 d | 4.12±0.98 ef | 5.97±1.59 c | 87.63±4.26 ab | |
>70~100 | 1.12±0.45 e | 3.05±0.52 f | 6.58±2.21 bc | 89.25±4.98 a | |
坡积物发育土壤Deluvium-derived soils (n=6) | 0~15 | 7.52±1.65 a | 16.79±2.45 b | 11.21±1.96 a | 64.48±3.42 de |
>15~30 | 5.89±1.14 b | 13.25±1.89 bc | 10.25±2.33 a | 70.61±3.77 cd | |
>30~50 | 5.35±0.68 b | 8.54±1.45 d | 9.57±2.14 ab | 76.54±3.54 bc | |
>50~70 | 4.63±0.52 bc | 9.14±1.14 d | 8.68±1.98 b | 77.55±4.25 bc | |
>70~100 | 3.58±0.49 c | 5.89±0.65 e | 9.99±2.03 ab | 80.54±3.98 b |
土壤样本 Soil samples | 深度 Depth/cm | pH | ba值 ba value | 黏粒Sa值 Sa value of clay | 铁活化度 Activation degree of iron oxide/% |
---|---|---|---|---|---|
残积物发育土壤Eluvium-derived soils (n=6) | 0~15 | 5.32±0.11 a | — | — | 34.2±3.5 a |
>15~30 | 5.17±0.09 ab | 0.304±0.031 b | 2.42±0.02 b | 29.6±4.6 ab | |
>30~50 | 4.87±0.14 c | 0.281±0.024 b | 2.38±0.02 b | 18.9±2.5 c | |
>50~70 | 5.12±0.08 ab | — | — | 21.4±4.2 c | |
>70~100 | 5.24±0.13 ab | — | — | 17.5±3.7 c | |
坡积物发育土壤Deluvium-derived soils (n=6) | 0~15 | 5.17±0.14 ab | — | — | 32.5±4.0 ab |
>15~30 | 5.19±0.12 ab | 0.368±0.028 a | 2.61±0.03 a | 31.2±3.4 ab | |
>30~50 | 5.07±0.07 b | 0.372±0.021 a | 2.59±0.03 a | 27.5±3.6 b | |
>50~70 | 5.05±0.09 b | — | — | 32.5±4.2 ab | |
>70~100 | 5.14±0.11 b | — | — | 31.3±5.2 ab |
Table 5 Soil weathering indexes and iron activity
土壤样本 Soil samples | 深度 Depth/cm | pH | ba值 ba value | 黏粒Sa值 Sa value of clay | 铁活化度 Activation degree of iron oxide/% |
---|---|---|---|---|---|
残积物发育土壤Eluvium-derived soils (n=6) | 0~15 | 5.32±0.11 a | — | — | 34.2±3.5 a |
>15~30 | 5.17±0.09 ab | 0.304±0.031 b | 2.42±0.02 b | 29.6±4.6 ab | |
>30~50 | 4.87±0.14 c | 0.281±0.024 b | 2.38±0.02 b | 18.9±2.5 c | |
>50~70 | 5.12±0.08 ab | — | — | 21.4±4.2 c | |
>70~100 | 5.24±0.13 ab | — | — | 17.5±3.7 c | |
坡积物发育土壤Deluvium-derived soils (n=6) | 0~15 | 5.17±0.14 ab | — | — | 32.5±4.0 ab |
>15~30 | 5.19±0.12 ab | 0.368±0.028 a | 2.61±0.03 a | 31.2±3.4 ab | |
>30~50 | 5.07±0.07 b | 0.372±0.021 a | 2.59±0.03 a | 27.5±3.6 b | |
>50~70 | 5.05±0.09 b | — | — | 32.5±4.2 ab | |
>70~100 | 5.14±0.11 b | — | — | 31.3±5.2 ab |
[1] | 章明奎. 土壤地理学与土壤调查技术[M]. 北京: 中国农业科学技术出版社, 2011. |
[2] | 季方, 王秀红. 阿尔泰山西北部土壤垂直带有机质性质的变化特征[J]. 干旱区地理, 1989, 12(3): 17-24. |
JI F, WANG X H. The soil vertical sequence of varied feature of organic matter nature in the northwestern Altai Mountains[J]. Arid Land Geography, 1989, 12(3): 17-24. (in Chinese with English abstract) | |
[3] | 蒲玉琳, 龙高飞, 刘世全, 等. 山地土壤坡向性分异的研究概况[J]. 土壤通报, 2007, 38(4): 753-757. |
PU Y L, LONG G F, LIU S Q, et al. Research progress in slope-directive variation of mountain soils[J]. Chinese Journal of Soil Science, 2007, 38(4): 753-757. (in Chinese with English abstract) | |
[4] | 全国土壤普查办公室. 中国土壤[M]. 北京: 中国农业出版社, 1998. |
[5] | 孙建, 程根伟. 山地垂直带谱研究评述[J]. 生态环境学报, 2014, 23(9): 1544-1550. |
SUN J, CHENG G W. Mountain altitudinal belt: a review[J]. Ecology and Environmental Sciences, 2014, 23(9): 1544-1550. (in Chinese with English abstract) | |
[6] | 张珍明, 贺红早, 张玉武, 等. 雷公山自然保护区不同植被类型土壤的肥力及碳含量[J]. 西南农业学报, 2014, 27(3): 1202-1206. |
ZHANG Z M, HE H Z, ZHANG Y W, et al. Soil fertility and carbon content of different vegetation types in Leigong Mountain natural reserve area[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(3): 1202-1206. (in Chinese with English abstract) | |
[7] | 张累德. 托木尔峰地区土壤垂直分布规律及土壤性质垂直变化特征[J]. 干旱区研究, 1984, 1(1): 16-27. |
ZHANG L D. Vertical distribution of soil and soil properties in Tomur Peak area[J]. Arid Zone Research, 1984, 1(1): 16-27. (in Chinese) | |
[8] | 邱堋星, 叶飞. 武夷山土壤性状及其垂直变化规律[J]. 东北林业大学学报, 2008, 36(1): 55-57. |
QIU P X, YE F. Characteristic and vertical changing regularities of soils in Wuyi Mountain[J]. Journal of Northeast Forestry University, 2008, 36(1): 55-57. (in Chinese with English abstract) | |
[9] | 徐华君. 阿尔泰山区土壤有机碳氧化稳定性的初步比较分析[J]. 水土保持研究, 2007, 14(6): 27-29. |
XU H J. Comparative analysis of the soil organic carbon oxidation stability in Altai Mountain, Xinjiang[J]. Research of Soil and Water Conservation, 2007, 14(6): 27-29. (in Chinese with English abstract) | |
[10] | 徐国良, 莫凌梓, 王嘉珊, 等. 广东罗浮山土壤动物多样性垂直变化特征[J]. 广州大学学报(自然科学版), 2016, 15(6): 9-16. |
XU G L, MO L Z, WANG J S, et al. Vertical zonality of soil fauna biodiversity in Loufushan, Guangdong[J]. Journal of Guangzhou University(Natural Science Edition), 2016, 15(6): 9-16. (in Chinese with English abstract) | |
[11] | 胡正超, 阿布都克热木江·杂依提, 杨晓东, 等. 天山北坡中段土壤有机碳含量的空间分异[J]. 安徽农业科学, 2018, 46(24): 100-104. |
HU Z C, ZAYITI A, YANG X D, et al. Soil organic carbon content's spatial differentiation in the northern slope of Tianshan Mountainous[J]. Journal of Anhui Agricultural Sciences, 2018, 46(24): 100-104. (in Chinese with English abstract) | |
[12] | 邓小华, 李源环, 周米良, 等. 武陵山地植烟土壤养分和酸度垂直分布特征[J]. 中国烟草科学, 2018, 39(3): 48-58. |
DENG X H, LI Y H, ZHOU M L, et al. Vertical distribution characteristics of main nutrients and acid parameters of tobacco-planting soils in Wuling Mountains[J]. Chinese Tobacco Science, 2018, 39(3): 48-58. (in Chinese with English abstract) | |
[13] | 徐华君, 王文欣, 王丹彤. 中天山北坡垂直带土壤有机碳密度分布特征[J]. 水土保持研究, 2015, 22(5): 35-38. |
XU H J, WANG W X, WANG D T. Distribution characteristics of soil organic carbon density on the northern slope in the middle section of Tianshan Mountainous[J]. Research of Soil and Water Conservation, 2015, 22(5): 35-38. (in Chinese with English abstract) | |
[14] | 冯秀伟. 庐山土壤有机质及氮磷钾含量与海拔关系研究[J]. 安徽农业科学, 2017, 45(28): 118-121. |
FENG X W. Study on the relationship between soil organic matter and N, P, K content and altitude in Mountain Lu[J]. Journal of Anhui Agricultural Sciences, 2017, 45(28): 118-121. (in Chinese with English abstract) | |
[15] | 张家春, 贺红早, 张玉武, 等. 黔东南不同林地土壤物理性质及养分含量差异[J]. 河南农业科学, 2014, 43(8): 49-53. |
ZHANG J C, HE H Z, ZHANG Y W, et al. Analysis of nutrient content and physical property of soil from different forest lands in southeast Guizhou Province[J]. Journal of Henan Agricultural Sciences, 2014, 43(8): 49-53. (in Chinese with English abstract) | |
[16] | 李超, 张凤荣, 王秀丽, 等. 华北山地土壤CaCO3含量/石灰反应垂直分布特征及其发生学解释[J]. 土壤学报, 2018, 55(5): 1074-1084. |
LI C, ZHANG F R, WANG X L, et al. Vertical distribution of soil CaCO3 content/lime reaction in mountainous regions of north China and its genetic explanation[J]. Acta Pedologica Sinica, 2018, 55(5): 1074-1084. (in Chinese with English abstract) | |
[17] | 侯海潮, 丁丽, 许中旗, 等. 燕山北部山地典型造林树种幼树根系分布特征[J]. 林业资源管理, 2018(4): 10-16. |
HOU H C, DING L, XU Z Q, et al. Root distribution of young trees of typical species in the northern region of Yanshan Mountains[J]. Forest Resources Management, 2018(4): 10-16. (in Chinese with English abstract) | |
[18] | 杨瑞红, 王新军. 伊犁河谷山地北坡土壤特性及植被群落多样性垂直分布格局[J]. 水土保持研究, 2016, 23(6): 32-39. |
YANG R H, WANG X J. The vertical distribution of vegetation patterns and soil properties at the northern slope of Ili River valley[J]. Research of Soil and Water Conservation, 2016, 23(6): 32-39. (in Chinese with English abstract) | |
[19] | 王景明, 卢志红, 吴建富, 等. 庐山土壤类型的特点与分布规律[J]. 江西农业大学学报, 2010, 32(6): 1284-1290. |
WANG J M, LU Z H, WU J F, et al. The characteristics and distribution patterns of the soil types in MT.Lushan[J]. Acta Agriculturae Universitatis Jiangxiensis, 2010, 32(6): 1284-1290. (in Chinese with English abstract) | |
[20] | 宋萍. 基于地学信息图谱的胶东山区景观格局过程分析[D]. 泰安: 山东农业大学, 2013. |
SONG P. Landscape pattern process analysis based on the Geo-information Tupu in Jiaodong Mountain Area[D]. Tai'an: Shandong Agricultural University, 2013. (in Chinese with English abstract) | |
[21] | 李国明. 数字山地框架下典型植被垂直带谱的空间模式识别与气候环境分析: 以西藏吉隆沟为例[D]. 成都: 成都理工大学, 2012. |
LI G M. Research on the typical altitudinal belts of vegetation spatial pattern recognition and the climate and environment under the framework of digital mountain: a case study of Kuala Ditch in Tibet[D]. Chengdu: Chengdu University of Technology, 2012. (in Chinese with English abstract) | |
[22] | 胡正华, 于明坚, 索福喜. 古田山国家自然保护区常绿阔叶林植物物种多样性研究[J]. 中国农学通报, 2005, 21(3): 134-137. |
HU Z H, YU M J, SUO F X. The plant species diversity of the evergreen broad-leaved forest in Gutian Mountain National Nature Reserve[J]. Chinese Agricultural Science Bulletin, 2005, 21(3): 134-137. (in Chinese with English abstract) | |
[23] | 于明坚, 胡正华, 余建平, 等. 浙江古田山自然保护区森林植被类型[J]. 浙江大学学报(农业与生命科学版), 2001, 27(4): 375-380. |
YU M J, HU Z H, YU J P, et al. Forest vegetation types in Gutianshan Natural Reserve in Zhejiang[J]. Journal of Zhejiang Agricultural University(Agriculture & Life Sciences), 2001, 27(4): 375-380. (in Chinese with English abstract) | |
[24] | 王宁宁, 米湘成, 童光蓉, 等. 2018年浙江古田山24公顷亚热带常绿阔叶林动态监测样地林冠结构与地形数据集[J]. 中国科学数据, 2024, 9(1): 190-201. |
WANG N N, MI X C, TONG G R, et al. The canopy structure and topography dataset of Zhejiang Gutianshan 24-hectare subtropical evergreen broad-leaved forest dynamic plot in 2018[J]. China Scientific Data, 2024, 9(1): 190-201. (in Chinese with English abstract) | |
[25] | 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012. |
[26] | JENKINSON D S, POWLSON D S. The effects of biocidal treatments on metabolism in soil: V: a method for measuring soil biomass[J]. Soil Biology and Biochemistry, 1976, 8(3): 209-213. |
[27] | SIX J, CALLEWAERT P, LENDERS S, et al. Measuring and understanding carbon storage in afforested soils by physical fractionation[J]. Soil Science Society of America Journal, 2002, 66(6): 1981-1987. |
[28] | 黄承标, 罗远周, 张建华, 等. 广西猫儿山自然保护区森林土壤化学性质垂直分布特征研究[J]. 安徽农业科学, 2009, 37(1): 245-247. |
HUANG C B, LUO Y Z, ZHANG J H, et al. The vertical distribution characters of forest soil chemical properties in Guangxi Maoer Mountain Nature Reserve[J]. Journal of Anhui Agricultural Sciences, 2009, 37(1): 245-247. (in Chinese with English abstract) | |
[29] | 刘桂林, 蒋家淡, 张鼎华, 等. 亚热带山地土壤碳动态与吸存研究进展[J]. 福建林业科技, 2007, 34(2): 163-168. |
LIU G L, JIANG J D, ZHANG D H, et al. The research progress on the carbon dynamics and adsorption in subtropic forest soil[J]. Journal of Fujian Forestry Science and Technology, 2007, 34(2): 163-168. (in Chinese with English abstract) | |
[30] | 李向富, 刘目兴, 易军, 等. 三峡山地不同垂直带土壤层的水文功能及其影响因子[J]. 长江流域资源与环境, 2018, 27(8): 1809-1818. |
LI X F, LIU M X, YI J, et al. Soil hydrological function of different altitudinal hillslopes of the Three Gorges Mountain and its impact factors[J]. Resources and Environment in the Yangtze Basin, 2018, 27(8): 1809-1818. (in Chinese with English abstract) | |
[31] | 刘目兴, 吴丹, 崔文虎. 长江三峡山地不同垂直带土壤入渗研究[J]. 水土保持学报, 2015, 29(3): 56-61. |
LIU M X, WU D, CUI W H. Study on soil infiltration in different altitudinal mountain belts of the Three Gorges Region of Yangtze River[J]. Journal of Soil and Water Conservation, 2015, 29(3): 56-61. (in Chinese with English abstract) |
[1] | WANG Baojun, CHENG Wangda, CHEN Gui, SHEN Yaqiang, SHEN Meng, YUAN Ye, WANG Lei, ZHANG Hongmei. Effects of nitrogen fertilizer regulation on soil properties of paddy fields and rice yield with full amount returning of straw in Northern Zhejiang [J]. , 2020, 32(2): 183-190. |
[2] | WANG Baojun, CHENG Wangda, CHEN Gui, SHEN Yaqiang, ZHANG Hongmei. Effect of straw returning and nitrogen reduction on soil nutrition, carbon pool and rice yield in rice field [J]. , 2019, 31(4): 624-630. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||