Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (7): 1512-1520.DOI: 10.3969/j.issn.1004-1524.20240631
• Environmental Science • Previous Articles Next Articles
GENG Ruimei1(), ZHAO Qinghai2, CAO Changdai3, LI Feng4, WANG Dahai2, HE Penglin4, LIU Yang2, LI Junmin3, XU Rui4, SONG Zhimei5, HU Haizhou5,*(
), ZHANG Yu1,*(
)
Received:
2024-07-12
Online:
2025-07-25
Published:
2025-08-20
CLC Number:
GENG Ruimei, ZHAO Qinghai, CAO Changdai, LI Feng, WANG Dahai, HE Penglin, LIU Yang, LI Junmin, XU Rui, SONG Zhimei, HU Haizhou, ZHANG Yu. Analysis of rhizosphere bacterial flora of flue-cured tobacco varieties Zhongchuan 208 and CV87[J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1512-1520.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240631
Fig.1 Rhizosphere bacterial flora of different tobacco genotypes at different growth period A, Partial least squares discriminant analysis (PLS-DA) of the rhizosphere bacterial flora based on genotype and growth period, with the percentage of explained variance in overall differences shown in parentheses. B, The Simpson index of the rhizosphere bacterial flora for Zhongchuan 208. C, The Simpson index of the rhizosphere bacterial flora for CV87. PC1, The first principle component; PC2, The second principle component. The horizontal line inside the box in the boxplot represents the median, and the upper and lower edges represent the upper and lower quartiles, respectively. The whiskers on the edges extend to the extreme values when there are no outliers, but at most to 1.5 times the range of the upper and lower quartiles. Bars marked without the same letters indicate significant difference at P<0.05.
Fig.5 Root microbiome of Zhongchuan 208 (A) and CV87 (B) Each circle in the graph represents a species at the genus level, with different colors representing different phylum-level affiliations. The labels on the circles are the names of the species, and species that cannot be clearly classified (such as norank species and unclassified species) are not shown with names. The lines between species represent correlations, with the thickness of the lines indicating the strength of the correlation, and the color of the lines representing the type of correlation. The red lines indicate positive correlations and the green lines indicate negative correlations.
物种 Species | 中川208根际样品中各物种的丰度 Species abundance in rhizosphere samples of Zhongchuan 208 | CV87根际样品中各物种的丰度 Species abundance in rhizosphere samples of CV87 | ||||||
---|---|---|---|---|---|---|---|---|
ZC1 | ZC2 | ZC3 | ZC4 | CV1 | CV2 | CV3 | CV4 | |
固氮弧菌属Azoarcus | 827 | 879 | 491 | 627 | 291 | 91 | 80 | 106 |
芽孢杆菌属Bacillus | 987 | 210 | 6 886 | 1 783 | 244 | 221 | 1 357 | 498 |
Dongia | 1 056 | 923 | 423 | 390 | 1 256 | 619 | 237 | 190 |
Candidatus_Solibacter | 381 | 299 | 440 | 786 | 476 | 379 | 414 | 345 |
黏液杆菌属Mucilaginibacter | 784 | 820 | 1 619 | 3 084 | 1 034 | 608 | 1 564 | 1 215 |
Occallatibacter | 271 | 263 | 653 | 911 | 566 | 359 | 706 | 415 |
Ramlibacter | 358 | 628 | 190 | 257 | 525 | 646 | 244 | 288 |
Aquicella | 1 121 | 801 | 511 | 672 | 951 | 613 | 334 | 340 |
黄杆菌属Flavobacterium | 433 | 586 | 550 | 162 | 744 | 2 589 | 2 270 | 806 |
土地杆菌属Pedobacter | 68 | 310 | 952 | 171 | 138 | 962 | 876 | 567 |
新鞘氨醇杆菌属Novosphingobium | 2 772 | 2 019 | 2 036 | 1 225 | 1 997 | 5 400 | 4 724 | 2 523 |
贪噬菌属Variovorax | 116 | 183 | 263 | 169 | 116 | 824 | 459 | 205 |
鞘氨醇单胞菌属Sphingomonas | 1 188 | 2 015 | 1 603 | 4 427 | 1 365 | 2 916 | 1 868 | 3 234 |
马赛菌属Massilia | 1 854 | 1 069 | 642 | 650 | 567 | 957 | 768 | 911 |
芽单胞菌属Gemmatimonas | 357 | 812 | 362 | 933 | 420 | 661 | 508 | 898 |
Table 1 Changes of abundance in typical representative species
物种 Species | 中川208根际样品中各物种的丰度 Species abundance in rhizosphere samples of Zhongchuan 208 | CV87根际样品中各物种的丰度 Species abundance in rhizosphere samples of CV87 | ||||||
---|---|---|---|---|---|---|---|---|
ZC1 | ZC2 | ZC3 | ZC4 | CV1 | CV2 | CV3 | CV4 | |
固氮弧菌属Azoarcus | 827 | 879 | 491 | 627 | 291 | 91 | 80 | 106 |
芽孢杆菌属Bacillus | 987 | 210 | 6 886 | 1 783 | 244 | 221 | 1 357 | 498 |
Dongia | 1 056 | 923 | 423 | 390 | 1 256 | 619 | 237 | 190 |
Candidatus_Solibacter | 381 | 299 | 440 | 786 | 476 | 379 | 414 | 345 |
黏液杆菌属Mucilaginibacter | 784 | 820 | 1 619 | 3 084 | 1 034 | 608 | 1 564 | 1 215 |
Occallatibacter | 271 | 263 | 653 | 911 | 566 | 359 | 706 | 415 |
Ramlibacter | 358 | 628 | 190 | 257 | 525 | 646 | 244 | 288 |
Aquicella | 1 121 | 801 | 511 | 672 | 951 | 613 | 334 | 340 |
黄杆菌属Flavobacterium | 433 | 586 | 550 | 162 | 744 | 2 589 | 2 270 | 806 |
土地杆菌属Pedobacter | 68 | 310 | 952 | 171 | 138 | 962 | 876 | 567 |
新鞘氨醇杆菌属Novosphingobium | 2 772 | 2 019 | 2 036 | 1 225 | 1 997 | 5 400 | 4 724 | 2 523 |
贪噬菌属Variovorax | 116 | 183 | 263 | 169 | 116 | 824 | 459 | 205 |
鞘氨醇单胞菌属Sphingomonas | 1 188 | 2 015 | 1 603 | 4 427 | 1 365 | 2 916 | 1 868 | 3 234 |
马赛菌属Massilia | 1 854 | 1 069 | 642 | 650 | 567 | 957 | 768 | 911 |
芽单胞菌属Gemmatimonas | 357 | 812 | 362 | 933 | 420 | 661 | 508 | 898 |
[6] | ZENG Q, XIONG C, YIN M, et al. Research progress on ecological functions and community assembly of plant microbiomes[J]. Biodiversity Science, 2023, 31(4): 186-202. (in Chinese with English abstract) |
[7] | ZHANG J Y, ZHANG N, LIU Y X, et al. Root microbiota shift in rice correlates with resident time in the field and developmental stage[J]. Science China Life Sciences, 2018, 61(6): 613-621. |
[8] | ROWE S L, NORMAN J S, FRIESEN M L. Coercion in the evolution of plant-microbe communication: a perspective[J]. Molecular Plant-Microbe Interactions, 2018, 31(8): 789-794. |
[9] | TURNER T R, RAMAKRISHNAN K, WALSHAW J, et al. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants[J]. The ISME Journal, 2013, 7(12): 2248-2258. |
[10] | OBERHOLSTER T, VIKRAM S, COWAN D, et al. Key microbial taxa in the rhizosphere of sorghum and sunflower grown in crop rotation[J]. Science of the Total Environment, 2018, 624: 530-539. |
[11] | FLOC’H J B, HAMEL C, LUPWAYI N, et al. Bacterial communities of the canola rhizosphere: network analysis reveals a core bacterium shaping microbial interactions[J]. Frontiers in Microbiology, 2020, 11: 1587. |
[12] | WANG M, ZHANG L, HE Y, et al. Soil fungal communities affect the chemical quality of flue-cured tobacco leaves in Bijie, Southwest China[J]. Scientific Reports, 2022, 12(1): 2815. |
[13] | DENG S W, CADDELL D F, XU G, et al. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome[J]. The ISME Journal, 2021, 15(11): 3181-3194. |
[14] | 张玉, 刘杨, 王元英, 等. 烤烟新品种中川208的选育及特征特性[J]. 中国烟草科学, 2019, 40(5): 1-7. |
ZHANG Y, LIU Y, WANG Y Y, et al. Breeding and characterization of a new flue-cured tobacco variety Zhongchuan208[J]. Chinese Tobacco Science, 2019, 40(5): 1-7. (in Chinese with English abstract) | |
[15] | 赵钢, 王凤龙, 孔凡玉, 等. 烤烟高抗赤星病气候斑点病普通花叶病新种质CV87选育利用研究[J]. 烟草科技, 1999, 32(2): 44-46. |
ZHAO G, WANG F L, KONG F Y, et al. Study on breeding and utilization of a new germplasm CV87 with high resistance to brown spot and common mosaic disease of flue-cured tobacco[J]. Tobacco Science & Technology, 1999, 32(2): 44-46. (in Chinese) | |
[16] | SCHLATTER D C, HANSEN J C, SCHILLINGER W F, et al. Common and unique rhizosphere microbial communities of wheat and canola in a semiarid Mediterranean environment[J]. Applied Soil Ecology, 2019, 144: 170-181. |
[1] | EDWARDS J, SANTOS-MEDELLÍN C, LIECHTY Z, et al. Compositional shifts in the root microbiota track the life-cycle of field-grown rice plants[J]. PLOS Biology, 2017, 16(2): e2003862. |
[2] | BEATTIE G A. Curating communities from plants[J]. Nature, 2015, 528(7582): 340-341. |
[17] | AMTMANN A, BENNETT M J, HENRY A. Root phenotypes for the future[J]. Plant, Cell & Environment, 2022, 45(3): 595-601. |
[18] | BULGARELLI D, GARRIDO-OTER R, MÜNCH P C, et al. Structure and function of the bacterial root microbiota in wild and domesticated barley[J]. Cell Host & Microbe, 2015, 17(3): 392-403. |
[19] | RASCOVAN N, CARBONETTO B, PERRIG D, et al. Integrated analysis of root microbiomes of soybean and wheat from agricultural fields[J]. Scientific Reports, 2016, 6: 28084. |
[3] | CARRIÓN V J, PEREZ-JARAMILLO J, CORDOVEZ V, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome[J]. Science, 2019, 366(6465): 606-612. |
[4] | LI H, SU J Q, YANG X R, et al. Distinct rhizosphere effect on active and total bacterial communities in paddy soils[J]. Science of the Total Environment, 2019, 649: 422-430. |
[5] | EDWARDS J A, SARAN U B, BONNETTE J, et al. Genetic determinants of switchgrass-root-associated microbiota in field sites spanning its natural range[J]. Current Biology, 2023, 33(10): 1926-1938.e6. |
[6] | 曾青, 熊超, 尹梅, 等. 植物微生物组生态功能与群落构建过程研究进展[J]. 生物多样性, 2023, 31(4): 186-202. |
[20] | SANTOYO G. How plants recruit their microbiome?: new insights into beneficial interactions[J]. Journal of Advanced Research, 2022, 40: 45-58. |
[21] | SONG Q Y, LI X Y, ZHAO Z Y, et al. Insights into ecotoxicity effects of PAHs and ecosystem responses of remediation strategies under cold stress: from PAHs degradation to ecological restoration regulated by signal molecular[J]. Chemical Engineering Journal, 2023, 475: 146042. |
[1] | LI Qingchao, YANG Shan, ZHANG Dengfeng, LIU Jianxin, SUN Kaili, WU Xun. Phenotypic diversity of ear traits in 487 maize landraces [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1481-1491. |
[2] | LIU Chunkui, LI Zilin, WEI Xiaoling, JIA Lin, XIA Yang, LONG Lijin, HE Yuan, LI Bo, YAN Hongyang, ZHNAG Boying. Effects of foliar application of molybdenum fertilizer at different growth stages on aroma components of flue-cured tobacco [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 481-493. |
[3] | LU Xinbo, YUAN Ying, WANG Jun, WANG Huawen, XIA Jun, WU Dan, TIAN Jinhu, YE Xingqian, YIN Jie, JIANG Jian. Effect of extrusion treatment on chemical composition and aroma of flue-cured tobacco leaves for heat-not-burn cigarettes [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2803-2811. |
[4] | PEI Yun, XU Xiuhong, LU Jinbiao, CHEN Amin, ZHANG Wanping. Genetic diversity analysis of 151 cherry tomato resources in Guizhou Province [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 310-316. |
[5] | WANG Weike, SONG Jiling, WU Youliang, YAN Jing, LU Na, YUAN Weidong, CHEN Guanping. Molecular identification and genetic diversity of a traditional Chinese medicinal fungus Sanghuang [J]. , 2019, 31(2): 307-314. |
[6] | GE Yi, XU Shaohui, XU Yan. Review on influencing factors of rhizosphere microbiome assemblage [J]. , 2019, 31(12): 2120-2130. |
[7] | LU Liming, ZENG Xiaomin, GU Huizhan, ZHANG Qili, YU Xiao, WANG Dong, HE Jixian, LI Liqin. Effects of nitrogen application on key enzymes gene expression and yield of nitrogen metabolism in flue-cured tobacco [J]. , 2018, 30(3): 454-460. |
[8] | YAN Hong-yang;LIU Chun-kui;YAN Hong-xi;JIA Lin;YAN Ke-yu;*;KONG Xyu. Comparison and cluster analysis of sensory quality of flue-cured tobacco leaves from Henan main tobacco-growing areas [J]. , 2013, 25(4): 0-700. |
[9] | QI Fei;LIU Guo-shun;*;DU Shao-ming;WANG Jian-an;SHI Hong-zhi;ZHANG Rui;GAO Wei-kai. Adaptability of different genotypic flue-cured tobacco materials in Lincang [J]. , 2011, 23(4): 0-675. |
[10] | LI Zhong-min;YANG Tie-zhao*;DUAN Wang-jun;LI Ya-pei. Effects of different genotypes of flue-cured tobacco on nitrogen metabolism\|related enzyme activity [J]. , 2011, 23(3): 0-474. |
[11] | ZHANG Chao-hui;WANG Bao-xiang;XI Shu-ya;LIU Tian-xiang;CAO Yu-bo;QIU Li-you;*. Identification of a silicate bacterium from flue-cured tobacco rhizosphere and application in flue-cured tobacco production [J]. , 2011, 23(3): 0-558. |
[12] | YU Jian-jun;YAN Ding;YE Xian-wen;MA Yun-ming;WEI Pan-pan;LIU Qian. Analysis between primary chemical components of flue-cured tobacco and their smoking quality in Chongqing Area [J]. , 2010, 22(5): 669-672. |
[13] | YU Jian-jun;LIU Qian;WANG Peng;SONG Wen-feng;MA Fei-yue. Analysis on neutral aroma components of flue-cured tobacco from Shennongjia region of Hubei Province [J]. , 2010, 22(4): 0-494. |
[14] | LIU Pei-yu;WANG Xin-fa;WANG Jian;YAN Qi-feng;SHI Gang;YANG Tie-zhao;*. Changes of aroma constituents of different flue-cured tobacco genotypes in different ecoregions [J]. , 2010, 22(2): 0-243. |
[15] | YU Jian-jun;GUO Wei;BI Qing-wen;WANG Hai-ming;LI Gen;FENG Xian-qing. Factor analysis and comprehensive evaluation of main chemical components in flue-cured tobacco [J]. , 2010, 22(2): 0-248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||